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INTRODUCTION

Sponges are abundant and ecologically dominant
members of the Antarctic benthos that occur across a
broad range of depths and are often characterized by
circumpolar distributions (McClintock et al. 2005).
Being sessile, sponges are at a distinct disadvantage
when compared to motile organisms in terms of their
ability to seek refuge or move away from threats that
can include spatial competition (Engel & Pawlik 2000),
fouling (Tsoukatou et al. 2007), or predation. Conse-
quently, sponges and other groups of sessile marine
invertebrates have evolved alternate modes of defense,
including the incorporation of physical defenses
(Chanas & Pawlik 1995, Huang et al. 2008) and/or the
production of defensive secondary metabolites (Pawlik
et al. 1995, Assmann et al. 2000, Kubanek et al. 2000,
McClintock & Baker 2001, Furrow et al. 2003).

Marine predator–prey relationships have been inter-
preted within the context of several ecological theories
(Cronin 2001, Amsler & Fairhead 2006). One of these is
the optimal defense theory (ODT). The ODT considers
variations in defenses within organisms and, assuming
these defenses invoke some fitness cost to the organ-
ism, predicts when and where defenses will be allo-
cated in lieu of internal competition for resources for
growth and defense (Rhoades 1979). In an environ-
ment in which the predation risk is absent or low, the
ODT predicts that there would be no benefit to produc-
ing defenses; however, in an environment in which
predation risk is high, the cost of the defense could be
outweighed by the benefit of being protected. If the
probability of attack is high, the ODT predicts that
defenses will be under strong positive selection. Con-
versely, if the cost of producing the defense is greater
than the benefit obtained, then the ODT predicts that

© Inter-Research 2009 · www.int-res.com*Email: kpeters@uab.edu

Palatability and chemical defenses of sponges from
the western Antarctic Peninsula

Kevin J. Peters1,*, Charles D. Amsler1, James B. McClintock1,
Rob W. M. van Soest2, Bill J. Baker3

1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, Alabama 35294-1170, USA
2Zoological Museum of the University of Amsterdam, PO Box 94766, 1090 GT Amsterdam, The Netherlands

3Department of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620-5240, USA

ABSTRACT: The present study surveyed the palatability of all sponge species that could be collected
in sufficient quantities in a shallow-water area along the western Antarctic Peninsula. Of 27 species
assayed, 78% had outermost tissues that were significantly unpalatable to the sympatric, omnivorous
sea star Odontaster validus. Of those species with unpalatable outer tissues, 62% had inner tissues
that were also unpalatable to the sea stars. Sea stars have often been considered as the primary
predators of sponges in other regions of Antarctica, and their extra-oral mode of feeding threatens
only the outermost sponge tissues. The observation that many of the sponges allocate defenses to
inner tissues suggests the possibility that biting predators such as mesograzers, which could access
inner sponge layers, may also be important in communities along the Antarctic Peninsula. In feeding
bioassays with extracts from 12 of the unpalatable species in artificial foods, either lipophilic or
hydrophilic extracts were deterrent in each species. These data indicate an overall level of chemical
defenses in these Antarctic sponges that is comparable to, and slightly greater than, that found in a
previous survey of tropical species.

KEY WORDS:  Chemical defenses · Sponge · Antarctica · Predation · Optimal defense theory

Resale or republication not permitted without written consent of the publisher

OPENPEN
 ACCESSCCESS

This content downloaded from 
������������50.202.122.136 on Wed, 02 Mar 2022 14:24:18 UTC������������� 

All use subject to https://about.jstor.org/terms



Mar Ecol Prog Ser 385: 77–85, 2009

selection will favor the production of fewer defenses.
At the level of the individual, ODT predicts that
defenses will be allocated in higher concentrations to
the most vulnerable and/or valuable tissues. This will
vary between prey, depending on the type of predators
influencing the evolution of defenses in the prey.

The shallow, nearshore waters of the Antarctic
Peninsula are characterized by a rich and diverse ben-
thos (Brand 1974, Barnes & Brockington 2003, Barnes
2005). The predominant predators of benthic marine
sponges in this and other regions of Antarctica are sea
stars (Dayton et al. 1974, McClintock et al. 2005), with
an abundance of omnivorous sea star species that
include sponges among a broad array of prey, as
well as strictly spongivorous species (Dearborn 1977,
McClintock 1994).

As sea stars are the dominant predators of Antarctic
sponges they are likely the primary driving force in the
evolution of anti-predator defenses. Accordingly,
sponge defenses would be predicted to be differen-
tially allocated within sponges such that they most
effectively deter sea stars from feeding upon them. The
mode of feeding of sea stars is unique in that each arm
is equipped with rows of chemosensory tube feet that,
upon contact, facilitate an evaluation of prey palatabil-
ity (Sloan 1980). If a potential prey is subsequently
deemed acceptable, sea stars then extrude their car-
diac stomach directly against the surface of the prey to
initiate extra-oral digestion. This unique extra-oral
mode of feeding results in sea stars encountering only
the outer surfaces of prey (Dearborn 1977). As such,
the most vulnerable region of sponges attacked by sea
stars is the exterior surface. Allocation of defenses to
inner sponge tissues would not be an efficient utiliza-
tion of resources, as sea stars encounter these regions
of the sponge only after first digesting outer layers.

There are several different mechanisms by which
sponges could be undesirable as food sources to preda-
tors. One possibility is found in the structural defenses
that preclude predator access to palatable regions.
This might be achieved by concentrating large, rigid
spicules near the sponge exterior, preventing preda-
tors from accessing the softer layers beneath the
spicules (van Alstyne & Paul 1992). While this could be
an effective mechanism to deter predators, it also
would require additional energy and resources to pro-
duce large protective spicules, in addition to possibly
reducing surface area available to choanocytes that
actively filter water and provide nutrition to the
sponge. For sponges from the Gulf of Mexico and
Caribbean Sea, studies have found little or no evidence
of spicules providing significant feeding deterrence
(Chanas & Pawlik 1995, Huang et al. 2008). Both of
these studies utilized biting fish as predators. How-
ever, a study of temperate sponges found that spicules

can significantly deter feeding from a hermit crab
predator (Hill et al. 2005). In Antarctica, where sea
stars are the primary predators on sponges (Dayton et
al. 1974), spicules appear to be an unlikely mechanism
of defense. This may be related to the ability of sea
stars to extrude their cardiac stomachs and therefore
to potentially digest tissue around the spicules (Dear-
born 1977).

Low nutritional benefit to predators (Duffy & Paul
1992, Bullard & Hay 2002) and/or the presence of
chemical compounds (Assmann et al. 2000, Becerro et
al. 2001, Mahon et al. 2003, Amsler et al. 2005) may
also influence predatory preferences for particular
prey. As sea stars have to invest time and energy
reserves in order to digest their prey, it is possible that
poor-quality prey may not compensate for the invest-
ment in digestion. This may drive selection for the
exploitation of high-quality prey. However, it is
unlikely that this is the case in the Antarctic benthos
where sponges have relatively high nutritional levels
(particularly soluble protein; McClintock 1987).

Defensive secondary metabolites in marine sponges
contribute to prey being unpalatable or may poten-
tially inhibit digestive processes post-ingestion
(Becerro et al. 1998). Chemical defenses are common
in sessile marine organisms lacking external protective
shells, including algae (Steinberg 1985, Amsler 2008)
and invertebrates (Pawlik et al. 1995, Kubanek et al.
2000, Iken et al. 2002, Becerro et al. 2003, Mahon et al.
2003), and sponges are perhaps one of the most well-
known examples of invertebrate phyla known to
exploit such defenses (Wilson et al. 1999, Assmann et
al. 2000, McClintock & Baker 2001, Burns et al. 2003).
As sponges qualitatively and quantitatively dominate
Antarctic benthic communities below the algal zone
(Barnes & Brockington 2003, Barnes 2005), an under-
standing of the factors that contribute to their defenses
is particularly important for understanding the dynam-
ics of these communities.

The goals of the present study were to test 3 gen-
eral predictions concerning the relationship between
sponges and their sea star predators in shallow,
Antarctic coastal waters. These include: (1) most
sponges will have outer tissues that are unpalatable to
sympatric sea stars because these tissues are continu-
ously exposed to predation and (2) the inner tissues of
sponges with unpalatable outer tissues will be palat-
able to sea stars. This is because sea stars have an
extra-oral mode of predation that should restrict their
predation on sponges through the outer tissues alone
and remove selection of allocation of defenses to
internal tissues. (3) Secondary metabolite chemistry
should have a substantial role in the provision of
defenses in sponges subjected primarily to sea star
spongivory.

78

This content downloaded from 
������������50.202.122.136 on Wed, 02 Mar 2022 14:24:18 UTC������������� 

All use subject to https://about.jstor.org/terms



Peters et al.: Antarctic sponge chemical defenses

MATERIALS AND METHODS

Collections. Multiple individuals of each sponge
species were collected by hand using SCUBA from
subtidal waters from numerous locations within 3.5 km
of Palmer Station, Anvers Island, Antarctica (64°46.5’S,
64°03.3’W; cf. Amsler et al. [1995] for map) during 2
successive field seasons (January to May 2003 and
February to June 2004). Sponges ranging in mass from
10s of grams to several kilograms were collected from
hard-bottom substrates at depths of 5 to 39 m. Macroal-
gae dominated many of the sponge collecting sites,
although some had vertical cliffs and overhangs where
macroalgae covered <100% of the benthos. In these
areas the majority of the sponges were found. In order
to assess the percentage of palatable versus unpalat-
able species with an unbiased experimental design,
every demosponge species that was encountered was
collected for analysis. Sponges were returned immedi-
ately to the laboratory and sorted into distinct species.
Voucher photographs and specimens are maintained
at the University of South Florida.

Outer versus inner fresh tissue bioassays. In order to
test the palatability of the fresh outer sponge layers, a
small (approximately 0.5 cm3) piece of sponge was
excised using a single-edge razor from the outer sur-
face of each individual. Each sponge was then dis-
sected to expose its approximate center (for mounding
species), and a similarly sized piece of tissue was
excised from this central region. Each individual
sponge was used as the source of only a single piece
each of internal and external tissue for feeding assays.
Encrusting species and tubular species had internal
tissue taken from areas furthest from the exterior,
where predators would encounter them, although
some species were not amenable to separation of outer
tissue from inner tissue due to the close proximity of
both tissues. These sponge pieces were then presented
to the sympatric omnivorous (including sponge prey)
sea star Odontaster validus following the methods
described in McClintock & Baker (1997).

Prior to feeding assays, Odontaster validus were
placed in ambient flow-through seawater tanks for no
less than 24 h before being used in any feeding assay.
The maintenance diet consisted of control artificial food
pellets. When held in aquaria, O. validus move up the
interior wall until they reach the surface and extend 1
or more arms along the air–water interface. This pro-
vided access to the oral side of arms, the chemosensory
tube feet of which line the ambulacral groove. Excised
sponge pieces from the exterior surface of sponges
were presented to O. validus equidistant between the
oral opening and the arm tip such that the outer surface
of the sponge cube (pinacoderm) was in direct contact
with the chemosensory tube feet. The behavioral feed-

ing response of the sea star was then noted as an accep-
tance when the potential food item was carried to the
oral opening and held there for extra-oral digestion. A
rejection response was considered any response other
than this acceptance behavior. The most common rejec-
tion behaviors observed included moving the potential
food item out of the ambulacral groove and off the side
of the arm, retracting the tube feet and letting the po-
tential food item drift away, or moving the potential
food item away from the mouth towards the arm tip and
then releasing it. Responses occurred within the first
minute of presentation the majority of the time; how-
ever, items were left on the ambulacral groove for 5 min
before a rejection was noted.

Once a sea star either accepted or rejected the fresh
sponge tissue, an artificial food pellet was presented
to the sea star as a control. The control food consisted
of a 2% alginate matrix infused with 5% (dry wt) lyo-
philized, powdered krill in sea water (McClintock et al.
2003, 2004). The alginate and krill combination was
gelatinized using 1 M cold CaCl2, and pellets similar in
size to the excised sponge pieces were presented to the
sea star. Once the outer sponge tissue had been
assayed, the tissue excised from the interior of the
sponge was assayed in exactly the same manner. Sea
star feeding bioassay sample sizes were up to 16 indi-
vidual sponges of a given species, but the number was
lower if fewer individuals of a given sponge species
were collected. One species was assayed twice to in-
clude 2 morphotypes that were distinct in the field.
Responses were similar independent of whether the
item being assayed was fresh sponge tissue or artificial
food pellet. Each food item was presented to a separate
sea star, and no sea star was used multiple times in
fresh-tissue or artificial-food assays that would be sta-
tistically compared with one another.

Extract bioassays. Twelve of the sponge species that
were found to be unpalatable as fresh tissue were used
in extract bioassays following methods previously
described in McClintock et al. (2003, 2004). Once the
sponges had been dissected as described above, both
inner and outer tissues were combined, weighed,
frozen and lyophilized, and then re-weighed in prepa-
ration for chemical extraction. A lipophilic crude
extract was prepared using 3 changes of 1:1 dichloro-
methane:methanol. Immediately following the lipophilic
extraction, a hydrophilic crude extract was prepared
from the previously extracted tissue using 3 changes of
1:1 methanol:water. Crude extracts were then dried
under reduced pressure and weighed, providing the
yield of extract per mass of dry sponge.

The dried extracts were added to the control food
noted in the previous section (5% dried krill in 2% algi-
nate marine solution) in the following manner. The ex-
tracts were solubilized in a minimal amount of solvent
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before being added to the dried krill such that the ex-
tract concentration on the final krill pellet equaled the
extract concentration naturally found in the sponge on
a wet weight basis. The krill coated with extract was
dried under reduced pressure, added to a 2% alginate
solution, and thoroughly mixed. To gelatinize the mix-
ture, 1 M cold CaCl2 was added. Solvent controls
treated with the same volume of solvents used to solu-
bilize the extract, as well as the 5% krill and 2% algi-
nate, were also prepared. Artificial food pellets were
cut into blocks (approximately 0.5 cm3) using a single-
edge razor.

Experimental and solvent control pellets were pre-
sented to sea stars as given above for fresh tissue feeding
assays. Non-solvent-treated control food pellets were
prepared as above and used as satiation controls. Only
feeding assays in which the satiation control was ac-
cepted were included in statistical analysis. Once 12
replicates were successfully completed, the acceptance
rate of the extract-containing pellets was compared to
the acceptance rate of the solvent control pellets. For any
given sponge, pellets containing lipophilic extracts were
always tested in sequence first, and, only if accepted,
were the pellets containing hydrophilic extract tested.

Statistical analysis. Fisher’s exact tests were per-
formed using Vassar Stats (http://faculty.vassar.edu/
lowry/VassarStats.html) to determine which outer
and/or inner layers of sponges were rejected signifi-

cantly more often than controls, as well as which of
those unpalatable sponges contained crude organic
extracts that were unpalatable.

RESULTS

Twenty-seven sponge species were collected in suf-
ficient numbers (n ≥ 3) for statistical analysis with 1
additional species having only 1 individual collected.
The majority (18 species) were of the order Poeciloscle-
rida, with species of the orders Hadromerida, Hali-
chondrida (2 species), Haplosclerida (4 species) and
Dendroceratida also being present (Table 1). Individu-
als representing 1 unknown sponge species were also
included. Taxonomic identification was not possible for
this species due to the loss of voucher material.

Outer versus inner fresh tissue bioassays

Of the 27 sponge species that had fresh outer tissue
presented to Odontaster validus in feeding bioassays,
21 (78%) were significantly rejected (p ≤ 0.05; Fig. 1). In
13 of these 21 (62%), the result was highly significant (p
≤ 0.01). Two additional species (7%) displayed appar-
ent trends towards being unpalatable, but the sample
sizes were too small for these to be statistically signifi-
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Species Order Suborder Family Subfamily

Artemisina plumosa lipochela Hentschel, 1914 Poecilosclerida Microcionina Microcionidae Ophlitaspongiinae
Artemisina sp. Vosmaer, 1885 Poecilosclerida Microcionina Microcionidae Ophlitaspongiinae
Cladocroce gaussiana (Hentschel, 1914) Haplosclerida Haplosclerina Chalinidae
Clathria (Axosuberites) flabellata (Topsent, 1916) Poecilosclerida Microcionina Microcionidae Microcioninae
Clathria (Axosuberites) nidificata (Kirkpatrick, 1907) Poecilosclerida Microcionina Microcionidae Microcioninae
Crella sp. Gray, 1867 Poecilosclerida Myxillina Crellidae
Dendrilla membranosa (Pallas, 1766) Dendroceratida Darwinellidae
Haliclona (Gellius) rudis (Topsent, 1901) Haplosclerida Haplosclerina Chalinidae
Haliclona sp. Grant, 1836 Haplosclerida Haplosclerina Chalinidae
Haliclonissa verrucosa Burton, 1932 Haplosclerida Haplosclerina Niphatidae
Homaxinella balfourensis (Ridley & Dendy, 1887) Hadromerida Suberitidae
Hymeniacidon fernandezi Thiele, 1905 Halichondrida Halichondriidae
Hymeniacidon torquata Topsent, 1916 Halichondrida Halichondriidae
Iophon unicorne Topsent, 1907 Poecilosclerida Microcionina Acarnidae
Isodictya aff. cactoides (Kirkpatrick, 1908) Poecilosclerida Mycalina Isodictyidae
Isodictya antarctica (Kirkpatrick, 1908) Poecilosclerida Mycalina Isodictyidae
Isodictya erinacea (Topsent, 1916) Poecilosclerida Mycalina Isodictyidae
Isodictya kerguelenensis (Ridley & Dendy, 1886) Poecilosclerida Mycalina Isodictyidae
Isodictya lankesteri (Kirkpatrick, 1907) Poecilosclerida Mycalina Isodictyidae
Kirkpatrickia variolosa (Kirkpatrick, 1907) Poecilosclerida Myxillina Hymedesmiidae
Latrunculia (Latrunculia) apicalis Ridley & Dendy, 1886 Poecilosclerida Latrunculina Latrunculiidae
Lissodendoryx (Ectyodoryx) ramilobosa (Topsent, 1916) Poecilosclerida Myxillina Coelsphaeridae
Mycale (Oxymycale) acerata Kirkpatrick, 1907 Poecilosclerida Mycalina Mycalidae
Myxodoryx hanitschi (Kirkpatrick, 1907) Poecilosclerida Myxillina Hymedesmiidae
Phorbas areolatus (Thiele, 1905) Poecilosclerida Myxillina Hymedesmiidae
Tedania (Tedaniopsis) charcoti Topsent, 1913 Poecilosclerida Myxillina Tedaniidae

Table 1. Taxonomy of identified sponges
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cant. The Fisher’s exact test has little power when there
are a small number of replicates. Two of the sponges
were not amenable to separation of inner and outer lay-
ers. Of the remaining 25 sponge species that had inner

tissues presented to O. validus, 14 of these (56%) had
their inner tissue significantly rejected.

Of the 21 sponge species that were significantly
rejected on the basis of outer tissue, 8 (38%) had inner

81

Fig. 1. Odontaster validus. Bioassays offering outer and inner sponge tissues to sea stars. Numbers of replicates are shown above
each set of columns, with each species having equal outer and inner tissue replicates. Haliclona sp. and Homaxinella balfourensis
only had outer tissue presented to sea stars. All species with 3 or more replicates were analyzed for statistical differences between 

acceptance of sponge tissue and control (Fisher’s exact test); *p ≤ 0.05, **p ≤ 0.01
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tissues not significantly rejected by Odontaster validus
(Table 1). One sponge (Phorbas areolatus) had its inner
tissue significantly rejected (p = 0.0238), while its outer
tissue was not significantly rejected (p = 0.1032). Only
5 replicates of this species were tested, and, out of
these 5 outer samples, 4 of them were rejected, but
with the small sample size, this was an insignificant
result. Four species, including P. areolatus, had p-
values close to being significant, with the inner layer
almost being significant in 3 other cases (Haliclona
rudis, Isodictya antarctica and Lissodendoryx ramilo-
bosa), although the small number of replicates did not
appear to be as great a factor in these 3 other cases
(n ≥ 7 in all cases). These species had individuals with
defenses present in inner or outer tissues, but when the
individuals are grouped together, the tissues were not
found to be significantly defended.

Extract bioassays

Given the time constraints in the field, only 12 of the
21 sponge species that had fresh tissue rejected could
be included in extract bioassays. The extracts for these
12 species were the first available, and no selection was
involved in determining in which order to analyze the
extracts. These 12 sponges consisted of 7 species that
had both outer and inner tissues rejected; 4 that had
outer, but not inner, tissues rejected; and 1 species
(Phorbas areolatus) that had inner, but not outer, tissue
rejected. Either lipophilic or hydrophilic extracts of all
12 species were rejected in sea star feeding bioassays
when compared to solvent controls (Fig. 2). Lipophilic
extracts were significantly rejected (p ≤ 0.05) for 10 of
the 12 species (83%). Lipophilic extracts from the re-

maining 2 species (P. areolatus and Isodictya antarctica)
were not significantly rejected (p = 0.0775 for both).
Both of these species had their hydrophilic extracts sub-
sequently assayed and both of these demonstrated
highly significant (p ≤ 0.01) levels of pellet rejection.

DISCUSSION

This survey examined the incidence of unpalatability
among a broad suite of demosponges from the western
Antarctic Peninsula to the ubiquitous, sympatric, omniv-
orous sea star Odontaster validus. Although the present
study included only approximately 8% (30 of 352 spe-
cies; McClintock et al. 2005) of the total demosponge
fauna of Antarctica, it encompassed all of the shallow-
water demosponges that could be collected in sufficient
quantities for bioassays in the vicinity of Anvers Island
along the central western Antarctic Peninsula.

In Antarctica, sea stars are the dominant predators
of sponges and other benthic macroinvertebrates
(Dayton et al. 1974, Dearborn 1977). Odontaster vali-
dus is one of the most abundant sea stars along the
western Antarctic Peninsula (Stanwell-Smith & Clarke
1998, Peck et al. 2008), including the region immedi-
ately surrounding Palmer Station (K. Peters, C. Amsler,
J. McClintock pers. obs.). The vast majority (78%) of
the sponges assayed in the present study had outer tis-
sues that were unpalatable to O. validus, and addi-
tional species that could only be assayed with rela-
tively small sample sizes displayed strong trends
toward being unpalatable. One mechanism by which
sponges may render themselves unpalatable is through
the production of physical defenses such as spicules.
However, this prospective defense mechanism has been
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Fig. 2. Odontaster validus. Bioassays offering artificial foods containing lipophilic or hydrophilic sponge extracts to sea stars (n =
12 for all species). Lipophilic extracts were always offered first and only if they were not significantly rejected were hydrophilic
extracts offered. Asterisks indicate significant difference between extract and control (Fisher’s exact test); *p ≤ 0.05, **p ≤ 0.01
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demonstrated to have variable results (Chanas & Paw-
lik 1995, Hill et al. 2005, Huang et al. 2008) and does
not appear to be a likely method in an environment
where sea stars are the dominant predators and should
be able to bridge such physical defenses during preda-
tion. Another mechanism that could discourage preda-
tion is that sponges are poor-quality prey that lack suf-
ficient nutrients to make them worth consuming (Duffy
& Paul 1992, Bullard & Hay 2002). While no nutritional
value measurements of the sponges were made in
our study, nutritional compositions of sponges from
McMurdo Sound, Antarctica (77° 51’ S, 164° 40’ E) have
been gathered previously (McClintock 1987). Five spe-
cies examined in this previous study from McMurdo
Sound are also represented among the sponges in the
present study. All 5 had outer tissues rejected by O.
validus and had total protein levels ranging from 28 to
56% dry weight. With such a wide range of protein
values, a small sample size of sponges, and distinct
geographic differences between the 2 study regions, it
is not possible to rigorously evaluate whether there is
a relationship between nutritional content and palata-
bility in these sponges. The protein levels reported in
McClintock (1987) are in the same range as those
reported by Chanas & Pawlik (1995) for Caribbean
sponges, although the data were reported differently
(gravimetric vs. volumetric), because the ecologically
relevant predators have different feeding methods. A
similar analysis examining the chemical defenses of a
broad suite of marine macroalgae on the western
Antarctic Peninsula found no correlation between
algal nutritional value (Peters et al. 2005) and palata-
bility (Amsler et al. 2005).

Differences in methodologies between the present
study and previous studies make direct comparisons
problematic. Previous studies of defenses in multiple
sponge species have tested sponge spicules and ex-
tracts imbedded in food pellets (Chanas & Pawlik 1995,
Pawlik et al. 1995). As we employed fresh sponge tis-
sues, this makes it difficult to make direct comparisons
with these earlier studies. However, despite our sub-
sampling extracts from only 12 of the 21 sponge species
that were unpalatable, the fact that all 12 species dis-
played sea star deterrence in at least 1 extract
(lipophilic or hydrophilic) supports our hypothesis that
chemical defenses play a major role in determining pat-
terns of sponge predation in Antarctica. With this infor-
mation, we are able to compare the fresh outer tissue
data to data reported from previous studies in which
only the chemical aspect of defense was analyzed.

Previous studies have proposed a latitudinal gradi-
ent of chemical defenses in marine invertebrates, with
these defenses being more prevalent in low latitude,
tropical environments, as opposed to higher latitudes
where the incidence of fish predators preying upon

their tissues is certainly diminished (Bakus & Green
1974, Ruzicka & Gleason 2008). If this were the case,
then it would be expected that a smaller percentage of
marine invertebrates in Antarctica would invest in
chemical defenses, or secondary metabolite defenses
might be expected to be weak. However, the percent-
age of Antarctic peninsular sponges in our survey that
were defended against sea stars (outer tissues: 78%) is
slightly higher than a sponge survey conducted in the
Caribbean Sea where 69% of the species were found
to be chemically defended against fish (Pawlik et al.
1995). We are aware of no comparable surveys con-
ducted at temperate latitudes or in other locations.
However, the fact that there are similar levels of
defenses in sponges from Antarctica and from tropical
waters indicates that at present there is no evidence of
a latitudinal gradient for sponge chemical defenses.
Becerro et al. (2003) came to the same conclusion using
different methodologies comparing congeners from
temperate and tropical waters.

We know of no other studies at temperate, tropical,
or polar latitudes that have examined differing levels
of palatability between fresh tissues taken from the
outer versus the inner central tissues of sponges; how-
ever, one previous study conducted with the sponge
Latrunculia apicalis from McMurdo Sound, Antarctica,
did detect a strong gradient of chemical defenses, with
greater levels in the outermost tissue and then a sharp
decline moving deeper into the sponge (Furrow et al.
2003). Extracts prepared from different layers of ben-
thic macroinvertebrates from warmer waters have
yielded conflicting results. In one study, differences
between tissue layers in their palatability were not
detected (Burns et al. 2003), while in other studies
body tissues first encountered by predators were found
to be regions of increased defenses (Avila & Paul 1997,
Schupp et al. 1999). In all of these studies, the predom-
inant predators on the sponges were fish, which are
capable of biting through outer tissues and thus feed-
ing on both inner and outer tissues.

Our analysis of the patterns of palatability between
outer and inner sponge tissues facilitates a test of the
predictions of the ODT. As sea stars feed via extra-oral
digestion on the surfaces of their prey, this limits their
encounter to the outer surfaces of sponges. Thus, de-
fenses in sponges with sea star predators would be pre-
dicted (in accordance with the ODT) to be strongest in
association with outer surfaces. We found that inner
sponge tissues were palatable, while outer tissues were
unpalatable in 8 of the 21 species examined. Therefore,
38% of the species examined met the predictions of the
ODT. However, the other 13 sponge species (62%) did
not adhere to the predictions of the ODT, and have in-
ner tissues that are defended even though they appear
to be at little risk of attack by sea star predators. While
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38% of species following the ODT prediction is not triv-
ial, that the other 62% is not following the ODT predic-
tions suggests that there might be a problem with the
theory or with its underlying assumptions as applied to
this predator–prey system.

A possible explanation for the lack of some sponge
species meeting the predictions of the ODT is that,
unlike previous studies of sponge assemblages in
McMurdo Sound (Dayton et al. 1969, 1974, Dayton &
Oliver 1977), the marine communities that characterize
the western Antarctic Peninsula are exposed to consid-
erable densities of biting and/or burrowing sponge
predators that are able to penetrate external defenses
by burrowing or biting through defended outer tissues
or exploiting oscula or ostia for access to feed on inter-
nal palatable tissues. One possibility is mesograzers,
particularly amphipods, feeding on the sponges.
Amphipods are a remarkably abundant component of
shallow water communities on the Antarctic Peninsula,
including Anvers Island and its environs (Iken et al.
1997, Graeve et al. 2001, Huang et al. 2007). In prelim-
inary quantitative observations, we found that
amphipods are common sponge associates and some-
times have sponge spicules in their guts (M. Amsler
unpubl. obs.). The majority of these amphipod–sponge
associations appear to occur within internal tissues, but
it remains unknown how they gain access to internal
regions. One possibility is that amphipods enter the
large oscula some of the sponges possess, thereby
bypassing the defenses in the external tissues. Con-
versely, if the amphipods are not driving the produc-
tion of the internal defenses, these might be evolution-
ary relics from ancestral sponges that existed in seas
where larger, biting predators that would have been
able to access internal tissues were more common.
Sponge tissues often include large and diverse micro-
bial communities (Wilkinson 1978), and the presence
of secondary metabolites might be produced by these
microbes for purposes other than predation deter-
rence. It has recently been documented that the
sponge-associated secondary metabolites do not
inhibit bacterial growth of sympatric bacteria, but they
do cause significant mortality in settling diatoms col-
lected from the same environment (Peters et al.
unpubl. data).

Our present study has demonstrated that many
sponges (48% of 27 species examined) have evolved
both external and internal defenses that may deter
burrowing mesograzer predators such as amphipods.
In summary, if sponges and other sessile invertebrates
in benthic communities along the Antarctic Peninsula
are subject to a mesograzer-dominated environment
that includes sponge predators, then there may be
selection to allocate chemical defenses to both external
and internal tissues.
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