Document Type

Article

Department/Program

Physics

Journal Title

PHYSICAL REVIEW D

Pub Date

11-28-2017

Volume

96

Issue

9

Abstract

The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarized gluon distribution is studied in nuclei up to atomic number A = 3 at quark masses corresponding to pion masses of m(pi) similar to 450 and 806 MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than similar to 10% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the b(1) structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a nonzero signal is observed at m(pi) similar to 806 MeV. This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.

DOI

10.1103/PhysRevD.96.094512

Share

COinS