Copper(I) thiocyanate networks with aliphatic sulfide ligands

Gerardo Ayala
College of William and Mary

Robert D. Pike
College of William and Mary, rdpike@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/chemistrypub

Recommended Citation
10.1016/j.poly.2016.05.029

This Article is brought to you for free and open access by the Chemistry at W&M ScholarWorks. It has been accepted for inclusion in Chemistry Articles & Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Copper(I) thiocyanate networks with aliphatic sulfide ligands

Gerardo Ayala, Robert D. Pike *

Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, United States

A R T I C L E I N F O

Keywords:
Copper thiocyanate complexes
Crystal structures
Sulfide ligands
Network structures
Thermogravimetry

A B S T R A C T

A total of five new CuSCN-L compounds with alkyl sulfide ligands, L = methyl sulfide (Me2S), ethyl sulfide (Et2S), isopropyl sulfide (Pr3S) or tetrahydrothiophene (THT) have been prepared and characterized. X-ray crystal structures for four of the compounds were obtained. Two compounds were collected from solutions of CuSCN in Me2S: [{CuSCN(Me2S)}]n (1a) in the form of colorless blocks and (CuSCN)(Me2S) (1b) as a white powder. Neat mixtures of CuSCN in the other alkyl sulfide ligands yielded only one product each: [{CuSCN(Et2S)}]n (2); [{CuSCN(Pr3S)}]n (3); and [{CuSCN(THT)}]n (4). Crystals of 2 and 4 underwent destructive phase changes at lower temperatures. Two networks types were observed: 1:2 decorated 1-D chains (1a and 4) and 1:2 decorated 1-D ladders (2 and 3). Further network formation through bridging of the organic sulfide ligands was not observed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Organosulfur ligands occupy an important niche in transition metal chemistry. As soft ligands, they are able to stabilize soft metal ions in low oxidation states. By virtue of their vacant d-orbitals and ancillary lone pairs, such ligands can potentially act either as π-donors or π-acceptors, depending upon their substituent electron demand. Sulfur ligands readily bridge metal centers, facilitating the formation of oligomers and polymers. Nevertheless, they also tend to solubilize metal salts, in particular Cu(I) salts. Thus, CuX-Me2S (X = Cl, Br, I, and CN) is a convenient carrier of copper(I) salts in organic reactions [1]. There are many known complexes of CuX with sulfur ligands, including sulfides [2], thiolates [3], thioamides [4], and phosphine sulfides [5]. Their structural types include polymers and networks based on CuX2 dimers, CuX3 ladders, and (CuX) n polymers and oligomers. In some cases, such as that of CuI with tetrahydrothiophene (THT), many stoichiometries with molecular complex to Cu(I); the harder oxygen atoms fail to interact with the soft Cu(I). Herein we present the synthesis of five new CuSCN-L compounds, containing the aliphatic sulfides L = Me2S, Et2S, Pr3S, and THT. Four new crystal structures, falling in CuSCN chain and ladder categories, were solved and are discussed.

2. Experimental

2.1. Materials and methods

All reagents were purchased from Aldrich or Acros and used without purification. Commercial CuSCN (Aldrich) was shown by FTIR to consist solely of the α-phase [8]. IR spectra were collected on a Shimadzu IRTracer-100 instrument using a diamond ATR probe (spectra shown in Supporting Information). Analyses for C, H, and N proved impossible for the compounds described herein due to high ligand lability. Atomic absorption (AAS) analyses for Cu were carried out using a Perkin–Elmer AAnalyst 700 as previously described [9]. Thermogravimetric analyses (TGA) were conducted using a TA Instruments Q500 in the dynamic (variable temp.) mode with a maximum heating rate of 50 °C/min. to 800 °C under 50 mL/min. N2 flow.

2.2. Syntheses

2.2.1. [{Cu(SCN)(Me2S)}]n 1a

CuSCN (131 mg, 1.07 mmol) was dissolved in 480 µL of neat Me2S in a vial. The resulting brown solution was placed in a freezer for 3 d. The colorless crystals that formed were collected by siphoning excess ligand from the vial. The crystals were washed...
with pentane and air-dried for no more than 5 min. Yield: 82 mg, 38.9%. Samples were immediately analyzed via TGA, IR, and AAS. IR (cm⁻¹): 2920 (weak), 2908 (v strong), 1419, 1029, 797, 771, 682. Anal. Calc. for CuH₂₂NCuS₂: Cu, 25.8. Found: Cu, 25.2%. Due to sample instability, CHN analysis was not possible. TGA calculated for [CuSCN][Me₂S]: 74.7%. Found: 70.2% (20–50 °C). Calc for CuSCN: 49.4%. Found: 53.6% (50–130 °C).

2.2.2. [[Cu(SCN)(Me₂S)]ₙ] ₄b
CuSCN (271 mg, 2.23 mmol) was dissolved in 1.5 mL of neat Me₂S. The resulting suspension was stirred at room temperature for 1 h in a sealed vial, with the solid dissolving completely into the ligand after only a few minutes. The product was precipitated with addition of pentane. The resulting white solid was collected via filtration, and washed with pentane. Because of the ready loss of sulfide, the product was dried for no more than 5 min. prior to storage in a freezer (271 mg, 51.3% yield). Samples were immediately analyzed via TGA, IR, and AAS. IR (cm⁻¹): 2117 (v strong), 1415, 1037, 975, 759. Anal. Calc. for CuH₃₄NCuS₂: Cu, 34.6. Found: Cu, 35.1%. Due to sample instability, CHN analysis was not possible. TGA calculated for CuSCN: 66.1%. Found: 67.1% (35–120 °C).

2.2.3. [[Cu(SCN)(Et₂S)]ₙ] ₂
CuSCN (96 mg, 0.798 mmol) was dissolved in 2 mL of neat Et₂S in a vial. The solid dissolved within 20 min. with stirring. The solution was stirred for 3 d. Precipitation with ethyl ether resulted in a white powder, which was isolated by filtration and washed with ether. The product was dried for no more than 5 min. due to ready loss of ligand (103 mg, 61.8%). Due to sample instability, CHN analysis was not possible. IR (cm⁻¹): 2970 (weak), 2169 (v strong), 1446, 1377, 1259, 974, 746. Anal. Calc. for CuH₃₂NCuS₂: Cu, 30.0. Found: Cu, 32.5%. TGA calculated for CuSCN: 58.4%. Found: 61.6% (45–95 °C).

2.2.4. [[Cu(SCN)(Pr₅S)]ₙ] ₃
The procedure for 2 was followed, using 85 mg (0.699 mmol) CuSCN and 2 mL of neat Pr₅S. The solid did not dissolve completely. The suspension was stirred for 3 d. A white powder was collected via filtration and washed with ethyl ether (110 mg, 65.6%). IR (cm⁻¹): 2974 (weak), 2924 (weak), 2866 (weak), 2924 (weak), 2866 (weak), 2110 (strong), 1442, 1381, 1365, 1238, 1153, 1045, 929, 906, 883, 860, 748. Anal. Calc. for CuH₃₄NCuS₂: Cu, 26.5. Found: Cu, 26.8. Due to sample instability, CHN analysis was not possible. TGA calculated for CuSCN: 50.7%. Found: 54.8% (40–75 °C).

2.2.5. [[Cu(SCN)(THT)]ₙ] ₄
The procedure for 2 was followed, using 91 mg (0.748 mmol) CuSCN and 2 mL of neat THT. The solid did not dissolve completely. The suspension was stirred for 3 d. A white powder was collected via filtration and washed with ethyl ether (186 mg, 83.4%). IR (cm⁻¹): 2951, 2125 (strong), 1435, 1253, 883, 756, 671. Anal. Calc. for CuH₃₄NCuS₂: Cu, 21.3. Found: Cu, 21.6%. Due to sample instability, CHN analysis was not possible. TGA calculated for CuSCN(THT): 70.4%. Found: 72.8 (31–50 °C). Calc for CuSCN: 40.0%. Found: 43.3% (60–95 °C).

2.3. Crystallizations
Single crystals were grown using several techniques. Once removed from mother liquor, all crystals were immediately placed into Paratone N oil and then mounted under a stream of dry air at 100 K. Crystals of 1a were grown as described above, resulting in colorless blades. For 2, 80 mg of CuSCN were stirred in 2 mL of Et₂S for 1 h. The vial was then left uncapped and undisturbed in a fume hood. Overnight evaporation of excess Et₂S left colorless blades of 2. For 3 and 4, 119 mg of CuSCN were stirred with 4 mL of neat THT, and 117 mg of CuSCN were stirred with 4 mL of neat Pr₅S in sealed vials under Ar in an oil bath at 70 °C for 3 d. CuSCN dissolved completely in THT in this procedure. The vial was allowed to cool to room temp before being placed in a freezer. Colorless plates of 4 grew over 3 d. Although the Pr₅S compound never fully dissolved in the neat ligand, long colorless needles of 3 suitable for diffraction grew as the vial was left to cool at room temp.

2.4. X-ray data collection, structure solutions and refinements
All X-ray measurements were made using graphite-monochromated Cu Kα radiation on a Bruker-AXS three-circle diffractometer, equipped with a SMART Apex II CCD detector. Crystals of 2 and 4 underwent destructive phase changes at reduced temperatures, even as high as 250 K. Data for 2 and 4 were collected at room temperature (298 K). Data for 1a and 3 were collected at 100 K. Initial space group determination was based on a matrix consisting of 120 frames. The data were corrected for Lorentz and polarization [10] effects and absorption using SADABS [11]. The structures were solved using intrinsic phasing methods. Structure solution, refinement and the calculation of derived results were performed using the SHELXTL [12] package of software and ShelXle [13]. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in theoretical positions.

Powder diffraction analysis was carried out on the instrument described above. Samples were rapidly ground and prepared as mulls using Paratone N oil. Four 180 s frames were collected, covering 8–100° 2θ. Frames were merged using the SMART Apex II software [14] and were further processed using DIFFRAC.EVA software [15].

3. Results and discussion
3.1. Synthesis and characterization
Copper(I) thiocyanate complexes with dialkyl sulfide ligands were generated easily via dissolution or suspension of CuSCN in neat sulfide ligand. The off-white CuSCN dissolved completely in Me₂S and Et₂S after only a few minutes of stirring. A white ligated product was readily precipitated from the neat sulfide solution via addition of pentane or ethyl ether. Although CuSCN was not fully soluble in Pr₅S or THT at room temperature, stirring of the two-phase mixtures over several days enabled complete conversion to the white sulfide products. Reaction of CuSCN was found to afford two different products from neat Me₂S solution, depending on the conditions of product isolation. Colorless crystals grown by cooling highly concentrated solutions of CuSCN in Me₂S were found to be have 1:2 stoichiometry: [CuSCN][Me₂S]₂, 1a. This result was confirmed via both X-ray diffraction and TGA. A white powder obtained by pentane precipitation of the solid from the CuSCN/Me₂S solution analyzed as a 1:1 compound: [CuSCN][Me₂S], 1b, by thermogravimetric analysis (TGA) and atomic absorption analysis. As shown in Fig. 1, the Me₂S compounds produced distinct X-ray powder diffraction traces. Each of the other sulfides produced only a single product phase when reacted with CuSCN: [[Cu(SCN)(Et₂S)]ₙ] ₂, [CuSCN][Pr₅S]ₙ, 3, and [[Cu(SCN)(THT)]ₙ] ₄. 4.

None of the five compounds prepared herein was thermally stable. Instead, each compound steadily lost ligand at ambient temperature over the course of hours. This was apparent upon examination of TGA data collected on samples after relatively short and longer drying times. Thermal decomposition is expected to cause quantitative removal of organic ligand from CuSCN-L
complexes. The complexes air-dried for no more than five minutes showed ligand loss plateaus by TGA that corresponded to the theoretical mass of CuSCN (see Fig. S1). The sulfide ligands were removed between ambient temperature and 135 °C, leaving CuSCN, which itself decomposed around 400–450 °C. However, samples dried for longer periods or under vacuum showed plateaus after ligand loss that indicated elevated CuSCN content. The alkyl sulfide complexes air-dried for no more than five minutes showed ligand loss plateaus by TGA that corresponded to the theoretical mass of CuSCN (see Fig. S1). The sulfide ligands were found to behave as monodentate capping ligands, precluding the formation of multidimensional networks. This was also true for a period of days to weeks. The instability the alkyl sulfide products reported herein are likely to be the result of excess electron donation at the Cu(I) center.

3.2. Description of X-ray structures

A total of four crystal structures were solved during the course of this study. The resulting structures fall into two recognized categories: 1-D chains and 1-D ladders. All of the alkyl sulfide compounds were found to behave as monodentate capping ligands, precluding the formation of multidimensional networks. This was a surprising finding given the propensity of alkyl sulfide ligands to bridge in complexes of CuCl, CuBr, CuI, and CuCN [2]. Crystallographic data are summarized in Table 1. Selected bond lengths and angles are given in Table S1.

Compound 1a crystallized as colorless blocks that solved in centrosymmetric monoclinic space group P21/c. A chain diagram is shown in Fig. 2. The structure consists of a 1-D CuSCN chain with the four-coordinate Cu centers capped by pairs of Me2S ligands. The CuSCN chain propagates along the crystallographic c-axis. Both Cu–S bonds associated with the sulfide molecules (Cu–S = 2.3456 (5), Cu–S = 2.2869(4) Å) are shorter than that of the thiocyanate (Cu–S = 2.3783(6) Å). The chain has a zigzag angle N1–Cu1–S1 of 106.73(5)°. This is the smallest of the roughly tetrahedral angles about Cu, which range from 106.73(5)° to 117.24(5)°. The single independent CuSCN unit lies in two positions that are slightly displaced from one another, such that a Cu1–Cu1–Cu1 angle of 173.64° and a S1–Cu1–S1 dihedral angle of 27.06° are seen. There are no apparent inter-chain interactions.

Compound 2 crystallized as colorless blades that solved in the centrosymmetric monoclinic space group P21/n. The asymmetric unit consists of Cu(SCN)(Et2S). A structure diagram is shown in Fig. 3. Crystals of this compound underwent a destructive phase change upon modest reduction in temperature, necessitating data collection at 298 K. Even the ambient temperature structure retained relatively poor crystallographic ordering. The disordered Et2S ligand was modeled over two positions, and still shows rather larger thermal ellipsoids (see Supporting Information). The network in 2 consists of CuSCN ladders capped by Et2S ligands. The ladders are formed by the crosslinking of antiparallel CuSCN chains by μ2-S. The sulfur atoms of the thiocyanate groups bridge between pairs of Cu atoms, resulting in alternating, edge-sharing Cu2S2 and Cu2(SCN)2 dimers. The ladders propagate along the crystallographic c-axis. A single diethyl sulfide ligand completes the roughly tetrahedral coordination sphere around copper (angles = 103.16(8)–121.80(12)°).

A single diethyl sulfide ligand completes the roughly tetrahedral coordination sphere around copper (angles = 103.16(8)–121.80(12)°). In 2, the distance between the Cu atoms across the rhomboid Cu2S2 dimer is 2.8893(7) Å, falling just outside the van der Waals radius sum for copper (2.8 Å). This short distance results in a relatively small Cu–S–Cu angle of 72.74 (3)°. Distances between Cu and thiocyanate S (Cu–S = 2.368(1), 2.500(1) Å) are slightly longer than those between Cu and S of the aliphatic ligand (Cu–S = 2.227(5), Cu–S = 2.294(9) Å). Adjacent ladders are rotated by 90° with respect to one another, and there are no significant interactions between the ladders.

Compound 3 crystallized as thin colorless needles that solved in the centrosymmetric monoclinic space group P21/n. The asymmetric

Table 1

<table>
<thead>
<tr>
<th>Complex</th>
<th>1a</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC No.</td>
<td>1460762</td>
<td>1460764</td>
<td>1460765</td>
<td>1460763</td>
</tr>
<tr>
<td>Color</td>
<td>colorless block</td>
<td>colorless prism</td>
<td>colorless prism</td>
<td>colorless plate</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>0.49 × 0.42 × 0.26</td>
<td>211.80</td>
<td>293.86</td>
<td>297.95</td>
</tr>
<tr>
<td>Formula</td>
<td>C5H12CuNS3</td>
<td>C5H10CuNS2</td>
<td>C7H14CuNS2</td>
<td>C9H16CuNS3</td>
</tr>
<tr>
<td>Formula weight</td>
<td>245.88</td>
<td>211.80</td>
<td>239.85</td>
<td>297.95</td>
</tr>
<tr>
<td>Space group</td>
<td>P21/c (#14)</td>
<td>P21/n (#14)</td>
<td>P21/n (#14)</td>
<td>P21/n (#14)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.38230(10)</td>
<td>5.82340(10)</td>
<td>5.92320(10)</td>
<td>5.8965(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.0297(3)</td>
<td>9.6077(2)</td>
<td>10.9226(2)</td>
<td>9.3775(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>11.2206(2)</td>
<td>16.2675(4)</td>
<td>15.9989(3)</td>
<td>15.9998(3)</td>
</tr>
<tr>
<td>v (Å3)</td>
<td>1023.49(3)</td>
<td>904.45(3)</td>
<td>1034.73(3)</td>
<td>645.15(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>μ (μg/mg)</td>
<td>1.596</td>
<td>1.555</td>
<td>1.540</td>
<td>1.534</td>
</tr>
<tr>
<td>F(000)</td>
<td>504</td>
<td>432</td>
<td>496</td>
<td>308</td>
</tr>
<tr>
<td>μ(Cu Kα)</td>
<td>8.211</td>
<td>7.093</td>
<td>6.271</td>
<td>6.626</td>
</tr>
<tr>
<td>T(K)</td>
<td>100(2)</td>
<td>296(2)</td>
<td>100(2)</td>
<td>296(2)</td>
</tr>
<tr>
<td>Residuals</td>
<td>0.0232; 0.0581</td>
<td>0.0327; 0.0936</td>
<td>0.0228; 0.0589</td>
<td>0.0294; 0.0737</td>
</tr>
<tr>
<td>Goodness of fit (GOF)</td>
<td>1.209</td>
<td>1.038</td>
<td>1.103</td>
<td>0.03(4)</td>
</tr>
</tbody>
</table>

\[R = \sum||Fo|-|Fc||/\sum|Fo|, \quad wR = \left(\sum|w(Fo^2-Fc^2)^2|/\sum|w(Fo^2)|\right)^{1/2} \] for observed data only.
unit consists of Cu(SCN)(Pr₂S). A structural diagram is shown in Fig. 4. This compound displays the same ladder networking as was seen with 2, unlike 2, the crystal did not undergo a destructive phase change at reduced temperatures, and the ligand molecules were not disordered. Some important structural differences between 2 and 3 are apparent when examining the Cu₂S₂ dimers. The ladders in 3, which propagate along the a-axis are all aligned, unlike those in 2. In 3, the dimer Cu–Cu = 3.1662(5) Å, with a corresponding dimer Cu–S–Cu angle of 81.08(2)°. This trend of increasing Cu–S–Cu angle with increasing Cu–Cu has been noted in other CuSCN ladder compounds and in (Cu₃O₂), which contains both long and short Cu–Cu [69,16]. As was the case in 1a and 2, bond distances between the copper and thiocyanate sulfur atoms (2.4816(6) and 2.3883(6) Å) are slightly longer than that for the sulfide ligand (2.2740(5) Å). There are no interactions between adjacent ladders.

Compound 4 crystallizes as thin, colorless and transparent plates, solving in the non-centrosymmetric monoclinic space group P2₁. As was the case with 2, the crystals of 4 underwent a destructive phase just below ambient temperature, and so data were collected at 298 K. The complex also showed ligand disorder (see Supporting Information). In this case there are two THT ligands, both of which were modeled over two disordered positions. Like 1a, the structure of 4 consists of a 1-D CuSCN chain with four-coordinate Cu atoms capped by pairs of THT ligands. The CuSCN chain propagates along the a-axis. A chain diagram is shown in Fig. 5. The zigzag angle, N1–Cu1–S1, is 110.06(15)°, and all angles around Cu are fairly close to tetrahedral: 103.5(3)–117.7(6)°. Unlike 1a, the thiocyanate Cu–S (2.3442(2) Å), falls within the range of the Cu–S₃₄₉ distances: Cu–S₂A = 2.40(2), Cu–S₂B = 2.35(2) Cu–S₃A = 2.19(2), Cu–S₃B = 2.366(6) Å. Once again, no significant interactions between chains are noted.

4. Conclusions

We have reported the first alkyl monosulfide complexes of copper(I) thiocyanate. Five compounds were prepared by the reaction of CuSCN in neat Me₆S, Et₂S, Pr₂S, and tetrahydrothiophene (THT). In the former case [[Cu(SCN)(Me₆S)]₂] (1a) forms upon cooling a solution of CuSCN in Me₆S, while [[(CuSCN)(Me₂S)]₂] (1b) is formed by rapid precipitation from the solution. Only [[Cu(SCN)(Et₂S)]₂] (2) can be realized from a solution of CuSCN in Et₂S. Sulfide compounds [[Cu(SCN)(Pr₂S)]₂] (3) and [[Cu(SCN)(THT)]₂] (4) are formed from suspensions of CuSCN in the ligand. All compounds are thermally unstable, losing alkyl sulfide ligand over a course of hours at room temperature. None of the complexes show bridging through the sulfide ligand. Compounds 1a and 4 consist of zigzag CuSCN chains decorated with pairs of monodentate sulfide ligands. Compounds 2 and 3 consist of ladders of alternating and edge sharing Cu₂S₂ and (CuSCN)₂ rungs. In both cases a monodentate sulfide ligand fills out the tetrahedral copper coordination sphere. The sulfide compounds of CuSCN appear to be far less stable than those of the copper(I) halides and cyanide. This inability of CuSCN-SR₂ appears to be connected with the failure to promote network formation.

Acknowledgement

We are indebted to NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

Appendix A. Supplementary data

CCDC 1460762–1460765 contains the supplementary crystallographic data for 1a and 2–4. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.poly.2016.05.029.
References

(g) P.D. Harvey, M. Knorr, J. Clust. Sci. 26 (2015) 411;
(c) Z.-M. Hao, J. Wang, X.-M. Zhang, CrystEngComm 12 (2010) 1103;
(b) F.B. Stocker, M.A. Troester, Inorg. Chem. 35 (1996) 3154;
(b) P.W.R. Corfield, Acta Crystallogr., Sect. E 70 (2014) 281,
[10] SMART PLUS, Bruker Analytical X-ray Systems, Madison, WI, 2001,
(b) Z. Hao, X. Zhang, Cryst. Growth Des. 7 (2007) 64;
(d) C. Nather, M. Wriedt, Dalton Trans. 46 (2009) 10125;