Antibiotic Effects on Microbial Communities Responsible for Greenhouse Gas Emissions

Miguel Albergaria Furtado Semedo
Virginia Institute of Marine Science

Bongkeun Song
Virginia Institute of Marine Science

Tavis Sparrer

Carl Croizer

Craig Tobias

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/presentations

Part of the Terrestrial and Aquatic Ecology Commons

Recommended Citation
Albergaria Furtado Semedo, Miguel; Song, Bongkeun; Sparrer, Tavis; Croizer, Carl; Tobias, Craig; and Phillips, Rebecca. "Antibiotic Effects on Microbial Communities Responsible for Greenhouse Gas Emissions". 10-9-2015. VIMS 75th Anniversary Alumni Research Symposium.

This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Antibiotic Effects on Microbial Communities Responsible for Greenhouse Gas Emissions

Miguel Semedo¹, Bongkeun Song¹, Tavis Sparrer¹, Carl Crozier², Craig Tobias³, and Rebecca Phillips⁴

¹Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary; ²Department of Soil Science, North Carolina State University; ³Department of Marine Sciences, University of Connecticut; ⁴Ecological Insights Corporation

Introduction

- Nitrous oxide (N₂O) is a powerful greenhouse gas depleting the stratospheric ozone.
- Recent studies show that fungi produce N₂O by denitrification.
- Bacteria can be a source or sink of N₂O depending on the presence of nitrous oxide reductase genes (nosZ).
- Fungal denitrification produces N₂O as an end product due to lack of nosZ genes.

\[
\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2O \rightarrow \text{N}_2
\]

Denitrification. Step-wise reduction of nitrate (NO₃⁻) to nitrite (NO₂⁻), nitric oxide (NO) and N₂O to N₂. The nosZ gene is present in bacteria but is missing in fungi.

- Higher fungal denitrification can increase soil N₂O emissions.
- Animal manure application affects N₂O emissions from agricultural fields.
- Antibiotics carried in the animal manure due to livestock administration mostly repress bacteria, promoting fungal growth.

Objective

To study the effects of antibiotics on microbial communities responsible for N₂ and N₂O production in agricultural soils and estuarine sediments.

Methods

- **Soil Laboratory Experiments (1 week)**
- **Soil Mesocosm Experiment (1 month)**

Results

- **Soil Laboratory Experiments (1 week incubations)**

\[\text{N}_2 \text{O and N}_2 \text{O potential rates (soil slurry incubations with } ^{15}\text{NO}_3^-) } \]

- Genetic abundance

Figure 1. Rates of N₂ (A) and N₂O (B) production measured in soil slurry incubations with tetracycline. Different concentrations of tetracycline were used. Water was added to the controls. Columns represent mean ± SE.

Figure 2. Quantification of bacterial 16S (A) and fungal ITS (B) genes in DNA extracted from the soil slurry incubations with antibiotic. Columns represent mean ± SE.

Conclusions

1. N₂O production was enhanced 8 times in the soils treated with high concentration of tetracycline.
2. Antibiotic inhibition of N₂ production was dose-dependent, reaching 25 and 80% inhibition in the samples treated with 0.5 mg Kg⁻¹ and 1,000 mg Kg⁻¹ of tetracycline, respectively.
3. Higher abundance of fungi with decreasing bacterial abundance was observed after tetracycline exposure.
4. Cumulative N₂O fluxes in the mesocosm experiment show that the application of manure contaminated with tetracycline enhances soil N₂O emissions.

Acknowledgements

This research is funded by the AFRI program of National Institute of Food and Agriculture.