Document Type

Article

Department/Program

Biology

Journal Title

Earth's Future

Pub Date

3-21-2016

Volume

4

Issue

4

Journal Article URL

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015EF000334

First Page

110

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Abstract

A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self‐packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1‐LOI)/k2], where k1 and k2 are the self‐packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1and k2 were estimated to be 0.085 ± 0.0007 g cm−3 and 1.99 ± 0.028 g cm−3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≤ 0.3 cm yr−1. Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea‐level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr−1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr−1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sediment concentration, sediment‐capture efficiency, and episodic events.

DOI

10.1002/2015EF000334

Included in

Biology Commons

Share

COinS