Title

Non-denseness of factorable matrix functions

Document Type

Article

Department/Program

Mathematics

Journal Title

Journal of Functional Analysis

Pub Date

2011

Volume

261

Issue

7

First Page

1969

Abstract

It is proved that for certain algebras of continuous functions on compact abelian groups, the set of factorable matrix functions with entries in the algebra is not dense in the group of invertible matrix functions with entries in the algebra, assuming that the dual abelian group contains a subgroup isomorphic to Z(3). These algebras include the algebra of all continuous functions and the Wiener algebra. More precisely, it is shown that infinitely many connected components of the group of invertible matrix functions do not contain any factorable matrix functions, again under the same assumption. Moreover, these components actually are disjoint with the subgroup generated by the triangularizable matrix functions. (C) 2011 Elsevier Inc. All rights reserved.

DOI

10.1016/j.jfa.2011.05.024

This document is currently not available here.

Share

COinS