Bis{mu-2,2'-(1,1'- (ethane-1,2-diyl)dinitrilo)diethylidyne] diphenolato-kappa O-5,N,N',O':O} bis[chloridomanganese(III)]

V.S. Thampidas
dasthampi@hotmail.com

T Radhakrishnan

Robert D. Pike
College of William and Mary, rdpike@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/chemistrypub

Part of the Chemistry Commons

Recommended Citation
Thampidas, V S.; Radhakrishnan, T; and Pike, Robert D., Bis{mu-2,2'-(1,1'- (ethane-1,2-diyl)dinitrilo)diethylidyne] diphenolato-kappa O-5,N,N',O':O} bis[chloridomanganese(III)] (2008). ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 64.
10.1107/S1600536808000226

This Article is brought to you for free and open access by the Chemistry at W&M ScholarWorks. It has been accepted for inclusion in Chemistry Articles & Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
The title compound, [Mn₂(C₁₈H₁₈N₂O₂)(C₇H₅O₂)₂]·2H₂O, was synthesized by the reaction between manganese(II) benzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxyacetophenone. The Jahn–Teller-distorted manganese(III) ions of the centrosymmetric dimer are connected through phenoxo bridges. Hydrogen-bonding interactions between the uncoordinated C=O of the benzoate and uncoordinated water molecules link the dimers into a chain running parallel to the c axis.

Related literature

For related literature, see: Antonyuk et al. (2000); Aurengzeb et al. (1992); Aurengzeb et al. (1994); Barynin et al. (2001); Christou (1989); Hulme et al. (1997); Meier et al. (1996); Pecoraro & Hsieh (2000); Yocum & Pecoraro (1999); Stemmler et al. (1997); Zhang & Janiak (2001); Zouni et al. (2001).

Table 1

Hydrogen-bond geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5—H1W···O4'</td>
<td>0.83(3)</td>
<td>2.02(3)</td>
<td>2.8452(19)</td>
<td>173(2)</td>
</tr>
<tr>
<td>O5—H2W···O4u</td>
<td>0.88(3)</td>
<td>1.89(3)</td>
<td>2.7579(18)</td>
<td>171(3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x, y, z; (ii) −x + 1, −y, −z + 1.

Data collection

Bruker APEX2 diffractometer
Absorption correction: numerical (SADABS; Sheldrick, 2004)
Tmin = 0.374, Tmax = 0.857
3711 reflections with I > 2σ(I)

Refinement

R[F² > 2σ(F²)] = 0.027
wR(F²) = 0.068
S = 1.03
398 parameters
All H-atom parameters refined
Δρmax = 0.24 e Å⁻³
Δρmin = −0.36 e Å⁻³

We acknowledge the authorities of SN College, Varkala, Kerala, India for providing the facilities of the college for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HJ2002).

References

metal-organic compounds

Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A.,
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
348–360.
Elucidate the Structure and Function of Manganese Redox Enzymes*. In
Metals in Biological Systems, edited by Astrid Sigel & Helmut Sigel, vol. 37,
Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of
Göttingen, Germany.
Stemmler, T. L., Sossong, T. M., Goldstein, J. I., Ash, D. E., Elgren, T. E.,
Bis{µ-2,2′-[1,1′-(ethane-1,2-diyldinitrilo)diethylidyne]diphenolato}bis-[(benzoato-κO)manganese(III)] dihydrate

V. S Thampidas, T. Radhakrishnan and Robert D. Pike

S1. Comment

The role played by manganese in biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al., 2001) and enzymes like superoxide dismutase, catalase, arginase etc. is now well-recognized (Pecoraro & Yocum, 2004). Inorganic model complexes have made significant contributions to the progress in delineating the structural and functional aspects of the active-sites of these systems. An enormous number of such manganese complexes have been reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). One class of high-valent manganese complexes which has received considerable attention in this connection recently is those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1992; Aurengzeb et al. 1994; Hulme et al., 1997; Zhang et al., 2001).

Crystallographic studies on the active sites of a relatively rare class of manganese catalases found in bacteria-like Thermus thermophilus and Lactobacillus plantarum point to a dinuclear manganese core with an Mn···Mn separation of 3.13 Å (reduced state) and 3.03 Å (oxidized state) respectively (Antonyuk et al., 2000; Barynin et al., 2001). The Mn···Mn distances derived from the EPR and EXAFS data provide complementary structural parameters with the Mn···Mn distances being 3.4 Å and 3.54 Å, respectively (Meier et al., 1996; Stemmler et al., 1997). Here we report the crystal structure of a dimeric manganese complex with a Mn···Mn distance of 3.4616 (5)Å, I (Figure 1).

Compound I crystallizes in the monoclinic space group P21/c. The two manganese(III) ions, which are in slightly distorted octahedral environments, are linked by phenoxy bridges using the phenolic oxygen atoms of each ligand. The formation of the phenoxy bridges and the nearly planar nature of the tetradentate Schiff base ligand lead the carboxylates to adopt a relatively rare unidentate bonding mode. Each manganese(III) ion is at the centre of an approximate square plane consisting of two Mn–N bonds [Mn1-N1 = 1.9903 (13) Å and Mn1-N2 = 2.0091 (13) Å] and two Mn–O bonds [Mn1-O2 = 1.8673 (11) Å and Mn1-O1= 1.9324 (11) Å]. An axial elongation, of the Mn–Ocarb bond [Mn1–O3 = 2.1306 (11)Å], nearly orthogonal to the plane of the Schiff base, is indicative of the Jahn-Teller distortion anticipated of a high-spin manganese(III) ion in octahedral surroundings. This also causes a considerable weakening of the Mn–O bond along the phenoxy bridge [Mn1-O1\(^{10}\) = 2.4399 (11)Å; Symmetry codes: (i) -x+1, -y+1, -z+1], leading to an asymmetric Mn1–O–Mn1\(^{10}\) bridge. The Mn···Mn separation [Mn1···Mn1\(^{10}\)] of 3.4616 (5)Å is comparable to 3.485 (7)Å and 3.529 (4)Å, the corresponding Mn···Mn separations of the previously reported complexes,[{Mn(msalen)(EtCO2)}2] and [{Mn(msalen)(Bu'CO2)}2] respectively. [H2msalen = N,N-bis(3-methoxysalicylidene)-1,2-diaminoethane] (Hulme et al., 1997). The non-coordinated C-O of the benzoate and lattice water molecules interact through hydrogen producing chains of the dimers running parallel to the c-axis (Figure 2).
S2. Experimental

To a solution of Mn(C₆H₅CO₂)₂.2H₂O (1.00 g, 3.00 mmol) and o-hydroxyacetophenone (0.82 g, 6.00 mmol) in methanol (40 ml), ethane-1,2-diamine (0.18 g, 3.00 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Greenish brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Yield of 1 is 1.20 g (82.0%) based on manganese.

S3. Refinement

All hydrogen atoms were located in the difference map and refined isotropically.

Figure 1

ORTEP picture (Farrugia, 1997) of (1) Displacement ellipsoids have been drawn at the 50% probability level.
Figure 2
Mercury ball and stick packing diagram (Macrae et al., 2006) of (1) showing hydrogen-bonding chains.

Bis\(\mu-2',2'\prime\text{-}(\text{ethane}-1,2\text{-diyldinitrilo})\text{diethylidyne}\text{diphenolato} \text{bis}\left[[\text{benzoato}-\kappa O] \text{manganese}(\text{III})\right] \text{dihydrate}

Crystal data

\[\text{[Mn}_2\text{(C}_1\text{H}_1\text{H}_3\text{N}_2\text{O}_2)_2\text{(C}_7\text{H}_5\text{O}_2)_2]\cdot2\text{H}_2\text{O}\]

\(M_r = 976.82\)

Monoclinic, \(P2_1/c\)

Hall symbol: -P 2ybc

\(a = 12.9376 (4) \text{ Å}\)

\(b = 12.3983 (4) \text{ Å}\)

\(c = 13.8470 (4) \text{ Å}\)

\(\beta = 103.702 (2)°\)

\(V = 2157.91 (11) \text{ Å}^3\)

\(Z = 2\)

\(F(000) = 1016\)

\(D_x = 1.503 \text{ Mg m}^{-3}\)

\(\text{Cu } K\alpha \text{ radiation, } \lambda = 1.54178 \text{ Å}\)

\(\theta = 9.6–70.3°\)

\(\mu = 5.33 \text{ mm}^{-1}\)

\(T = 100 \text{ K}\)

Plate, green

\(0.23 \times 0.22 \times 0.03 \text{ mm}\)

Data collection

Bruker APEXII CCD

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

\(\omega\) and Phi scans

Absorption correction: numerical

\((-SADABS; \text{ Sheldrick, 2004})\)

\(T_{\text{min}} = 0.374, \ T_{\text{max}} = 0.857\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.027\)

\(wR(F^2) = 0.068\)

\(S = 1.03\)

3711 reflections

398 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

\(w = 1/[\sigma(F_o^2) + (0.0388P)^2 + 0.9845P]\)

where \(P = (F_o^2 + 2F_c^2)/3\)

\((\Delta/\sigma)_{\text{max}} = 0.001\)

\(\Delta\rho_{\text{max}} = 0.24 \text{ e Å}^{-3}\)

\(\Delta\rho_{\text{min}} = -0.36 \text{ e Å}^{-3}\)
Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn1</td>
<td>0.509469 (18)</td>
<td>0.482743 (19)</td>
<td>0.625826 (18)</td>
<td>0.00737 (9)</td>
</tr>
<tr>
<td>O1</td>
<td>0.59764 (8)</td>
<td>0.54044 (9)</td>
<td>0.54335 (8)</td>
<td>0.0097 (2)</td>
</tr>
<tr>
<td>O2</td>
<td>0.44338 (8)</td>
<td>0.61250 (8)</td>
<td>0.64417 (8)</td>
<td>0.0115 (2)</td>
</tr>
<tr>
<td>O3</td>
<td>0.63962 (9)</td>
<td>0.50305 (9)</td>
<td>0.75151 (8)</td>
<td>0.0141 (3)</td>
</tr>
<tr>
<td>O4</td>
<td>0.60249 (9)</td>
<td>0.50899 (10)</td>
<td>0.90102 (9)</td>
<td>0.0171 (3)</td>
</tr>
<tr>
<td>O5</td>
<td>0.59404 (11)</td>
<td>0.57505 (11)</td>
<td>0.09578 (10)</td>
<td>0.0223 (3)</td>
</tr>
<tr>
<td>N1</td>
<td>0.56577 (10)</td>
<td>0.33741 (10)</td>
<td>0.60493 (9)</td>
<td>0.0097 (3)</td>
</tr>
<tr>
<td>N2</td>
<td>0.39511 (10)</td>
<td>0.40011 (10)</td>
<td>0.66981 (9)</td>
<td>0.0093 (3)</td>
</tr>
<tr>
<td>C1</td>
<td>0.69961 (12)</td>
<td>0.51025 (13)</td>
<td>0.55995 (11)</td>
<td>0.0095 (3)</td>
</tr>
<tr>
<td>C2</td>
<td>0.77582 (13)</td>
<td>0.58879 (14)</td>
<td>0.55177 (12)</td>
<td>0.0123 (3)</td>
</tr>
<tr>
<td>C3</td>
<td>0.88167 (13)</td>
<td>0.56196 (15)</td>
<td>0.56395 (12)</td>
<td>0.0149 (4)</td>
</tr>
<tr>
<td>C4</td>
<td>0.91550 (14)</td>
<td>0.45594 (15)</td>
<td>0.58562 (12)</td>
<td>0.0165 (4)</td>
</tr>
<tr>
<td>C5</td>
<td>0.84191 (13)</td>
<td>0.37768 (14)</td>
<td>0.59350 (12)</td>
<td>0.0146 (4)</td>
</tr>
<tr>
<td>C6</td>
<td>0.73315 (12)</td>
<td>0.40178 (13)</td>
<td>0.58058 (11)</td>
<td>0.0103 (3)</td>
</tr>
<tr>
<td>C7</td>
<td>0.65666 (12)</td>
<td>0.31506 (13)</td>
<td>0.58595 (11)</td>
<td>0.0100 (3)</td>
</tr>
<tr>
<td>C8</td>
<td>0.68401 (14)</td>
<td>0.19971 (14)</td>
<td>0.56750 (13)</td>
<td>0.0133 (3)</td>
</tr>
<tr>
<td>C9</td>
<td>0.48612 (13)</td>
<td>0.25258 (13)</td>
<td>0.60535 (13)</td>
<td>0.0134 (3)</td>
</tr>
<tr>
<td>C10</td>
<td>0.42002 (13)</td>
<td>0.28324 (13)</td>
<td>0.67791 (13)</td>
<td>0.0129 (3)</td>
</tr>
<tr>
<td>C11</td>
<td>0.23512 (14)</td>
<td>0.35696 (14)</td>
<td>0.72628 (14)</td>
<td>0.0155 (4)</td>
</tr>
<tr>
<td>C12</td>
<td>0.30861 (12)</td>
<td>0.43524 (13)</td>
<td>0.69174 (11)</td>
<td>0.0102 (3)</td>
</tr>
<tr>
<td>C13</td>
<td>0.27896 (12)</td>
<td>0.54987 (13)</td>
<td>0.68234 (11)</td>
<td>0.0109 (3)</td>
</tr>
<tr>
<td>C14</td>
<td>0.17770 (13)</td>
<td>0.58263 (14)</td>
<td>0.69292 (12)</td>
<td>0.0134 (3)</td>
</tr>
<tr>
<td>C15</td>
<td>0.14654 (13)</td>
<td>0.68915 (14)</td>
<td>0.68857 (12)</td>
<td>0.0148 (3)</td>
</tr>
<tr>
<td>C16</td>
<td>0.21835 (13)</td>
<td>0.76876 (14)</td>
<td>0.67560 (12)</td>
<td>0.0135 (3)</td>
</tr>
<tr>
<td>C17</td>
<td>0.31734 (13)</td>
<td>0.74033 (13)</td>
<td>0.66321 (12)</td>
<td>0.0119 (3)</td>
</tr>
<tr>
<td>C18</td>
<td>0.34894 (12)</td>
<td>0.63105 (13)</td>
<td>0.66258 (11)</td>
<td>0.0097 (3)</td>
</tr>
<tr>
<td>C19</td>
<td>0.66321 (13)</td>
<td>0.52194 (12)</td>
<td>0.84366 (12)</td>
<td>0.0106 (3)</td>
</tr>
<tr>
<td>C20</td>
<td>0.77494 (12)</td>
<td>0.56330 (12)</td>
<td>0.88745 (12)</td>
<td>0.0110 (3)</td>
</tr>
<tr>
<td>C21</td>
<td>0.80612 (14)</td>
<td>0.59426 (14)</td>
<td>0.98683 (13)</td>
<td>0.0164 (4)</td>
</tr>
<tr>
<td>C22</td>
<td>0.90820 (14)</td>
<td>0.63329 (15)</td>
<td>1.02608 (14)</td>
<td>0.0213 (4)</td>
</tr>
<tr>
<td>C23</td>
<td>0.98022 (14)</td>
<td>0.64194 (15)</td>
<td>0.96662 (14)</td>
<td>0.0204 (4)</td>
</tr>
<tr>
<td>C24</td>
<td>0.95039 (14)</td>
<td>0.60999 (15)</td>
<td>0.86776 (14)</td>
<td>0.0193 (4)</td>
</tr>
<tr>
<td>C25</td>
<td>0.84822 (13)</td>
<td>0.57172 (13)</td>
<td>0.82813 (13)</td>
<td>0.0146 (3)</td>
</tr>
<tr>
<td>H1W</td>
<td>0.5942 (18)</td>
<td>0.551 (2)</td>
<td>0.040 (2)</td>
<td>0.037 (7)*</td>
</tr>
<tr>
<td>H2W</td>
<td>0.533 (2)</td>
<td>0.551 (3)</td>
<td>0.104 (2)</td>
<td>0.063 (9)*</td>
</tr>
<tr>
<td>Atomic displacement parameters (Å²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₁¹</td>
<td>U₂²</td>
<td>U₃₃</td>
<td>U₁₂</td>
<td>U₁₃</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Mn₁</td>
<td>0.0081 (14)</td>
<td>0.00576 (14)</td>
<td>0.00858 (15)</td>
<td>-0.00092 (9)</td>
</tr>
<tr>
<td>O₁</td>
<td>0.0091 (5)</td>
<td>0.0097 (5)</td>
<td>0.0101 (6)</td>
<td>-0.00008 (4)</td>
</tr>
<tr>
<td>O₂</td>
<td>0.0117 (6)</td>
<td>0.0078 (5)</td>
<td>0.0165 (6)</td>
<td>-0.0014 (4)</td>
</tr>
<tr>
<td>O₃</td>
<td>0.0144 (6)</td>
<td>0.0169 (6)</td>
<td>0.0100 (6)</td>
<td>-0.00008 (5)</td>
</tr>
<tr>
<td>O₄</td>
<td>0.0162 (6)</td>
<td>0.0227 (7)</td>
<td>0.0134 (6)</td>
<td>-0.0035 (5)</td>
</tr>
<tr>
<td>O₅</td>
<td>0.0229 (7)</td>
<td>0.0358 (8)</td>
<td>0.0151 (7)</td>
<td>-0.0116 (6)</td>
</tr>
<tr>
<td>N₁</td>
<td>0.0119 (7)</td>
<td>0.0080 (7)</td>
<td>0.0089 (7)</td>
<td>-0.00009 (5)</td>
</tr>
<tr>
<td>N₂</td>
<td>0.0106 (6)</td>
<td>0.0080 (7)</td>
<td>0.0084 (7)</td>
<td>-0.0010 (5)</td>
</tr>
<tr>
<td>C₁</td>
<td>0.0114 (8)</td>
<td>0.0140 (8)</td>
<td>0.0032 (8)</td>
<td>-0.0020 (6)</td>
</tr>
<tr>
<td>C₂</td>
<td>0.0136 (8)</td>
<td>0.0137 (9)</td>
<td>0.0093 (8)</td>
<td>-0.0031 (7)</td>
</tr>
<tr>
<td>C₃</td>
<td>0.0130 (8)</td>
<td>0.0213 (9)</td>
<td>0.0110 (8)</td>
<td>-0.0054 (7)</td>
</tr>
<tr>
<td>C₄</td>
<td>0.0108 (8)</td>
<td>0.0252 (10)</td>
<td>0.0137 (9)</td>
<td>0.0013 (7)</td>
</tr>
<tr>
<td>C₅</td>
<td>0.0156 (8)</td>
<td>0.0175 (9)</td>
<td>0.0105 (8)</td>
<td>0.0026 (7)</td>
</tr>
<tr>
<td>C₆</td>
<td>0.0128 (8)</td>
<td>0.0136 (8)</td>
<td>0.0045 (7)</td>
<td>0.0003 (7)</td>
</tr>
<tr>
<td>C₇</td>
<td>0.0125 (8)</td>
<td>0.0122 (8)</td>
<td>0.0038 (7)</td>
<td>0.0014 (6)</td>
</tr>
<tr>
<td>C₈</td>
<td>0.0162 (9)</td>
<td>0.0114 (8)</td>
<td>0.0127 (9)</td>
<td>0.0023 (7)</td>
</tr>
<tr>
<td>C₉</td>
<td>0.0133 (8)</td>
<td>0.0083 (8)</td>
<td>0.0180 (9)</td>
<td>-0.0021 (7)</td>
</tr>
<tr>
<td>C₁₀</td>
<td>0.0121 (8)</td>
<td>0.0077 (8)</td>
<td>0.0184 (9)</td>
<td>-0.0005 (7)</td>
</tr>
<tr>
<td>C₁₁</td>
<td>0.0160 (8)</td>
<td>0.0129 (9)</td>
<td>0.0190 (10)</td>
<td>-0.0016 (7)</td>
</tr>
<tr>
<td>C₁₂</td>
<td>0.0114 (8)</td>
<td>0.0126 (8)</td>
<td>0.0057 (8)</td>
<td>-0.0031 (6)</td>
</tr>
<tr>
<td>C₁₃</td>
<td>0.0132 (8)</td>
<td>0.0116 (8)</td>
<td>0.0077 (8)</td>
<td>-0.0015 (7)</td>
</tr>
</tbody>
</table>
C14 0.0121 (8) 0.0158 (9) 0.0118 (8) −0.0026 (7) 0.0020 (6) −0.0022 (6)
C15 0.0120 (8) 0.0180 (9) 0.0139 (9) 0.0022 (7) 0.0023 (6) −0.0024 (7)
C16 0.0176 (8) 0.0122 (8) 0.0098 (8) 0.0029 (7) 0.0012 (6) −0.0004 (6)
C17 0.0151 (8) 0.0110 (8) 0.0094 (8) −0.0019 (7) 0.0027 (6) −0.0003 (6)
C18 0.0119 (8) 0.0114 (8) 0.0052 (8) −0.0001 (6) 0.0009 (6) −0.0017 (6)
C19 0.0131 (8) 0.0062 (8) 0.0121 (9) 0.0027 (6) 0.0024 (6) 0.0000 (6)
C20 0.0132 (8) 0.0069 (8) 0.0122 (8) 0.0015 (6) 0.0015 (6) 0.0007 (6)
C21 0.0162 (9) 0.0192 (9) 0.0141 (9) −0.0020 (7) 0.0041 (7) −0.0027 (7)
C22 0.0203 (9) 0.0251 (10) 0.0162 (10) −0.0039 (8) −0.0006 (7) −0.0050 (7)
C23 0.0146 (9) 0.0205 (9) 0.0234 (10) −0.0054 (7) −0.0008 (7) 0.0008 (7)
C24 0.0173 (9) 0.0212 (10) 0.0205 (10) −0.0025 (7) 0.0064 (7) 0.0028 (7)
C25 0.0171 (9) 0.0145 (9) 0.0120 (9) −0.0004 (7) 0.0030 (7) 0.0006 (7)

Geometric parameters (Å, °)

Mn1—O2 1.8673 (11) C9—C10 1.514 (2)
Mn1—O1 1.9324 (11) C9—H9A 0.97 (2)
Mn1—N1 1.9903 (13) C9—H9B 0.976 (18)
Mn1—N2 2.0091 (13) C10—H10A 0.98 (2)
Mn1—O3 2.1306 (11) C10—H10B 0.982 (19)
Mn1—O1i 2.4399 (11) C11—C12 1.513 (2)
O1—C1 1.3377 (19) C11—H11A 0.96 (2)
O1—Mn1i 2.4398 (11) C11—H11B 0.962 (2)
O2—C18 1.3259 (19) C11—H11C 0.97 (2)
O3—C19 1.262 (2) C12—C13 1.470 (2)
O4—C19 1.253 (2) C12—C13 1.470 (2)
O5—H1W 0.83 (3) C13—C14 1.412 (2)
O5—H2W 0.88 (3) C13—C14 1.423 (2)
N1—C7 1.294 (2) C14—C15 1.378 (2)
N1—C9 1.473 (2) C14—C15 1.378 (2)
N2—C12 1.302 (2) C15—C16 1.396 (2)
N2—C10 1.483 (2) C15—C16 1.396 (2)
C1—C2 1.409 (2) C16—H16 0.97 (2)
C1—C6 1.421 (2) C16—H16 0.97 (2)
C2—C3 1.380 (2) C17—C18 1.416 (2)
C2—H2 0.987 (19) C17—C18 1.416 (2)
C3—C4 1.395 (3) C18—C20 1.393 (2)
C3—H3 0.95 (2) C20—C21 1.393 (2)
C4—C5 1.382 (3) C21—C22 1.391 (2)
C4—H4 0.95 (2) C21—C22 1.391 (2)
C5—C6 1.408 (2) C22—C23 1.386 (3)
C5—H5 0.99 (2) C22—H22 0.96 (2)
C6—C7 1.475 (2) C23—C24 1.389 (3)
C7—C8 1.509 (2) C23—C24 1.389 (3)
C8—H8A 0.96 (2) C24—C25 1.389 (2)
C8—H8B 0.97 (2) C24—H24 0.97 (2)
C8—H8C 0.96 (2) C25—H25 0.92 (2)
<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Angle/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2—Mn1—O1</td>
<td>96.60 (5)</td>
</tr>
<tr>
<td>O2—Mn1—N1</td>
<td>174.25 (5)</td>
</tr>
<tr>
<td>O1—Mn1—N1</td>
<td>87.80 (5)</td>
</tr>
<tr>
<td>O2—Mn1—N2</td>
<td>90.25 (5)</td>
</tr>
<tr>
<td>O1—Mn1—N2</td>
<td>161.46 (5)</td>
</tr>
<tr>
<td>N1—Mn1—N2</td>
<td>84.46 (5)</td>
</tr>
<tr>
<td>O2—Mn1—O3</td>
<td>94.93 (5)</td>
</tr>
<tr>
<td>O1—Mn1—O3</td>
<td>88.63 (5)</td>
</tr>
<tr>
<td>N1—Mn1—O3</td>
<td>88.86 (5)</td>
</tr>
<tr>
<td>N2—Mn1—O3</td>
<td>107.99 (5)</td>
</tr>
<tr>
<td>O2—Mn1—O3i</td>
<td>93.32 (4)</td>
</tr>
<tr>
<td>O1—Mn1—O3i</td>
<td>75.92 (4)</td>
</tr>
<tr>
<td>N1—Mn1—O3i</td>
<td>84.14 (4)</td>
</tr>
<tr>
<td>N2—Mn1—O3i</td>
<td>86.53 (4)</td>
</tr>
<tr>
<td>O3—Mn1—O3i</td>
<td>163.22 (4)</td>
</tr>
<tr>
<td>C1—O1—Mn1</td>
<td>119.41 (9)</td>
</tr>
<tr>
<td>C1—O1—Mn1i</td>
<td>116.41 (9)</td>
</tr>
<tr>
<td>Mn1—O1—Mn1i</td>
<td>104.08 (4)</td>
</tr>
<tr>
<td>C18—O2—Mn1</td>
<td>130.40 (10)</td>
</tr>
<tr>
<td>C19—O3—Mn1</td>
<td>143.43 (11)</td>
</tr>
<tr>
<td>H1W—O5—H2W</td>
<td>101 (2)</td>
</tr>
<tr>
<td>C7—N1—C9</td>
<td>121.19 (14)</td>
</tr>
<tr>
<td>C7—N1—Mn1</td>
<td>127.22 (11)</td>
</tr>
<tr>
<td>C9—N1—Mn1</td>
<td>111.42 (10)</td>
</tr>
<tr>
<td>C12—N2—C10</td>
<td>119.51 (13)</td>
</tr>
<tr>
<td>C12—N2—Mn1</td>
<td>129.45 (11)</td>
</tr>
<tr>
<td>C10—N2—Mn1</td>
<td>111.03 (10)</td>
</tr>
<tr>
<td>O1—C1—C2</td>
<td>118.23 (14)</td>
</tr>
<tr>
<td>O1—C1—C6</td>
<td>122.75 (14)</td>
</tr>
<tr>
<td>C2—C1—C6</td>
<td>118.94 (15)</td>
</tr>
<tr>
<td>C3—C2—C1</td>
<td>121.10 (16)</td>
</tr>
<tr>
<td>C3—C2—H2</td>
<td>121.6 (11)</td>
</tr>
<tr>
<td>C1—C2—H2</td>
<td>117.3 (11)</td>
</tr>
<tr>
<td>C2—C3—C4</td>
<td>120.32 (16)</td>
</tr>
<tr>
<td>C2—C3—H3</td>
<td>118.2 (12)</td>
</tr>
<tr>
<td>C4—C3—H3</td>
<td>121.4 (12)</td>
</tr>
<tr>
<td>C5—C4—C3</td>
<td>119.44 (16)</td>
</tr>
<tr>
<td>C5—C4—H4</td>
<td>120.1 (13)</td>
</tr>
<tr>
<td>C3—C4—H4</td>
<td>120.5 (13)</td>
</tr>
<tr>
<td>C4—C5—C6</td>
<td>121.85 (16)</td>
</tr>
<tr>
<td>C4—C5—H5</td>
<td>118.8 (11)</td>
</tr>
<tr>
<td>C6—C5—H5</td>
<td>119.3 (11)</td>
</tr>
<tr>
<td>C5—C6—C1</td>
<td>118.34 (15)</td>
</tr>
<tr>
<td>C5—C6—C7</td>
<td>120.08 (15)</td>
</tr>
<tr>
<td>C1—C6—C7</td>
<td>121.56 (14)</td>
</tr>
<tr>
<td>N1—C7—C6</td>
<td>120.45 (14)</td>
</tr>
<tr>
<td>N1—C7—C8</td>
<td>119.86 (14)</td>
</tr>
<tr>
<td>C6—C7—C8</td>
<td>119.68 (14)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>C7—C8—H8A</td>
<td>112.0 (12)</td>
</tr>
<tr>
<td>C7—C8—H8B</td>
<td>109.4 (11)</td>
</tr>
<tr>
<td>H8A—C8—H8B</td>
<td>106.2 (16)</td>
</tr>
<tr>
<td>C7—C8—H8C</td>
<td>112.9 (12)</td>
</tr>
<tr>
<td>H8A—C8—H8C</td>
<td>106.1 (17)</td>
</tr>
<tr>
<td>H8B—C8—H8C</td>
<td>110.0 (16)</td>
</tr>
<tr>
<td>N1—C9—C10</td>
<td>109.20 (13)</td>
</tr>
<tr>
<td>N1—C9—H9A</td>
<td>111.0 (11)</td>
</tr>
<tr>
<td>O2—Mn1—O1—C1</td>
<td>136.33 (11)</td>
</tr>
<tr>
<td>N1—Mn1—O1—C1</td>
<td>−47.38 (11)</td>
</tr>
<tr>
<td>N2—Mn1—O1—C1</td>
<td>−112.66 (17)</td>
</tr>
<tr>
<td>O3—Mn1—O1—C1</td>
<td>41.53 (11)</td>
</tr>
<tr>
<td>O1i—Mn1—O1—C1</td>
<td>−131.89 (12)</td>
</tr>
<tr>
<td>O2—Mn1—O1—C1i</td>
<td>−91.78 (5)</td>
</tr>
<tr>
<td>N2—Mn1—O1—C1i</td>
<td>84.51 (5)</td>
</tr>
<tr>
<td>O3—Mn1—O1—C1i</td>
<td>19.23 (17)</td>
</tr>
<tr>
<td>O2—Mn1—O2—C18</td>
<td>76.92 (13)</td>
</tr>
<tr>
<td>O1—Mn1—O2—C18</td>
<td>153.11 (13)</td>
</tr>
<tr>
<td>N2—Mn1—O2—C18</td>
<td>−9.62 (13)</td>
</tr>
<tr>
<td>O3—Mn1—O2—C18</td>
<td>−117.70 (13)</td>
</tr>
<tr>
<td>O2—Mn1—O3—C19</td>
<td>52.96 (17)</td>
</tr>
<tr>
<td>O1—Mn1—O3—C19</td>
<td>149.46 (17)</td>
</tr>
<tr>
<td>O1—Mn1—O3—C19</td>
<td>172.10 (15)</td>
</tr>
<tr>
<td>O1—Mn1—N1—C7</td>
<td>26.94 (13)</td>
</tr>
<tr>
<td>N2—Mn1—N1—C7</td>
<td>−169.93 (14)</td>
</tr>
<tr>
<td>O3—Mn1—N1—C7</td>
<td>−61.73 (13)</td>
</tr>
<tr>
<td>O1—Mn1—N1—C7</td>
<td>103.00 (13)</td>
</tr>
<tr>
<td>O1—Mn1—N1—C9</td>
<td>−148.35 (11)</td>
</tr>
<tr>
<td>N2—Mn1—N1—C9</td>
<td>14.78 (10)</td>
</tr>
<tr>
<td>O3—Mn1—N1—C9</td>
<td>122.98 (11)</td>
</tr>
<tr>
<td>O1—Mn1—N1—C9</td>
<td>−72.29 (10)</td>
</tr>
</tbody>
</table>
Mn\(^{i}\)--O1--C1--C2 93.12 (14) O4--C19--C20--C21 -5.1 (2)
Mn--O1--C1--C6 42.54 (18) O3--C19--C20--C21 175.11 (15)
Mn\(^{i}\)--O1--C1--C6 -83.74 (15) O4--C19--C20--C25 175.36 (15)
O1--C1--C2--C3 -177.31 (14) O3--C19--C20--C25 -4.4 (2)
C6--C1--C2--C3 -0.3 (2) C25--C20--C21--C22 0.3 (3)
C1--C2--C3--C4 -0.6 (2) C19--C20--C21--C22 -179.22 (15)
C2--C3--C4--C5 0.8 (2) C20--C21--C22--C23 0.1 (3)
C3--C4--C5--C6 -0.2 (2) C21--C22--C23--C24 -0.9 (3)
C4--C5--C6--C1 -0.7 (2) C22--C23--C24--C25 1.4 (3)
C4--C5--C6--C7 177.73 (15) C23--C24--C25--C20 -1.0 (3)
O1--C1--C6--C5 177.78 (14) C21--C20--C25--C24 0.2 (2)
C2--C1--C6--C5 0.9 (2) C19--C20--C25--C24 179.70 (15)

Symmetry code: (i) \(-x+1, -y+1, -z+1\).

Hydrogen-bond geometry (Å, °)

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5—H1W···O4(^{ii})</td>
<td>0.83 (3)</td>
<td>2.02 (3)</td>
<td>2.8452 (19)</td>
<td>173 (2)</td>
</tr>
<tr>
<td>O5—H2W···O4(^i)</td>
<td>0.88 (3)</td>
<td>1.89 (3)</td>
<td>2.7579 (18)</td>
<td>171 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(-x+1, -y+1, -z+1\); (ii) \(x, y, z-1\).