2-1-2006

Bis(mu-thiophene-2-carbaldehyde thiosemicarbazonato) bis[acetonitrilecopper(I)] bis(tetrafluoroborate)

Robert D. Pike
College of William and Mary, rdpike@wm.edu

A B. Wiles

Follow this and additional works at: https://scholarworks.wm.edu/chemistrypub

Part of the Chemistry Commons

Recommended Citation

This Article is brought to you for free and open access by the Chemistry at W&M ScholarWorks. It has been accepted for inclusion in Chemistry Articles & Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Bis(µ-thiophene-2-carbaldehyde thiosemicarbazonato)bis[acetonitrilecopper(I)] bis(tetrafluoroborate)

Robert D. Pike, Austin B. Wiles and Tristan A. Tronic
Robert D. Pike,* Austin B. Wiles and Tristan A. Tronic
Department of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
Correspondence e-mail: rdpike@wm.edu

Key indicators
Single-crystal X-ray study
T = 100 K
Mean σ(C–C) = 0.011 Å
R factor = 0.045
wR factor = 0.111
Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 8 December 2005
Accepted 17 January 2006

The title compound, \([\text{Cu}_2(\text{C}_6\text{H}_7\text{N}_3\text{S}_2)(\text{C}_2\text{H}_3\text{N})_2](\text{BF}_4)_2\), is a dimer with a central \(\text{Cu}_2\text{S}_2\) core resulting from thiosemicarbazone sulfur bridging. Both \(\text{Cu}\text{–TCT}\) units (TCT is the thiophene-2-carboxaldehyde thiosemicarbazone anion) are roughly planar and are parallel to one another and perpendicular to the \(\text{Cu}_2\text{S}_2\) plane.

Comment
As part of a study of thioamide complexes of copper(I), the title compound, \([\text{Cu}_2(\text{TCT})_2(\text{NCH}_3)_2](\text{BF}_4)_2\), (I), was prepared and its crystal structure is presented here.

Compound (I) crystallizes in the orthorhombic space group \(\text{Pca}2_1\). Each \(\text{Cu}^I\) center is chelated by a TCT ligand (TCT is the thiophene-2-carboxaldehyde thiosemicarbazone anion) in a similar fashion to that of the previously known TCT complexes \(\text{trans-Ni(TCT)}_2\) (Garcia-Tojal et al., 2001), \(\text{trans-Cu(TCT)}_2\) (Garcia-Tojal et al., 1999), \(\text{PhHg(TCT)}\) (Lobana et al., 2001) and \(\text{cis-Fe(CO)}_2(\text{TCT})_2\) (Hong et al., 2004). In contrast with these species, but in keeping with typical \(\text{Cu}^I\) behavior, the two \(\text{Cu}^I\) centers are bridged by the thiosemicarbazone \(\text{S}\) atoms to form a rhomboid dimer. As is the case with the previously known complexes, the thiophene \(\text{S}\) atoms fail to coordinate, with \(\text{Cu}^1\text{–S} = 3.190 (2) \text{Å}\). Instead, acetonitrile ligands complete the distorted tetrahedral coordination of each \(\text{Cu}^I\).

An analysis of the bond angles reveals that most of the angles about the \(\text{Cu}^I\) atoms are near the nominal tetrahedral value. However, the angles within the \(\text{Cu}\text{–TCT}\) metallocyclic ring, e.g. \(\text{N}3\text{–Cu}1\text{–S}1\), are acute, and the angles between the acetonitrile and the chelating TCT, e.g. \(\text{N}7\text{–Cu}1\text{–N}3\) and \(\text{N}7\text{–Cu}1\text{–S}1\), are large (>120°). Thus, the acetonitrile associated with each \(\text{Cu}^I\) center is angled away from the chelating TCT ligand and slightly towards the bridging TCT ligand. The \(\text{S}\text{–Cu}\text{–S}\) angles are near the nominal tetrahedral value, but...
metal-organic papers

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids. The anions have been omitted for clarity.

The Cu—S—Cu values are <75°. The chelating (e.g. N3—Cu1—S1) and non-chelating (e.g. N3—Cu1—S2) angles in the current structure are relaxed by about 2–7° in comparison with the analogous angles in the literature structures cited above. This effect is due to the preference of CuI for quasi-tetrahedral, rather than square-planar or octahedral, geometry.

The Cu1··Cu2 distance of 2.8094 (15) Å indicates a long-range metal–metal interaction. The Cu—S and Cu—N distances within the chelate rings, e.g. Cu1—S1 and Cu1—N3, are within the range found for other M–TCT complexes. The fact that the non-chelate Cu—S distances (e.g. Cu1—S2) are significantly longer than the chelate distances suggests that dimer formation is the weaker effect. Comparison of the analogous angles in the literature structures cited above.

Least-squares planes were calculated for Cu1/S1/N2/N3/C1 (plane A, maximum deviation 0.053 Å for atom N3), Cu1/S1/Cu2/S2 (plane B, maximum deviation 0.007 Å for all atoms), Cu2/S2/N5/N6/C7 (plane C, maximum deviation 0.061 Å for atom S2), C3/C4/C5/C6/S3 (plane D, maximum deviation 0.004 Å for atoms C5 and C6) and C9/C10/C11/C12/S4 (plane E, maximum deviation 0.001 Å for atoms C9, C10 and C11). The chelate ring planes (A) and (C) are nearly parallel [dihedral angles 0.7 (3)] and are canted by 7.0 (3) and 8.0 (3)° with respect to the associated thiophene planes (D and E). This result differs from that of the CuII-TCT complex, for which the chelate and thiophene planes lie at a dihedral angle of 17.85° (Garcia-Tojal et al., 1999). The Cu2–S2 plane is nearly perpendicular to the Cu–TCT chelate planes A and C (A/B and B/C dihedral angles are 81.66 (9) and 81.44 (9)°, respectively), resulting in a zigzag tri-fold arrangement of the fused rings.

Experimental

The TCT ligand was prepared according to the literature method of Hong et al. (2004). The metal complex was prepared through the reaction of [Cu(NCMe)4]BF4 (4.36 g, 13.9 mmol) and TCT (2.57 g, 13.9 mmol) in acetonitrile (80 ml). The resulting yellow solution was stirred for 30 min at room temperature. The yellow product was precipitated from the solution with the addition of diethyl ether (yield 74.3%). Analysis, calculated for Cu6H6BCuF4N6S4: Cu 16.87, C 24.04, H 2.68, N 14.03%; found: Cu 16.92, C 24.04, H 2.68, N 14.03%. X-ray quality crystals of (I) were grown by layering an acetonitrile solution with diethyl ether.

Crystal data

\([\text{Cu}_2(\text{C}_6\text{H}_7\text{N}_3\text{S}_2)(\text{C}_2\text{H}_3\text{N})_2][\text{BF}_4]_2\)

Cu Kα radiation

Orthorhombic, Pca2₁

\(a = 13.3357 (3)\) Å

\(b = 9.1867 (2)\) Å

\(c = 22.7980 (5)\) Å

\(V = 2793.01 (11)\) Å³

Z = 4

Density 0.12 × 0.10 × 0.10 mm

Refinement

Refinement on \(F^2\)

\(R(F^2) > 2\sigma(F^2) = 0.045\)

Absorption correction: multi-scan

\(\theta_{\text{max}} = 69.5°\)

\(h = -15 \rightarrow 14\)

\(k = -10 \rightarrow 10\)

30209 measured reflections

Table 1

H-atom parameters constrained	Cu1—N7	1.944 (7)	Cu2—S1	2.472 (2)				
Cu1—N3	2.031 (6)	Cu1—S1	2.327 (2)	S2—C7	1.723 (8)			
Cu1—S1	2.463 (2)	N2—C1	1.327 (9)	Cu1—Cu2	2.8094 (15)			
Cu1—Cu2	2.8094 (15)	S1—C1	1.384 (8)	Cu2—N8	1.929 (7)			
Cu2—N8	1.929 (7)	N5—C7	1.380 (10)	Cu2—N6	2.051 (6)			
Cu2—N6	2.051 (6)	N5—N6	1.385 (8)	Cu2—S2	2.313 (2)			
Cu2—S2	2.313 (2)	N6—Cu2—S1	101.33 (18)					
N7—Cu1—N3	133.4 (2)	Cu1—S1	2.06 (3)	Cu2—S2—Cu1	73.98 (6)			
N7—Cu1—S1	120.6 (2)	Cu1/S1—Cu2	103.00 (19)	Cu2—S2—Cu1	73.98 (6)			
N3—Cu1—S1	87.43 (18)	Cu1/S1—Cu2	103.75 (18)	101.75 (18)	C1—N2	102.3 (3)		
N7—Cu1—S2	103.00 (19)	C2—Cu1—S1	101.85 (17)	N2—Cu2—S1	112.5 (4)			
N3—Cu1—S2	101.75 (18)	C3—N7—Cu1	121.9 (6)	N5—Cu2—S2	113.0 (4)			
N7—Cu1—S1	87.43 (18)	N4—Cu2—S2	112.5 (4)	N6—Cu2—S2	112.5 (4)			
N7—Cu1—S1	103.00 (19)	S2—Cu1—S1	101.85 (17)	Cu2—S2—Cu1	101.75 (18)	101.75 (18)	Cu2—S2—Cu1	73.98 (6)
N5—Cu2—S1	121.9 (6)	Cu2—S2—Cu1	73.98 (6)					

H atoms were treated as riding, with C—H = 0.96 and 0.93 Å for methyl and vinyl groups, and N—H = 0.86 Å, and with \(U_{	ext{iso}}(\text{H}) = \frac{1}{2}U_{	ext{eq}}(\text{CN})\) for all H atoms. The largest peak in the final difference map lies near the centroid of the Cu2/N6/C8/C9/S4 arc.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SAINT-Plus (Bruker, 2004); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997).
solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: XSHELL (Bruker, 2004); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

This research was supported in part by the Thomas F. and Kate Miller Jeffress Memorial Trust (grant No. J-678), and also by a Howard Hughes Medical Institute grant through the Undergraduate Biological Sciences Education Program to the College of William and Mary. We are indebted to the National Science Foundation (grant No. CHE-0443345) and to the College of William and Mary for the purchase of the X-ray equipment.

References