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A GLOBAL PERSPECTIVE ON THE EFFECTS OF EUTROPHICATION AND 

HYPOXIA ON AQUATIC BIOTA 
 

Robert J. Diaz1, Janet Nestlerode1, Minnie L. Diaz2 
 
 

ABSTRACT 

Development associated with human populations has led to the globalization of many 
environmental problems.  In marine systems, the most serious of these problems are directly 
related to the process of eutrophication.  The increased production of organic matter in these 
marine systems associated with eutrophication is the primary factor impacting species abundance 
and composition and dissolved oxygen budgets.  Oxygen, which is essential to maintaining 
balance in ecosystem processes through its role in mediating microbial and metazoan activities, 
has declined to critically low levels in many systems, which has led to the development of 
hypoxia (<2 ml O2/l) and anoxia (0 ml O2/l).  Currently, most oxygen depletion events are 
seasonal, but trends toward longer periods that could eventually lead to persistent hypoxic or 
anoxic conditions are emerging.  Over the last 50 years, there has been an increase in the number 
of systems reporting problems associated with low dissolved oxygen.  Currently there are over 
100 hypoxic/anoxic areas around the globe, ranging in size from <1 km2 to 70000 km2, that 
exhibit a graded series of responses to oxygen depletion, ranging from no obvious change to 
mass mortality of bottom fauna.  Ecosystems currently severely stressed by eutrophication-
induced hypoxia continue to be threatened with the loss of fisheries, loss of biodiversity, 
alteration of food webs, and simplification of energy flows. 
 
 

INTRODUCTION 

Cloern (2001) succinctly summarized current understanding of coastal eutrophication, 
indicating that the long-term records of nutrient discharges over the past 50 years provide 
compelling evidence of a rapid increase in the fertility of many temperate coastal ecosystems (for 
example, Baltic and adjoining seas – Karlson et al. 2002; Northwest Black Sea – Mee 1992; 
Northern Adriatic Sea – Solic et al. 1997; North Sea rivers – Howarth et al. 2002; United States 
bays and estuaries - Jaworski et al. 1997, Howarth et al. 1996; Northern Gulf of Mexico – 
Rabalais et al. 1996, Rabalais and Turner 2001; Japan – Suzuki 2001).  In each of these systems, 
the fertilization is directly related to an expanding human population, which recently passed 6 
billion and will likely exceed 8 to 10 billion by the year 2050 (Wilson 2002).  Seitzinger et al. 
(2002) found that at scales of regions and continents, human population was a good predictor of  
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dissolved inorganic nitrogen (DIN) exported to coastal systems.  By 2050, projections indicate 
that a 2.4 to 2.7-fold increase in nitrogen and phosphorus driven eutrophication will result from 
this population expansion (Tilman et al. 2001), with serious consequences for coastal 
ecosystems. 

 
Fertilization of marine systems, mainly from excess nitrogen, has been linked in a 

complicated way to many ecosystem-level changes associated with eutrophication, or more 
precisely, cultural eutrophication.  Cultural eutrophication is specific to impacts related to human 
populations on the environment and separates the conditions in these coastal systems from 
natural processes that can also lead to eutrophic-like conditions, such as those associated with 
coastal upwelling zones and oxygen minimum zones (OMZ) where oxygen consumption exceeds 
resupply.  Oxygen depletion associated with upwelling events tends to be episodic, severe, short-
lived (less than a year), and associated with the western boundaries of continental landmasses 
(Brongersma-Sanders 1957, Rosenberg et al. 1983).  OMZs are unusual oxygen-depleted areas 
that are widespread and stable oceanic features occurring at intermediate depths (typically 400 to 
1000 m), persisting for long periods of time (at greater than decadal scales), and are completely 
controlled by natural processes and cycles (Wyrtki 1966, Kamykowski and Zentara 1990, Olson 
et al. 1993, Childress and Seibel 1998). 

 
While eutrophication can be defined simply as the production of organic matter in excess 

of what an ecosystem is normally adapted to processing (Nixon 1995), it is actually only part of a 
complex web of stressors that interact to shape and direct ecosystem-level processes (Breitburg 
et al. 1998, Cloern 2001) (Figure 1).  From Figure 1, the most visible ecosystem response to this 
set of multiple stressors is the greening of the water column as primary production increases in 
direct response to nutrient enrichment. However, the unseen is most dangerous.  For nutrient 
enrichment, which leads to increased organic matter production (eutrophication), the unseen 
decrease in dissolved oxygen in bottom waters created by the increased flux of particulate 
organic matter to the bottom is most threatening.  The degree to which an ecosystem responds to 
any of the multiple stressors is dependent upon physical, chemical, and biological characteristics 
that act to filter and modulate the response (Cloern 2001). 

 
Human impacts are accelerating the rate and magnitude of change within an ecosystem as 

more and more ecosystem level processes are affected (Jackson et al. 2001).  The history and 
pattern of human disturbance in terrestrial, aquatic, coastal, and oceanic ecosystems have 
brought us to a point at which oxygen depletion is likely to become the keystone impact for the 
21st century, replacing the 20th century keystone of overfishing (Jackson et al. 2001).  A 
mounting volume of literature documenting change in marine ecosystems indicates oxygen 
depletion as a major phenomenon that is a tertiary manifestation of the severe levels of stress 
experienced by many ecosystems.  The primary stress is nutrient enrichment, which regulates the 
secondary response of eutrophication.  See reviews and summaries by Gray (1992), Nixon 
(1995), Diaz and Rosenberg (1995), Cloern (2001), Turner (2001), and Karlson et al. (2002) for 
examples of ecosystem responses. The correlation between human activities and declining 
dissolved oxygen is strong, with the oxygen budgets of many marine ecosystems around the 
world adversely affected by eutrophication. 
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Figure 1.  Conceptual model of coastal eutrophication modified from Cloern (2001).  (1) system 
attributes that determine responses to nutrient enrichment; (2) nutrient enrichment as one 
of many stressors; (3) complex linkage between responses to multiple stressors; (4) 
change in coastal ecosystems; (5) application of scientific understanding of 
eutrophication with the goal of building rational management strategies for ecosystem 
rehabilitation/restoration. 
 
The emphasis of this paper is ecosystem response to oxygen depletion resulting directly 

from eutrophication.  The emphasis on dissolved oxygen is warranted given the importance of 
oxygen for sustaining life for all fishes and invertebrates.  Metaphorically speaking, the 
American Lung Association motto could be adopted for this situation.  “When you can’t breathe, 
nothing else matters.”  When the supply of dissolved oxygen in aquatic environments is cut off 
or the consumption rate exceeds resupply, oxygen concentrations quickly decline beyond the 
point that sustains most animal life.  Two factors are required for the development of hypoxia, 
and at times anoxia; one is water column stratification that isolates the bottom water from 
oxygen-rich surface water, and the second is decomposition of organic matter that reduces 
oxygen levels in the isolated bottom water.  The first factor is generated primarily by salinity 
stratification and the second by microbial metabolism.  Both factors must be at work for hypoxia 
to develop and persist.  In fact, the reaction of microbial populations to eutrophication has been 
explosive, particularly in systems with the greatest oxygen depletion problems (Jackson et al. 
2001). 

 
The terms used to describe low dissolved oxygen or oxygen depletion are hypoxia and 

anoxia.  Hypoxia is defined by dissolved oxygen concentrations <2 ml O2/l or <2.8 mg O2/l; for 
seawater this is about 18% of air saturation (Tyson and Pearson 1991).  Anoxia is the complete 
absence of dissolved oxygen (0 ml O2/l).  The point at which various animals suffocate varies, 
but effects generally appear when oxygen drops below 2 ml O2/l (Diaz and Rosenberg 1995,  
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Breitburg et al. 2001, Karlson et al. 2002).  The relationship between declining oxygen and 
animal response are graded and follow a predictable path, good examples of which are given by 
Diaz and Rosenberg (1995) and Rabalais et al. (2001b).  This paper presents a brief overview 
and update of hypoxic conditions in estuarine and marine systems around the world. 

 

OXYGEN DEPLETION AROUND THE WORLD 

On a geological time scale, low-dissolved-oxygen environments (hypoxia and anoxia) 
have been major factors in shaping the evolution of life (Caplan and Bustin 1999).  Today, the 
vestiges of naturally occurring oxygen depletion are the oceanic OMZs, the largest pools of 
hypoxic water in world oceans, particularly in the Pacific and Indian Oceans and the Arabian Sea 
(Olsen et al. 1993).  The largest pool of naturally occurring anoxic water is the Black Sea 
(Kideys 2002).  The Black Sea anoxic zone does not support any eukaryotic life, which is typical 
of all areas experiencing extended periods of anoxia, whether natural or anthropogenic.  
However, the temporal and spatial stability of OMZs has allowed the development of species 
aerobically adapted to dissolved oxygen concentrations from 0.5 ml O2/l to about 0.1 ml O2/l 
(Levin et al.1991, Childress and Seibel 1998).  This is in stark contrast to the faunal response to 
cultural-eutrophication-induced hypoxia in shallow coastal and estuarine areas, where oxygen 
concentrations of <0.5 ml O2/l lead to mass mortality of individuals and major change in 
community structure. 

 
The worldwide distribution of coastal oxygen depletion is either centered on major 

population concentrations, or closely associated with developed watersheds that deliver large 
quantities of nutrients (Figure 2, Table 1).  The historical perspective indicates that many of 
these currently hypoxic systems were not so when they were first studied.  Since at least the 
1950s and 1960s, dissolved oxygen concentrations of many major coastal ecosystems around the 
world have been adversely affected by eutrophication.  Most of these coastal systems have 
documented declines in dissolved oxygen through time, starting in most cases from their initial 
oxygen measurements (Rosenberg 1990).  The declining trend in dissolved oxygen seems to 
have lagged about 10 to 20 years behind the increased use of chemical fertilizer that began in the 
1940s (Howarth et al.2002).  For systems with historical data from the first half of the 20th 
century, declines in oxygen concentrations started in the 1950s and 1960s for the northern 
Adriatic Sea (Justic 1987), between the 1940s and 1960s for the northwest continental shelf of 
the Black Sea (Mee 1992, Kideys 2002), and in the 1970s for the Kattegat (Baden et al.1990a).  
Declining dissolved oxygen levels were noted in the Baltic Sea as early as the 1930s (Fonselius 
1969), but it was in the 1950s that hypoxia became widespread (Karlson et al. 2002).  Other 
systems have experienced hypoxia since the beginning of oxygen data collection, for example, in 
the 1930s for the Chesapeake Bay (Officer et al. 1984), and the 1970s for the northern Gulf of 
Mexico (Rabalais and Turner 2001) and many Scandinavian fjord systems (Karlson et al. 2002).  
However, the longer-term geochronological records indicate that hypoxia was not always present 
in these particular ecosystems (Sen Gupta et al. 1996; Karlson et al. 2002; Zimmerman and 
Canuel 2002).  Not all nutrient-enriched systems have developed eutrophic conditions and 
related oxygen depletion problems.  San Francisco Bay receives higher levels of nutrients than 
the Chesapeake Bay, but has lower primary production and oxygen depletion due to strong tidal 
mixing and turbid water (Cloern 2001). 
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Table 1.  Eutrophication-associated hypoxic areas around the world with an emphasis on benthic and fisheries responses.  Several of these 
systems also experience anoxia.  Hypoxia is characterized as Episodic: events occurring at irregular intervals greater than one year; 
Periodic: events occurring at regular intervals shorter than one year; Annual: yearly events related to summer or autumnal 
stratification; Persistent: year-round hypoxia.  Benthic faunal response is categorized as None: communities appear similar before and 
after hypoxic event; Mortality: moderate reductions of populations, many species survive; Mass Mortality: drastic reduction or 
elimination of the benthos.  Benthic recovery is described by No Change: dynamics appear unrelated to hypoxia; Reduced: 
recolonization occurs but community does not return to prehypoxic structure; Multi-year: gradual return of community structure; 
Annual: return of similar community structure in a year.  First observed is usually first documentation in literature and in most cases 
not the first occurrence of oxygen depletion. 

 
 
   First   Recent Area  Benthic Benthic  
 System Country/State Observations (km2) Fisheries Response Response Recovery Reference 
Annual Oxygen Depletion          
 Åland archipelago Finland 1990  10  Mortality Reduced Norkko and Bonsdorff 1996 
 Aquaculture Taiwan 2000   Mortality of prawns Mortality  Cheng et al. 2002 
 Århus Bay Denmark 1980  1300  Mass Mortality Multi-year Fallesen and Jorgensen 1991 
 Barnegatt Inlet New Jersey 1990    Mass Mortality Annual Moser 1998 
 Belt Sea Denmark 1970  2150    Karlson et al. 2002 
 Bilbao Estuary Spain 1990    Mortality  Gonzales-Oreja and Saiz-Salinas 1998;  
         Saiz-Salinas and Frances-Zubillaga 1997 
 Bornholm Basin Baltic Sea 1950  2500  Mass Mortality Multi-year Tulkki 1965; Leppakoski 1969 
 Cabbage Tree Basin Australia 1980    Mortality Annual Rainer and Fitzhardinge 1981 
 Chesapeake Bay Mainstem Maryland 1930  2750 Avoidance, some mortality Mortality Annual Holland et al. 1987; Boesch et al. 2001;  
         Seliger and Boggs 1988 
 Corpus Christi Bay Texas 1980  15  Reduced Reduced Ritter and Montagna 1999 
 Dead-end canals Maryland, Delaware 1990  5    Maxted et al. 1997 
 Delaware River, Lower Delaware 1910 Improved  Recovery American shad/striped bass fishery Mass Mortality Increasing Weisberg et al. 1996 
 Delaware River, Upper Delaware 1910 Improved     Patrick 1988 
 Eckernforde Bay Germany 1990    Mortality Annual D'Andrea et al. 1996 
 Elbe Estuary Germany 1980 Improved  Stressed   Thiel et al. 1995 
 Elefsis Bay, Aegean Sea Greece 1980    Mass Mortality Annual Friligos and Zenetos 1988; Theodorou 1996 
 Fjords of Skagerrak coast Sweden 1950      Rosenberg 1990 
 Flushing Bay New York 1990    Mortality  Diaz, unpublished data 
 German Bight Germany 1980   Mortality Mortality Reduced Brockmann et al. 1988; Niermann et al. 1990 
 Gialova Lagoon Ionian Sea, Greece 1990  2500  Mortality Annual Arvanitidis et al. 1999 
 Goro Lagoon Italy 1990    Mortality Annual Reizopoulou et al. 1996 
 Great Egg Harbor River New Jersey 1990      Glenn et al. 1996 
 Guanabara Bay Brazil 1990   Tropical Mortality  Valentin et al. 1999 
 Gulf of Mexico Louisiana 1970  17000 Avoidance Mortality/avoidance Reduced Rabalais and Turner 2001 
 Gulf of Trieste Adriatic Sea 1960   Stressed Mass Mortality Multi-year Stachowitsch 1984, 1991; Simunovic et al.  
         1999; Justic et al. 1987 
 Gullmarsfjord Sweden 1980   Stressed Mass Mortality Reduced Nilsson and Rosenberg 2000; Josefson and  
         Widbom 1988 
 Hakata Bay Japan 1970  120  Mortality Annual Karim et al. 2002 
 Havstens Fjord Sweden 1990      Gustafsson and Nordberg 2000 
 Herring River Massachusetts 1980   Fish kills, decline of alewife fishery   Portnoy 1991 
 Hillsborough Bay Florida 1980    Mass Mortality Annual Santos and Simon 1980 
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System Country/State Observations (km2) Fisheries Response Response Recovery Reference 
 Hiuchi Sound Japan 1970    Mass Mortality  Sanukida et al. 1984 
 Hood Canal Washington 1980      Paulson et al. 1993 
 Horseshoe Lagoon Australia 1990      Donnelly et al. 1999 
 Hudson River New York 1960 Improved     Bronsnan and O'Shea 1996 
 Inre Verkviken Finland 1970  0.5    Lindholm 1996 
 Ise Bay Japan 1990   Stressed Mortality  Nakata et al. 1997 
 Kattegat Sweden, Denmark 1980  3850 Collapse of Norway lobster Mass Mortality Multi-year Baden et al. 1990a; Josefson and Jensen  
         1992; Rosenberg et al. 1992 
 Kiel Bay Germany 1960  890 Stressed Mass Mortality Annual Arntz 1981; Rumohr 1986; Weigelt 1990,  
         1991; Oeschger and Storey 1990 
 La Coruna Bay Spain 1990      Lopez-Jamar et al. 1995 
   First   Recent Area  Benthic Benthic  
 Laholm Bay Sweden 1980   Mortality Mortality Annual Baden et al. 1990b; Rosenberg and Loo 1988 
 Lake Nakaumi Japan 1990   Mortality/avoidance   Ishitobi et al. 2000 
 Lake Shinji Japan 1990    Mass Mortality  Yamamuro et al. 1998 
 Limfjord Denmark 1980  440 Demersal fisheries gone Mass Mortality Annual Jorgensen 1980; Hylleberg 1993 
 Loire Estrary France 1990   Mortality of migratory species   Thouvenin et al. 1994 
 Long Island Sound New York 1980  232 Avoidance, some mortality Mortality  Howell and Simpson 1994; Welsh et al.  
         1994; Schimmel et al. 1999; NOAA 1997 
 Los Angeles Harbor California 1950 Improved   Mass Mortality Reduced Reish 1955, 2000 
 Lough Ine Ireland 1970    Mass Mortality Annual Kitching et al. 1976 
 Mecklenburg Bay Germany 1980  1860    Weigelt and Rumohr 1986 
 Mikawa & Ise Bays Japan 1980    Mortality/avoidance  Suzuki and Matsukawa 1987 
 Mobile Bay Alabama 1880  1060 Mortality Mass Mortality  May 1973; Engle and Summers 1999;  
         Pennock et al. 1994 
 Mullica River Estuary New Jersey 1990      Glenn et al. 1996 
 Neuse River Estuary North Carolina 1990   Fish kills, mortality of oyster Mortality/avoidance Annual Paerl et al. 1995, 1998; Lenihan and  
         Peterson 1998; Lenihan 1999 
 New York City Harbor New York 1990    Mass Mortality Annual Diaz, unpublished data 
 Nichupti Lagoon Mexico 1980      Diaz, unpublished data 
 Northern Adriatic Sea Italy 1970  3750    Barmawidjaja et al. 1995; Justic et al.  
         1987, 1993 
 NW Gulf of Mexico Louisiana 1980    Mortality Annual Gaston 1985 
 NW Shelf Black Sea Ukraine, Romania 1960  40000 Reduced Mass Mortality Annual Zaitsev 1993; Bakan and Buyukgungor 2000 
 Oder Lagoon Germany 1990      Pohl et al. 1998 
 Omura Bay Japan 1980      Iizuka and Min 1989 
 Osaka Bay Japan 1980      Tanimoto and Hoshika 1997 
 Oslofjord Norway 1910  150 Reduced Mortality Annual Petersen 1915; Mirza and Gray 1981;  
         Rosenberg et al. 1987 
 Palude della Rosa Italy 1990    Mortality Annual Tagliapietra et al. 1998  
 Pamlico River North Carolina 1960   Mortality Mass Mortality Annual Tenore 1972; Hobbie et al. 1975; Stanley  
         and Nixon, 1992 
 Patuxent Piver Maryland 1990   Avoidance, low egg hatching/larval mortality Avoidance/mortality Annual Keister et al. 2000, Breitburg et al. 1997 
 Perdido Bay Florida 1990      Flemer et al. 1999 
 Pomeranian Bay Germany 1990  170  Mass Mortality Reduced Powilleit and Kube 1999 
 Potomac River Maryland 1990  264  Mortality Annual NOAA 1997 
 Raritan Bay New York, New Jersey 1970      Christensen and Packard 1976 
 SE Kattegat Sweden 1980   Reduced demersal fishes Avoidance/mortality Multi-year Peterson and Pihl 1995 
 Seine Estuary France 1990      Michel et al. 2000 
 Seto Inland Sea Japan 1980    Mortality Annual Imabayashi 1986 
 St. Johns River Florida 1990    Mortality Annual Mason 1998 
 Swedish West Coast Fjords Sweden 1980   Stressed Mortality Reduced Josefsen and Rosenberg 1988 
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 System Country/State Observations (km2) Fisheries Response Response Recovery Reference 
 Thau France 1990   Mortality/Reduced shellfish production Mass Mortality  Souchu et al. 1998; Mazouni et al. 1996; 
         Chapelle et al. 2000 
 Tolo Harbor Hong Kong 1980    Mass Mortality Annual Wu 1982 
 Tome Cove Japan 1980    Mortality Annual Tsutsumi 1987 
 Townsend-Hereford Inlet New Jersey 1990      Glenn et al. 1996 
 Western Gulf of St. Lawrence Canada 1990    No response  Comeau et al 2002 
 
Episodic Oxygen Depletion           
 Baie de Somme France 1990   Collapse of cockle industry Mass Mortality  Rybarczyk et al. 1996 
 Beacon Key, Biscane Bay Florida 1990      Leverone 1995 
 Bude Bay SW England 1990  12  Mortality  Gibbs et al. 1999 
 Buzzard Bay Massachusetts 1990  2    NOAA 1997 
 Cape Fear River North Carolina 1990   Fish kills Reduced Annual Mallin et al. 1999; Posey et al. 1999 
 Chester River Maryland 1990  24    NOAA 1997 
 Choptank River Maryland 1990  48    NOAA 1997 
   First   Recent Area  Benthic Benthic  
 Connecticut River  Connecticut 1990  9    NOAA 1997 
 East Frisian, Wadden Sea Netherlands 1990      Kaiser and Lutter 1998 
 Finnish Archipelago Finland 1970      Karlson et al. 2002 
 German Bight Germany 1980  15000  Mass Mortality Annual Dethlefsen and Westernhagen 1983 
         Brockmann et al. 1988 
 Gulf of Mexico, off Freeport Texas 1970  50 Mortality Avoidance/mortality 2 years Harper and Rabalais 1995 
 Krka, Adriatic Sea Yugoslavia 1980    Mortality Annual Legovic et al. 1991 
 Lake Pontchartrain Louisiana 1990   Loss of large clams Reduced  Abadie and Poirrier 2000 
 Loch Ailort Scotland 1990   Salmon farms in the system Reduced  Gillibrand et al. 1996 
 New York Bight New York, New Jersey 1970  987 Surf clam/finfish mortality, Avoidance Mass Mortality Multi-year Garlo et al. 1979; Sindermann and  
         Swanson 1980 
 North Sea coast Germany 1980  25  Mortality Reduced Koenig 1996 
 Off Cape Rodney New Zealand 1980   Mortality   Taylor et al. 1985 
 Pamlico Sound North Carolina 1990   Mortality Mortality  Paerl et al. 2000 
 Salts Hole United Kingdom 1990  6  Mortality  McArthur 1998 
 SE North Sea Denmark 1980   Stressed Mortality Annual Dyer et al. 1983; Westernhangen and  
         Dethlefson 1983 
 Sommone Bay France 1980  3 Collapse of cockle fishery Mass Mortality Multi-year Desprez et al. 1992 
 Texas Shelf, Deep Texas 1980   Stressed Mortality Annual Harper et al. 1981, 1991 
 Texas Shelf, Shallow Texas 1980   Stressed Mass Mortality Multi-year Harper et al. 1981, 1991 
 Wadden Sea Wadden Sea 1990  3000 Stressed Mortality  deJonge et al. 1994 
 Wismar Bay Baltic Sea 1980   Stressed Mortality Reduced Prena 1995a, 1995b 
 Vestfjord  1970      Karlson et al. 2002 
 
Periodic Oxygen Depletion (>1 event per year)          
 Bon Secour Bay Alabama 2000   Loss of oyster Mortality  Rikard et al. 2000 
 Florida Keys Florida 1990    Mortality  Lapointe and Matzie 1996 
 Gironde Estuary France 1990      Abril et al. 1999 
 Great South Bay New York 1990  15    NOAA 1997 
 Gullmarsfjord, Alsback Deep Sweden 1990    Mortality  Gustafsson and Nordberg 2001 
 Jamaica Bay New York 1990  26    NOAA 1997 
 James Island Creek South Carolina 1990   Avoidance Avoidance  Cochran and Burnett 1995 
 Koljo Fjord Sweden 1990    Mortality Annual Gustafsson and Nordberg 1999;  
         Rosenberg et al. 2001 
 Narragansett Bay Rhode Island 1990  11    NOAA 1997 
 Prevost Lagoon France 1990   Reduced aquaculture production Mass Mortality Annual Guyoneaud et al. 1998 
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 System Country/State Observations (km2) Fisheries Response Response Recovery Reference 
 Rappahannock River Virginia 1990  55 Avoidance Mortality Annual Llanso 1992; NOAA 1997 
 St. Joseph Bay Florida 1990   Avoidance   Leonard and McClintock 1999 
 St. Lucie River Florida 1990      Chamberlain and Hayward 1996 
 York River Virginia 1980  30 Avoidance No response No Change Pihl et al. 1991; Diaz et al. 1992;  
         Sagasti et al. 2001 
Persistent Oxygen Depletion           
 Arkona Basin Sweden 1980  1000    Karlson et al 2002 
 Baltic proper Baltic Sea 1960  70000 Avoidance, mortality/low hatch cod eggs Mortality/avoidance  deJonge et al. 1994 
 Big Glory Bay New Zealand 2000   Caused by salmon farming Mass Mortality  Morrisey 2000 
 Byfjord Sweden 1970   Pelagic only Mortality Reduced Rosenberg 1990, Rosenberg et al. 1977 
 Caspian Sea Caspian Sea 1990    Mortality Some? Dumont 1998 
 Gdansk Basin Poland 1960  1200    Karlson et al. 2002 
 Gotland Basin Sweden 1960   Avoidance, mortality/low hatch cod eggs Mortality Reduced Laine et al. 1997 
 Gulf of Finland, Deep Gulf of Finland, Deep 1960 Improved 2330  Reduced Increasing Laine et al. 1997; Andersin and Sandler 1991 
 Himmerfjord Sweden 1970 Improved 11    Karlson et al. 2002 
 Idefjord Sweden, Norway 1960 Improved 80  Mortality Reduced Rosenberg 1980 
 Loch Carron Scotland 1970    Mass Mortality No Change  
 Scheldt Estuary Belgium 1990      Verlaan et al. 1998 
 Sea of Azov Russia-Ukraine 1990   Lower production Mortality Reduced Balkas et al. 1991; Chechum 1998 
   First   Recent Area  Benthic Benthic  
 Skagerrak Coast Fjords Sweden, Norway 1920  54 Stressed Mortality Annual Johannessen and Dahl 1996a,b 
 St. Anna Archipelago Sweden 1970  25    Karlson et al. 2002 
 Stockholm Inner Archipelago Sweden 1970  60  No Benthos No Change Rosenberg and Diaz 1993 
 Sullom Voe Shetland 1980    Mass Mortality No Change Pearson and Eleftheriou 1981 
 Tan Shui Estuary Taiwan 1990      Jeng and Han 1996 
 
Unknown Oxygen Depletion Cause           
 Etang de Berre France 1970  132    Stora and Arnoux 1983 
 Kilviken Fjord Sweden 1970    Reduced  Hendelberg and Jensen 1993 
 Marmara Sea Marmara Sea 1990   Mass Mortality Mass Mortality  Orhon and Yuksek, unpublished data 
 Mauritius Island Mauritius Island 1990   Coral reef affected   Thomassin et al. 1998 
 Mondego River Portugal 1990      Kamp-Nielsen et al. 1997 
 Pettaquamscutt River Rhode Island 1990      Wilkin and Barnes 1997 
 Roskilde Fjord Denmark 1990      Kamp-Nielsen et al. 1998 
 Waquoit Bay Massachusetts 1990      Fritz et al. 1996 
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Figure 2.  Global distribution of the 146 oxygen depletion zones related to cultural 
eutrophication listed in Table 1.  Systems are categorized by type of hypoxia (see Table 1 
for details). 

 
The most common form of hypoxia is one annual event, occurring at 54% of the 146 

oxygen-depleted systems.  The most common response to annual oxygen depletion was mortality 
of benthos followed by some level of recolonization with the return of normal oxygen conditions 
(Table 1).  In essence, annual hypoxia forces an annual pulsing of energy over the shortened 
interval of normal dissolved oxygen conditions (Diaz and Rosenberg 1995).  The second most 
common form of oxygen depletion is episodic, occurring 18% of the time in the 146 systems.  It 
appeared that episodic oxygen depletion was the first signal that a system had reached a critical 
point.  Many systems, such as the Kattegat, first experienced episodic events that initially caused 
mass mortality of benthic organisms, but now experience annual oxygen depletion (Karlson et al. 
2002). 

 
Since the 1960s, the number of oxygen-depleted ecosystems has doubled every ten years 

(Figure 3).  Prior to 1960, we found nine systems with cultural eutrophication-related oxygen 
depletion.  During the 1960s, another ten systems were added, but by the 1970s estuarine and 
coastal ecosystems around the world were becoming over enriched with organic matter (Nixon 
1995) and the number of oxygen-depleted ecosystems had doubled (Figure 3).  After this point, 
hypoxia quickly became an annual event and a prominent feature affecting energy flow 
processes in marine ecosystems (Elmgren 1989, Pearson and Rosenberg 1992).  During the 
1980s, 37 systems were added, and in the 1990s 68 more were added (Table 1).  By the end of 
the 20th century, oxygen depletion had become a major, worldwide environmental problem with 
only a small fraction of systems (6%) showing signs of improvement.   
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Figure 3.  Histogram of the number of ecosystems reporting oxygen depletion by decade.  The 
decade was determined either from the first time hypoxia was seen in historical data or 
the first year a published account appeared in the literature.  Data from Table 1. 
 
 
The largest systems with improved dissolved oxygen conditions were the northwest 

Black Sea and the Gulf of Finland.  In the Black Sea, a reduction in nutrients and possibly a 
balancing of exotic species led to an improvement in ecosystem function and reduction in 
hypoxia (Kidey 2002).  In the Gulf of Finland, a decrease in water column stratification led to 
improved dissolved-oxygen conditions and the return of benthic fauna (Karlson et al. 2002).  
Conditions have also improved in some systems that have experienced intensive regulation of 
nutrient or carbon inputs, such as the Hudson River, New York, and the Delaware River in 
Pennsylvania and New Jersey.  In others, such as the Chesapeake Bay, improvements in 
dissolved oxygen await the ‘burn off’ of nitrogen that has accumulated within the system’s 
sediments.  Many examples of small-scale reversals in hypoxia associated with improvements in 
treatment of sewage and pulp mill effluents as early as the 1970s (Rosenberg 1972, 1976) also 
exist.  In the northern Gulf of Mexico, the hypoxic zone is very tightly coupled with runoff from 
the Mississippi River.  During low flow years, the area of hypoxia is greatly reduced, only to 
increase when river flow increases (Rabalais et al. 2001a, unpublished data).  Similarly, the 
Baltic Sea can experience temporary dissolved oxygen increases associated with episodic water 
exchanges across the belt seas.  Even though the exchange of deep water in the Baltic is episodic, 
there is convincing evidence that eutrophication accelerates oxygen consumption in its bottom 
waters (Karlson et al. 2002). 

 
In general, coastal hypoxia is not a natural condition.  Only hypoxia and anoxia 

associated with naturally-occurring events have a historical context dating back 100 to 150 years. 
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This includes:  areas of natural upwelling, such as those off Peru and Central America (Tarazona 
et al. 1988) or West Africa’s Namibian shelf (Hamukuaya et al. 1998); oceanic OMZ, such as in 
the Arabian Sea (Gooday et al. 2000); and stagnant basins, such as Santa Barbara Basin off 
California (Bernhard and Reimers 1991).  Methodologies for measuring dissolved oxygen were 
not developed until the 1880s (Winkler 1888).  Accounts in the historical literature do imply the 
occurrence of oxygen depletion prior to development of Winkler’s method, and were generally in 
water bodies associated with human development.  For example, in 1884 the Mobile Register 
(Alabama, USA) described what was very likely a hypoxic/anoxic event in Mobile Bay, with 
fishes congregating in shallow water where they were easily caught by hand (J. Pennock, 
University of Alabama, personal communication).  Mobile Bay has a well-documented history of 
oxygen depletion that extends back to at least the 1960s, with descriptions of similar attempts by 
fish to escape oxygen-depleted waters (May 1973).  A detailed review of the historical literature 
will likely find hundreds of such accounts, and we predict that most of them can be associated 
with some sort of human development. 

 
The most serious effects of the combined problems associated with eutrophication and 

hypoxia are seen in the Black Sea and Baltic Sea, where demersal trawl fisheries have either 
been eliminated or severely stressed (Elmgren 1989, Mee 1992).  Karlson et al. (2002) provide a 
detailed summary of the development of oxygen depletion in the Baltic and surrounding seas.  
The Black Sea, in particular, provides an excellent example of how multiple stressors conspired 
to alter an entire system.  In the 1980s and early 1990s, the northwest coastal shelf of the Black 
Sea was in a severe state of deterioration from stress exerted by multiple factors, including over- 
fishing, exotic species introduction (the ctenophore Mnemiopsis spp.), pollution, altered 
hydrology and nutrient enrichment that led to eutrophication-induced hypoxia (Mee 1992, 
Kideys 1994, 2002).  Historical data show that in the 1940s, the northwest Black Sea was 
considered to be oligotrophic.  However, by the 1970s nutrient enrichment had led to a highly 
eutrophic condition that, in turn, led to alterations in the composition and quality of 
phytoplankton production, including harmful algal blooms (HAB).  In the 1970s prior to the 
introduction of the ctenophore, and in the 1980s before ctenophore populations exploded, 
eutrophication resulted in increased anchovy (Engraulis encrasicolus) production and 
widespread hypoxia. Through the 1970s and 1980s hypoxia and anoxia became more prevalent 
and were the primary cause of mass mortality of the benthos, including demersal fish.  Other 
complex changes that occurred and were likely a response to the multiple stressors included 
increased turbidity, decrease in nongelatinous zooplankton, decline in biodiversity, and 
replacement of highly-valued demersal fish species with less desirable planktonic omnivores 
(Mee 1992, Kideys 2002).  Of the 26 commercial species fished in the 1960s, only six still 
supported a fishery in the early 1990s (Mee 1992).  In 1989, the ctenophore populations 
exploded and caused a crash in the pelagic anchovy and nongelatinous zooplankton communities 
that was not oxygen-related.  This event indicates that the combination of stressors affecting the 
Black Sea needs to be examined in order to understand ecosystem response.  The resilience of 
the Black Sea ecosystem was observed in the 1990s when nutrient loads declined between 1991 
and 1997.  Primary production declined, there was a species shift back to diatoms, harmful algal 
blooms decreased, nongelatinous zooplankton increased, and pelagic fish reappeared (Kideys 
2002).  The introduction of the ctenophore Beroe spp., a predator of Mnemiopsis spp., further 
improved the Black Sea ecosystem. 

 
The eutrophication-related oxygen depletion zone in the northwest Black Sea is not 
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related to the central Black Sea anoxic zone, which over the last 5000 years has evolved an 
oxic/anoxic ecosystem in a precise redox balance (Konovalov and Murray 2001).  However, 
there is now evidence that even the central Black Sea anoxic zone is showing the signs of 
eutrophication due to an increased flux of organic matter.  This, in turn, has increased the rate of 
sulfate reduction and created an imbalance in the sulfide budget.  As a result, sulfide 
concentrations have increased in the anoxic zone over the past 20 to 25 years (Konovalov and 
Murray 2001). 

 
As early as the 1980s, the occurrence of hypoxia in coastal systems was closely linked to 

eutrophication.  In the German Bight, van Pagee et al. (1983) found that from 1930 to 1983 an 
increase in nutrients corresponded with an increase in the duration and severity of hypoxia.  In 
all recent cases, (listed in Table 1), hypoxia appears to be a result of general ecosystem 
eutrophication, with other stressors acting to complicate ecosystem response.  It is difficult or 
impossible to separate the response of an ecosystem to eutrophication-induced hypoxia from the 
other multiple stressors on ecosystem functioning; the Black Sea provides a good example.  
However, some level of eutrophication appears to be a positive force in enhancing a system’s 
secondary productivity (Nixon and Buckley 2002), and to a point enhances fisheries yield 
(Caddy 1993, 2001).  The critical point in the ecosystem response trajectory to eutrophication is 
the appearance of severe hypoxia or anoxia, either of which can potentially cause mass mortality 
of both benthic and pelagic species.  The general effect of eutrophication and hypoxia to favor 
benthic macrofaunal communities and species with opportunistic life histories, shorter life spans, 
and smaller body size is well characterized by the Pearson and Rosenberg (1978) organic 
gradient response model.  However, eutrophication has a preconditioning effect on benthic fauna 
by eliminating sensitive species, which tends to lessen the acute response of the system to 
hypoxia when it does occur.  This is the reason some systems that experience mild hypoxia show 
no acute effect, such as the York River, in Virginia (Neubauer 1993, Sagastie et al. 2001). 

 
Climate change, whether from global warming or from microclimate variation, will have 

direct consequences for eutrophication-related oxygen depletion.  The form of climate change 
effect will depend primarily upon how the strength of water column stratification is affected, and 
secondarily on factors that affect organic matter production such as nutrient supplies.  At a global 
scale, general circulation models predict large changes in rainfall patterns under a CO2 doubling 
scenario.  If these changes in rainfall lead to increased discharges of freshwater to coastal 
ecosystems, stratification is likely to increase and oxygen depletion will expand in those systems 
already affected, and may begin in other systems.  Conversely, if stratification decreases, oxygen 
depletion or the chances for depletion will decrease.  For that part of the Mississippi River basin 
associated with the northern Gulf of Mexico annual oxygen depletion, a doubling of CO2 would 
increase river discharge by 20% and temperature by 2oC to 4oC (Miller and Russell 1992).  Justic 
et al. (1996) predicted that these changes would lead to a 50% increase in primary production, a 
30% to 60% decrease in subpycnocline dissolved oxygen, and expansion of the oxygen-depleted 
area.  Smaller-scale climate variation, such as the North Atlantic Oscillation (NAO) index, may 
have similar effects on dissolved oxygen budgets.  Nordberg et al. (2000, 2001) found that the  
NAO index was correlated to hydrographic conditions in Swedish west coast fords, and may in 
part be responsible for changes in dissolved oxygen budgets, particularly in fjords not subjected 
to significant human pollution. 
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SUMMARY 

Hypoxia related to anthropogenic activities appears to develop within a system as a result 
of the cumulative effects of eutrophication in combination with other stressors.  Many times 
hypoxia is not noticed until higher-level ecosystem effects are manifested.  For example, hypoxia 
did not become a prominent environmental issue in the Kattegat until the collapse of a Norway 
lobster fishery several years after hypoxic bottom waters were first reported (Baden et al. 
1990b).  The northern Gulf of Mexico is representative of severely stressed coastal ecosystems 
that currently experience seasonal hypoxia, but have not experienced hypoxia-related loss of 
fisheries.  Although hypoxia in the northern Gulf of Mexico has affected benthic invertebrate 
communities over the last several decades, there is no clear signal of hypoxia in fisheries 
landings statistics (Rabalais et al. 2001a, Chesney and Baltz 2001).  However, ecosystem level 
change is rarely the result of a single factor, and several forms of stress typically act in concert to 
cause change within an ecosystem.  The critical point for fisheries losses in the northern Gulf of 
Mexico may be potential effects from global warming.  The shallow, northwest continental shelf 
of the Black Sea (not part of the deep central basin anoxia) is another example of a system that 
was stressed by eutrophication-driven hypoxia in combination with other stressors that led to 
drastic reductions in bottom fisheries (Mee 1992, Kideys 1994, 2002). 

 
Until the 1950s, reports of mass mortality of marine animals caused by lack of oxygen 

were limited to small systems that had histories of oxygen stress (Brongersma-Sanders 1957).  In 
the 1960s, the number of systems with reports of hypoxia-related problems started to increase, 
but it was in the 1970s and 1980s when most initial reports of hypoxia occurred.  By the 1990s, 
most estuarine and marine systems in close proximity to population centers had reports of 
hypoxia or anoxia.  It does not appear that reports of oxygen depletion have leveled off, and the 
number of systems affected by hypoxia/anoxia continues to rise.  There is encouraging news 
since 2000 that some large systems such as the Black Sea and Gulf of Finland have responded 
positively to a decrease in stressors. 

 
Coastal and estuarine hypoxia does not appear to be a natural condition, except in areas 

influenced by OMZs, upwelling, or some enclosed fjord systems.  The main factor in 
development of hypoxia in coastal and estuarine systems has been the input of excess nutrients 
leading to eutrophication.  The determination of population or ecosystem level effects from 
hypoxia is complicated by many factors, including inadequate data on historic trends of species 
populations and dissolved oxygen concentrations and the interaction and synergistic effects of 
multiple stressors such as fishing pressure, habitat loss, etc. (Figure 1).  Hypoxia and anoxia are 
among the most widespread deleterious anthropogenic effects in estuarine and marine 
environments.  The effects of hypoxia may be reversed by the reduction of nutrient or organic 
inputs to a system that lead to a reduction or elimination of the hypoxia. 
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