#### Document Type

Article

#### Department/Program

Mathematics

#### Journal Title

CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES

#### Pub Date

2016

#### Volume

59

#### Issue

2

#### First Page

354

#### Abstract

Let T be a quadratic operator on a complex Hilbert space H. We show that T can be written as a product of two positive contractions if and only if T is of the form aI circle plus bI circle plus [GRAPHICS] on H-1 circle plus H-2 circle plus (H-3 circle plus H-3) for some a, b is an element of [0, 1] and strictly positive operator P with parallel to P parallel to < = vertical bar root a - root b vertical bar root(1 - a) (1 - b). Also, we give a necessary condition for a bounded linear operator T with operator matrix [GRAPHICS] on H circle plus K that can be written as a product of two positive contractions.

#### Recommended Citation

Li, Chi-Kwong and Tsai, Ming-Cheng, Factoring a Quadratic Operator as a Product of Two Positive Contractions (2016). *CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES*, 59(2), 354-362.

10.4153/CMB-2015-049-4

#### DOI

10.4153/CMB-2015-049-4