Structural complexity and location affect the habitat value of restored oyster reefs

Melissa Karp
Virginia Institute of Marine Science

Rochelle Seitz
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/presentations

Part of the Aquaculture and Fisheries Commons, Natural Resources Management and Policy Commons, and the Terrestrial and Aquatic Ecology Commons

Recommended Citation

This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Structural complexity and location affect the habitat value of restored oyster reefs

Melissa Karp* and Rochelle D. Seltz
Virginia Institute of Marine Science

Background
- Structured habitats have been declining worldwide, having negative economic and ecological impacts
 - Coral reefs, seagrasses, mangroves, and saltmarshes have all suffered > 20% global decline
 - Oyster reefs have suffered the greatest decline with > 85% loss (Beck et al. 2011)
 - Chesapeake Bay oysters (Crassostrea virginica) now < 1% historic levels
- Beyond their direct economic benefits, oyster reefs provide a suite of valuable ecosystem services, which have become the target of more recent restoration efforts. These include:
 - Water filtration
 - Denitrification
 - Stabilization of benthic and intertidal habitats
 - Habitat, refuge, and foraging grounds
- Success in restoring lost ecosystem services may depend on reef design characteristics, location, and environmental conditions of the specific area targeted for restoration (Dame 1979; Peterson et al. 2003)

Objectives
1. Quantify species composition, diversity, density, and biomass on restored oyster reefs in Virginia tributaries of the Chesapeake Bay
2. Examine the effect of structural complexity and location on faunal density, biomass and species composition.

Overarching Goal: To provide information to guide restoration efforts with regards to designing reefs to meet restoration goals of enhanced macrofaunal abundance and species diversity on oyster reefs.

Hypotheses
1. Species diversity will increase with salinity and species composition will vary among tributaries
2. Species diversity and abundance will increase with increasing structural complexity

Species diversity of several taxa

Structure quality

Methods

Sampling Locations
- 4 Rivers
 - Great Wicomico
 - Piankatank
 - Lafayette
 - Lynnhaven
- 4 restored reefs per river

Sampling Methods and Lab Processing
- 4 benthic sampling trays embedded into each reef by VIMS divers (tray dimensions: 0.122m x 0.15m, 1mm mesh liner)
- 7-week soak time
- Surface complexity (rugosity) measured by "chain-link" method
- YSI measurements (DO, salinity, temp) and depth
- Sort, ID, and weigh species in lab
- Volumes: oyster clumps, dead shell, live single oysters, oyster boxes

Results
- In 2014, 33 different species, from 5 taxa, were collected on restored oyster reefs
- Species composition differed between the rivers (figure 2)

Results
- The Lynnhaven river reefs had significantly greater salinity and H' species diversity (22.4 psu and 1.91 respectively) on average compared to the Great Wicomico River (13.81 and 1.13 respectively) (figure 3)

Figure 3: Boxplots of species diversity for the Lynnhaven and Great Wicomico rivers. Both salinity and species diversity were significantly greater in the Lynnhaven river compared to the Great Wicomico (ANOVA: p < 0.001)

- Faunal density positively correlates with oyster clump volume (figure 4) and rugosity (surface complexity).

Conclusions
- Restored oyster reefs provide habitat for a host of different species
- Species composition of restored oyster reefs depends on the river in which they are located (figure 1)
- Salinity may be an important factor influencing the species diversity and composition on restored oyster reefs, with higher salinity supporting a greater diversity of organisms (figure 2)
- Increasing the structural complexity, such as amount of oyster clumps, of a restored oyster reef may help to increase its habitat value to benthic organisms, and increase the abundance of those organisms (figure 3)

Acknowledgments: Thank you to Virginia Sea Grant; NOAA-CBO and VIMS for providing funding for this research. Thank you to the following people for their help and support: Allison Smith, Katie Knick, Cassie Glaspie, Mike Seebo, Megan Wood, Bruce Pfitziman, Rom Lipcius, Danielle McCulloch, Lydia Bienten, Sarah Pease, and Cindy Marin Martinez.