Document Type



Kinesiology & Health Sciences

Journal Title

Journal of Neuroscience Research

Pub Date






First Page



To examine the effects of aging on neuromuscular adaptations to resistance training (i.e., weight lifting), young (9 months of age) and aged (20 months of age) male rats either participated in a 7-week ladder climbing protocol with additional weight attached to their tails or served as controls (n=10/group). At the conclusion, rats were euthanized and hindlimb muscles were quickly removed and frozen for later analysis. Longitudinal sections of the soleus and plantaris muscles were collected, and pre- and postsynaptic features of neuromuscular junctions (NMJs) were visualized with immunofluorescence staining procedures. Cross-sections of the same muscles were histochemically stained to determine myofiber profiles (fiber type and size). Statistical analysis was by two-way ANOVA (main effects of age and treatment) with significance set at P0.05. Results revealed that training-induced remodeling of NMJs was evident only at the postsynaptic endplate region of soleus fast-twitch myofibers. In contrast, aging was associated with pre- and postsynaptic remodeling in fast- and slow-twitch myofibers of the plantaris. Although both the soleus and the plantaris muscles failed to display either training or aging-related alterations in myofiber size, aged plantaris muscles exhibited an increased expression of type I (slow-twitch) myofibers in conjunction with a reduced percentage of type II (fast-twitch) myofibers, suggesting early stages of sarcopenia. These data demonstrate the high degree of specificity of synaptic modifications made in response to exercise and aging and that the sparsely recruited plantaris is more vulnerable to the effects of aging than the more frequently recruited soleus muscle. (c) 2014 Wiley Periodicals, Inc.