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8. Mortality estimation 
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8.1 INTRODUCTION 
Mortality is an essential parameter in understanding the dynamics of any population 
and sharks are no exception. Without knowledge of how fast individ.uals are re~oved 
from a population it is impossible to model the population dynamics or estimate 
sustainable rates of exploitation or other useful management parameters. Two separate 
types of mortality occur in shark (or fish for that matter) populations. First, natural 
mortality (commonly referred to by the letter M), which is the loss to the population 
from natural sources such as predation, disease and old age, and second fishing morality 
(referred to by the letter F) which, as the name suggests, is the loss to the population 
from fishing. Fishing and natural mortality combine to give total mortality (referred to 
by the letter Z), such that 

Z=M+F (8.1) 

. !v1ortality values are typically expressed as rates that are either instantaneous or 
fm1te (or apply to another fixed period). Instantaneous (distinguished here by an upper 
case letter) and finite rates (lower case letter) are related exponentially. For example, 

(8.2) 

where f = finite fractionof a population number removed by fishing. 
Thus, in one year with a finite fishing mortality rate of 0.4, 40% of the population 

~ould be removed by fishing. However, it is more convenient to work with 
lllstantaneous rates in most situations and the value of instantaneous fishing mortality 
that would give a 40% removal if applied over a full year is 0.5 (e05). Ricker (1975) 
provides a detailed explanation of instantaneous rates and their use in fisheries. 

The simple mathematical expressions above mask some of the more complex issues 
relating to mortality rates. For example, it is intuitive that mortality rates are not 
constant throughout a shark's life. While sharks are young their small size makes them 
more susceptible to predation from larger fishes and as sharks reach their maximum age, 
they are more likely to die of old age than from predation. As a result some researchers 
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128 Management techniques for elasmobranch fisheries 

have suggested that sharks have a U-shaped natural mortality curve. Similarly, fishing 
mortality can vary with age due to the size selectivity of fishing gear or differences in 
the spatial distribution of fish of different ages. These complexities should be kept in 
mind in relation to the techniques described in this Section. 

Despite the importance of quantifying mortality to understanding the dynamics of 
shark populations, there have been limited amounts of research directed at this topic. 
The main reason for this is that accurately quantifying mortality rates is difficult and 
typically requires substantial amounts of data. Since population assessment is such an 
important part of managing fished or endangered populations, indirect methods of 
estimating mortality have been developed and are commonly used in the population 
assessment of sharks and other aquatic organisms. These indirect techniques use 
relationships between life history parameters and typically, natural mortality from 
species where research has been undertaken. The relationships used for sharks are 
based on teleost fishes, although some use data from broader taxonomic groups. 

This Section describes methods for estimating mortality rates in shark populations, 
starting with the simple indirect methods and then discusses the more complex and 
data intensive direct methods. \'v'e have attempted to use examples from the shark 
literature throughout. We also attempt to point out the strengths and weaknesses 
of each of the methods and as a conclusion try to provide some guidance on which 
techniques to use in different situations. The fisheries literature relevant to both direct 
and indirect methods of estimating natural mortality was reviewed by Vetter (1988) and 
this reference is a valuable source of information on this topic. 

8.2 IJ',IDIRECT METHODS 

8.2.1 Introduction 
Indirect methods have typically been developed to estimate natural mortality, but in 
some cases estimates of total mortality can be made. In cases where a method estimates 
total mortality, e.g. Hoenig (1983) and Brander (1981) can be assumed to be equal to 
natural mortality when the population is unfished (i.e. F = 0). If the population is fished, 
then the value of fishing mortality must be known to determine natural mortality. The 
majority of these indirect methods assume that mortality is independent of age, but 
two methods that give age-dependent values are also described. 

8.2.2 Age-independent methods 

8.2.2.1 Pau~y (1980) 

A commonly used indirect method of estimating natural mortality was described by 
Pauly (1980). He related natural mortality to von Bertalanffy growth parameters (Loo or 
Woo and K) and mean environmental temperature (T, in degrees Celsius). This method 
assumes that there is a relationship between size (measured in either length or weight) 
and natural mortality. This relationship is quite weak on its own, but the inclusion of 
mean environmental temperature increases the fit as an animal living in warmer water 
will have higher mortality rates than an equivalent animal living in cooler water (Pauly, 
1980). The relationships developed were based on natural mortality and ambient 
temperature data for 175 fish stocks, only two of which were sharks (Cetorhinus 
maximus and Lamna nastts). The relationship based on length was 

log M = -0.0066 - 0.279 log L~ + 0.6543 log K + 0.4634 log T (8.3) 

and based on weight was 
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log M = -0.2107 - 0.0824 log L_,, + 0.6757 log K + 0.4627 log T 135,11 (8.4) 

Estimation of natural mortality using these equations is straightforward as long as von 
Bertalanffy parameter values are available. Jensen (1996) reanalysed the data of Pauly 
and used this to produce a simpler relationship (Section 8.2.2.4). 

8.2.2.2 Gunderson (1980) and Gunderson and Dygert (1988) 
Gunderson (1980) used r-K selection theory to develop a relationship between female 
gonadosomatic index ( GS!) and natural mortality. This relationship assumes that 
there is a strong correlation between the amount of energy that a female invests in 
reproduction and natural mortality. Gunderson's original relationship was 

M = 4.64GSI - 0.370 (8.5) 

This relationship was based on ten North Sea teleost species and uses maximum 
female GSI. The calculation of GSI is covered in Section 7 of this manual. 

This relationship was refined by Gunderson and Dygert (1988) who increased the 
size of the data set on which the relationship was based to 20 species, including one 
shark (Squaltts acanthias). The new relationship was 

M = 0.03 + 1.68GSI (8.6) 

Simpfendorfer (1999a) used these two methods in a study of the Australian 
sharpnose shark (Rhizoprionodon taylori). He found that the method of Gundersori 
(1980) was a poor predictor of natural mortality, but that the method of Gunderson 
and Dygert (1988) was one of only two methods that produced reasonable values. 
Simpfendorfer (1999a) pointed out that the results from this method may be biased 
since it is assumed that GS! is a proxy for reproductive investment. Since many sharks 
are viviparous (such as R. taylori), not all of the reproductive investment is included in 
the full size ovarian eggs. Instead, much of the reproductive investment is made later 
via the placental (or analogous tissues) connection. Thus, it is more likely that this 
method will work better with oviparous and ovoviviparous shark species. 

8.2.2.3 Hoenig (1983) 
The most widely used indirect method of estimating mortality in shark species is 
that of Hoenig (1983) (see Section 9). This method uses maximum observed age to 
predict total mortality, since longer lived species will die at a slower rate than short
lived species. Hoenig (1983) developed three relationships that may be of use to shark 
researchers (a fourth relationship was developed for mollusks). The most commonly 
used relationship was for 84 stocks of teleost fishes: 

In Z = 1.46 - 1.01 In tmax (8.7) 

Hoenig (1983) also developed a relationship for 22 cetacean stocks: 

In Z = 0.941 - 0.873 In tm,x (8.8) 

While this relationship is less useful, it may have some applicability since, like 
cetaceans, sharks are long-lived, slow-growing and have few young. However, 
cetaceans are also homeothermic, which may bias the results if applied to sharks. 

The third relationship developed by Hoenig (1983) was a combination of all of the 
mollusk, teleost and cetacean data 
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In Z = 1.44 - 0.982 In tm.,x (8.9) 

The values estimated by the relationships of Hoenig ( 1983) all predict total mortality. 
As such they can only be used to predict natural mortality when F"" 0. Hoenig (1983) 
also noted that it is possible to use a geometric mean regression in developing the 
predictive relationships and provided the values for these parameters. However, it has 
been standard practice for work with sharks to use the simple tcleost relationship. 

8.2.2.4 Jensen 1996 
Jensen (1996) used the Beverton and Holt life history invariants (Charnov, 1993) 

as a starting point in determining the relationships between life history parameters 
and natural mortality. Using optimal trade-offs between reproduction and survival he 
showed that 

M = l.65~ 
/xm 

(8.10) 

where x,,, is the age at maturity. Similarly, he showed that there was also a simple 
theoretical relationship between the von Bertalanffy /( value and natural mortality 

M = I.SK (8.11) 

This relationship is much simpler than that provided by Pauly (1980, see above). 
Jensen re-analysed Pauly's data and demonstrated that the simple relationship 

M = I.60K (8.12) 

gives an equivalent fit to the data as the more complex Pauly equation. This simple 
relationship is close to the theoretical value (1.SK), suggesting that these relationships 
may provide a relatively sound method of estimating natural mortality. 

8.2.2.5 Brander's equilibrium mortality estimation 
Rather than a method to obtain estimates of total, fishing or natural mortality, 
Brander's (1981) method is an easy way to estimate threshold levels of total mortality 
beyond which stocks will collapse for organisms like sharks and rays in whic_h the 
actual number of young produced a year is known. Brander (1981) proposed a simple 
and intuitive relationship to estimate if the total mortality rates of the juvenile and adu~t 
portions of a population are beyond a threshold that would lead to stock collapse. His 
method relies on biological information and some assumptions as detailed below. It is 
a simple and useful way to perform a quick assessment of the status of cxploitati_on of 
a stock. This method can be used not only to rapidly estimate. if the fish.ing rate is :oo 
high, but also to rank species along a continuum of resilience to exploitation dependmg 
on their life-history traits, along similar lines to the demographic methods devel~ped 
by Au and Smith (1997) and in Section 9. Brander's method borrows the convent10ns 
of demographic analysis and considers only the female part of the population for 

simplicity. 
The method calls for 3 types of information: 
(i) The age of first sexual maturity of the stock. This is usually taken as the age at 

which 50% of the population is sexually mature. (See section 7.3.3). . 
(ii) The rate of reproduction (how many offspring are produced a year; ~n the case 

of elasmobranchs this would be the number of eggs laid a year for species such as 
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the skates (Rajidae) and sharks of the Heterodontidae and Scyliorhinidae families, 
or the number of pups a year for live-bearing sharks and rays). 

(iii) An estimate of the instantaneous total mortality rate of the immature part of 
the stock. 
This method relies on two assumptions: 
(i)The rate of reproduction is constant and not related to the age or size of individuals. 

Although in many species there is a known relationship between maternal size and 
fecundity, this is not always the case. In other circumstances, an average number of eggs 
laid or pups produced can be used as an approximation or the limits of the range can be 
used to place bounds on the uncertainty. 

(ii) The mortality rate of the immature stock from birth to sexual maturity is considered to 
be constant. Although this is a stronger assumption as newborn survival is often much 
lower than for subsequent ages (Manire and Gruber 1993; Heupel and Simpfendorfer 
2002). An estimate of mortality that is representative of the immature part of the stock 
can be used as this is an approximate method. 

Brander's method is based on the fact that for a population to remain at a constant 
level and not decrease or increase in size (i.e. be in eqttilibrittm ), the total rate of 
mortality of adults or mature fish (Zm) must equal the net rate of recruitment of mature 
fish to the stock (Rm) 

Z"' =R,,, (8.13) 

In turn, the recruitment to the mature stock is equal to the number of eggs developing 
into fem ales or the number of female pups born multiplied by the survival from birth 
to matunty 

(8.14) 

where E denotes the rate of reproduction (in number of eggs or embryos produced a 
year), Z; is the total mortality of the immature part of the stock (as mentioned above, 
Z; is assumed to be constant throughout immature ages) and t,,, is the number of years 
from birth to sexual maturity. To simplify, only females are considered by Brander, 
usually it is assumed that half of the total eggs laid or embryos in-tttero will develop 
into females but it is advisable to check if this applies to the species being analysed. 
Thus, for the population to remain in equilibrium 

(8.15) 

This is Brander's equation and substituting the values of the age at maturity, the rate 
of reproduction and the total mortality of immature fish for the species being analysed 
gives the corresponding equilibrium total mortality rate of the adult stock. This is an 
important reference point for management that indicates the maximum level of total 
mortality that the adult stock can withstand before the populations starts to decline. 
An additional application of this method involves repeating the above calculations 
using different values of Z; to calculate equilibrium curves like those seen in Figure 8.1. 
In this figure, the mortality thresholds (equilibrium instantaneous total mortality rates 
of mature and immature fish) of two hypothetical species are plotted. Both species 
have a tm of 11 years but different rates of reproduction (20 and 40 offspring a year). 
Mortality values to the right and above each curve will eventually drive the population 
to collapse. Thus, if we can independently determine the actual values of total mortality 
for the immature and mature parts of the stock in question (Z; and Zm) and if the values 
are to the right of the corresponding curve, management should attempt to reduce 
total mortality towards an equilibrium level. Catch curves (Section 8.3.2) can be used 
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to estimate the level of total mortality for each part of the stock, but if catch curves 
can be calculated, then it is usually possible to do a more thorough stock assessment as 
discussed in Section 10. 

While the two curves in Figure 8.1 illustrate how species with higher fecundity can 
withstand a slightly higher level of t~tal 
mortality, they also show that doubling 
the fecundity has a relatively small effect 
on the equilibrium mortality. The net 
rate of recruitment is the most important 
factor and this depends directly on the 
cumulative mortality of the immature part 
of the stock until it reaches maturity. 

FIGURE 8.1 

Equilibrium mortality curves for two theoretical 
shark populations as a function of total mortality of 
the mature (Zm) and immature (Zi) portions of the 

stock. In both cases the age of first sexual maturity is 
11 years. Reproductive rate is 40 or 20 offspring a year 

depending on the case. 
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Brander's method is an easy and 
simple way to estimate the maximum 
total mortality of the mature stock that 
would guarantee the stability of ~he 
population based on age of matun_ty, 
rate of reproduction and total mortality 
of the immature stock. The method was 
used by Brander to explain why common 
rays Diptitrus batis (=Raja batis) were 
virtually extirpated in the Irish Sea and to 
compare the "resilience" to exploitation 
of other ray species. For this, he plotted 
the highest total mortality that could 
be sustained by the five species he was 
analyzing as a function of fecundity 
and age of maturity while assuming 
that Z111=Z;. The results showed that the 
least fecund species could withstand the 
highest mortality because it had a high net 
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survival to maturity. Brander's method is 
useful for deriving reference points and 

making comparative analyses; however, it has never been adopted for the management 
of an actual elasmobranch fishery. 

The main limitations of Brander's approach are: (a) it does not provide direct 
management advice in the form of an appropriate catch or effort level and (b) it is 
not a dynamic model (considering changes in time), but offers only a static view, thus 
processes like density-dependent compensation cannot be taken into account. Density
dependent compensation is a change in any fundamental process of the population that is 
directly related to the abundance level of the stock. In reality, most biological processes 
are density-dependent, especially mortality and recruitment (which is a consequence of 
pre-recruit mortality), but other processes like body growth, population growth and 
fecundity are often density-dependent too. 

8.2.3 Age-dependent methods 

8.2.3.1 Peterson and Wroblewski (1984) 
Peterson and Wroblewski (1984) estimate natural mortality that varies with age using 
dry weight as a scaling factor. Using particle-size theory and data from the pelagic 
ecosystem (including fish larvae, adult fish and chaetognaths) they showed that the 
natural mortality for a given weight organism (Mw) is 

Mw = l.92w·0·25 (8.16) 
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where w is the dry weight of an organism. To make this estimate of natural mortality 
age-specific, weight-at-age data is required. This is normally obtained from a length
weight relationship and length-at-age data from a von Bertalanffy growth function. 
Such an approach yields wet weight and Cortes (2002) suggested that a conversion 
factor of one fifth be used for sharks to give dry weight. One criticism of this method 
has been that it was developed for smaller pelagic organisms. However, McGurck 
(1986) showed that it accurately predicted natural mortality rates over 16 orders of 
magnitude. 

8.2.3.2 Chen and Watanabe (1989) 
Chen and Watanabe (1989) recognized that natural mortality in fish populations, like 
most animal populations, should have a U-shaped curve when plotted against age (they 
referred to it as a bathtub curve). To model this curve, they used two functions, one 
describing the falling mortality rate early in life and a second describing the increasing 
mortality towards the end of life. To scale the values of mortality by age (M(t)), Chen 
and Watanabe (1989) used the k and t0 parameters of the von Bertalanffy growth 
function. 

where 

and 

1 
k t < t 

l -k(t-t0 ) ' - m 

M(t)= -e k 
-----------~ ,t '?:. tlll 
a0 + a1 (t-tm)+ a 2 (t-t 111 )-

a0 = 1- e-k(tM-to) 

al = ke-k(tM-to) 

a~ = _.!.k2e-k(tM-t0 

- 2 

(8.17) 

(8.18) 

(8.19) 

Cortes (1999) used this method to estimate the survival of sandbar sharks 
( Carcharhinus plumbetts) by age-class. He demonstrated no increasing mortality in 
older age classes due to senescence. The survival values that Cortes (1999) estimated 
using this method were similar to those for the Peterson and Wroblewski (1984), Hoenig 
(1983) and Pauly (1980) methods. Unlike the Peterson and Wroblewski (1984) method 
the Chen and Watanabe (1989) method only requires von Bertalannfy parameters, but 
the mathematics are more involved. This technique can be simply implemented in a 
spreadsheet using the formulae provided (8.17 - 8.19). 

8.2.4 Other indirect methods 
The indirect methods described above represent the most commonly used approaches 
in the elasmobranch literature. However, the fisheries literature contains many other 
similar techniques that researchers may wish to investigate. These include Ursin (1967), 
Alverson and Carney (1975), Blinov (1977) and Myers and Doyle (1983). In addition, 
there are a number of studies that have looked at problems associated with these 
techniques such as Barlow (1984) and Pascual and Iribarne (1993 ). 
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8.3 DIRECT METHODS 

8.3.1 Requirements 

Direct methods provide the researcher with the best estimates of mortality because 
they are based on the actual stock in question. However, they are also data intensive 
and require unbiased data. Thus, it is important that data are collected so that they 
are statistically appropriate and that the assumptions and restrictions of each of the 
methods are understood. 

8.3.2 Catch curves 

One powerful method of estimating total mortality (i.e. natural mortality if F = 0) is 
the use of catch curves. Catch curve analysis assumes that the decrease in observed 
numbers of individuals across the age-structure of the population is the result only of 
mortality: 

(8.20) 

FIGURE 8.2 
Catch curves for (A) male and (B) female Australian 

sharpnose sharks derived from data from Simpfendorfer 
(1993). Data points for the first age class were not used 

to calculate the regression line. From Simpfendorfer 
(1999a). 

Thus, if the numbers of individuals 
in each age class are known, mortality 
can be estimated. This method requires 
age data from an unbiased sample of a 
population and involves six steps: 
(i) The number of animals in each class 
is determined. 
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(ii) The numbers are log (base e) 
transformed. 
(iii) The log-transformed numbers are 
plotted against age. 
(iv) A linear regression is fitted to the 
descending limb (right hand side) of the 
catch curve. 
(v) The value of total mortality is 
calculated as the negative slope of the 
regression. 
(vi) The error of the estimates is 
calculated as the error of the slope of the 
regress10n. 

An example of catch curves from 
male and female Australian sharpnose 
sharks (Rhiozprionodon taylori) from 
Simpfendorfer (1999a) is given in 
Figure 8.2. 

One of the ·most important steps in 
the application of this method is the 
selection of the points on the descending 
limb of the catch curve. In the perfect 
situation the catch curve would be a 
linear set of points with a negative slope 
(Figure 8.3a.). However, in reality most 
catch curves have an ascending limb 
for the youngest age classes, due to 
incomplete recruitment of some age 
classes to the fishing gear or to the 
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FIGURE 8.3 available population and an asymptote 
fo_r the older age classes (Figure 8.3b). 
R1~ker (1975) suggested using only the 
pomts to the right of the peak ln(N) 
value. It is also possible to exclude 
~oints that arc clearly outliers from the 
l~ne described by most of the descending 
limb points. This approach was used 
by Cortes and Parsons (1996) for the 
bonnethead shark (Sphyrna tiburo ). In 
situations where there arc only limited 
numbers of age classes including as many 
points as possible will provide the most 
accurate result with the lowest error. 
To do this, Simpfendorfer (1999a) fitted 
both a linear and quadratic function 
to the points including the peak ln(N) 
value (that Ricker (1975) suggested 
excluding). When the quadratic 
function provided a significant increase 
in fit, it was assumed that including the 
maximum point increased curvature in 
the data and so the maximum point was 
excluded. 

Hypothetical catch curves from (a) the "perfect" case 
based on N,+1 = N,e·2 where Z is constant and the 

regression can be fitted to all points, and (b) a more 
typical situation where the regression is fitted only to 
points to the right of the maximum ln(number) value. 
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The use of catch curves requires a 
number of assumptions to be made 
about the sampled population. First, the 
aged animals are representative of the 
age-structure in the population. Second, 
the ages are accurately determined. 
Third, the total mortality rate is constant 
across the age classes to which the linear 
function is fitted. Fourth, the mortality 
rate is constant between years (if more 
than one year's data are used). Fifth, 
recruitment is constant between years. 

JI.I'- -·--·· -·-· ---· - --·- -·- -·· ~- --· 
l_t 

Last, vulnerability to fishing gear is 
equal for all ages and constant over year classes. 

Often it is difficult to get a sufficiently large sample of aged animals from a 
population to get accurate estimates of mortality. However, there may be sufficient 
age data to develop an age-length (or weight) key. This age-length key can be used to 
assign ages based on length. More details of age-length keys can be found in Hilborn 
and Walters (1992). Cortes and Parsons (1996) used an age-based catch curve and an 
age-length key derived catch curve for the bonnethead shark. Both methods produced 
similar results. 

8.3.3 Tagging 
Tagging experiments can be separated into two general categories: (a) studies where 
the tagged indivicluals of population are killed upon recapture, as in a commercial 
fishery and (b) studies where tagged individuals arc recaptured and released several 
times. The former are referred to as tag-recovery studies as evident by the fact that 
fishers recover tags of individuals that arc harvested, while the latter are referred to as 
capture-recapture studies since it is possible to recapture tagged individuals on multiple 
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occasions. Moreover, tag-recovery studies are typically viewed as fishery-dependent 
since the data obtained is strictly a function of fishing activities, while for capture
recapture studies it is best to use a fishery-independent sampling design to generate 
capture histories for tagged individuals. Here we focus on the use of multiyear tag
recovery studies as a method to derive estimates of mortality and note that there is a 
wealth of literature on the analysis of capture-recapture data ( e.g. Burnham et al., 1987, 
Pollock et al., 1990) 

The general structure of a multi-year tag-recovery study is to tag N; individuals 
at the start of each year i, for i = 1, ... , I years. Tagging periods do not necessarily 
have to be yearly intervals; however, data analysis is easiest if all periods are the same 
length and all tagging events are conducted at the beginning of each period. A total 
of r;i tag-recoveries are then tabulated during year j from the cohort released in year 
i, with j = i, i+ l, ... , j and J ;,:: I (here, the term "cohort" refers to a batch of similar 
(e.g. similarly-sized) individuals tagged and released at essentially the same time). The 
tabulated multi-year tag-recoveries can be displayed in an upper triangular matrix of 
the following form 

r= (8.21) 

Application of multi-year tag-recovery models involves constructing a matrix of 
expected values and comparing them to the observed data. The matrix of expected 
values corresponding to the time-specific parameterization of Brownie et al. (1985), 
which is referred to as Model 1, takes the form 

E = r 

NJ1 N/lJ2 

N2f2 

NISI ···S1-il1 

N2S2 ···S1-if1 

X1 

(8.22) 

where J; is the tag-recovery rate in year i, which is the probability a tagged individual 
alive at the beginning of year i is caught during year i and its tag is recovered; S; is the 
annual survival rate for year i, which is the probability an individual survives to the 
end of year i, and 

{
N1f1 

X1 = NI D Skf] 

if/= J 
(8.23) 

otherwise 

Although Model l is not the most general formulation of the Brownie et al. (1985) 
models, it is the most commonly applied since it possesses the flexibility to document 
annual changes in the tag-recovery and survival rates. In addition to the Brownie et 
al. (1985) formulation, there are two other types of models (not described here) that 
can be used to analyse multiyear tag-recovery data (see Seber, 1970 and Hoenig et al., 
1998a,b). 

Since the data in each row of the tag-recovery matrix follow a multinomial 
probability distribution, the method of maximum likelihood can be used to derive 
parameter estimates. Also, since all tagged cohorts are assumed to be independent, 
an overall likelihood function can be constructed as the product of the individual 
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likelihood functions corresponding to each row of the tag-recovery matrix (Brownie et 
al., 1985; Hoenig et al., 1998a). Software packages that numerically maximize product 
multinomial likelihood functions have been developed for the use of tag-recovery 
models. These include programs SURVIV (White 1983; http://www.mbr-pwrc.usgs. 
gov/software) and MARK (White and Burnham 1999; http://www.cnr.colostate.edu/ 
-gwhitelmarklmark.htm). 

Application of the Brownie et al. (1985) models requires the following assumptions: 
(a) the tagged sample is representative of the target population; (b) there is no tag 
loss or, if tag loss occurs, a constant fraction of the tags from each cohort is lost and 
all tag loss occurs immediately after tagging; (c) the time of recapture of each tagged 
individual is reported correctly (i.e. all tags arc returned by fishers during the year 
in which the individuals were harvested); (d) all tagged individuals within a cohort 
experience the same annual survival and tag-recovery rates; (e) the decision made by a 
fisher on whether or not to return a tag docs not depend on when the individual was 
tagged; (f) survival rates arc not affected by tagging process or, if they are, the effect is 
restricted to a constant fraction dying immediately after tagging, (g) and the fate of each 
tagged individual is independent of the other tagged individuals. 

Tag-recovery studies can be plagued by (among others) the following problems: 
(i) Newly tagged individuals may not have the same spatial distribution as previously 

tagged individuals, especially if tagging takes place in only a few locations. (Note 
- it is best to tag fewer individuals over a large number of locations rather than 
many individuals at just a few locations.) This problem of non-mixing (Hoenig 
et al., 1998b) constitutes a violation of assumption (a) and will lead to unreliable 
parameter estimates. To determine if non-mixing is present, Latour et al. (2001a) 
developed a test that can be applied prior to data analysis. 

(ii) Individuals are tagged across a range of ages and, or sizes and these different 
age and, or size groups experience different survival rates due to selectivity of the 
harvest. This leads to a violation of assumption (d). 

(iii) Individuals within a particular tagged cohort have a different spatial distribution 
than the other individuals within that cohort, perhaps due to age- and, or size
specific migration patterns ( e.g. individuals may leave the estuarine or near coastal 
nursery grounds once they become sexually mature). This leads to a violation of 
assumptions (a) and (cl) and can be accounted for during data analysis by ignoring 
the data associated with portions of the tag-recovery matrix (for more details, see 
Latour et al., 2001b). 

Although the Brownie et al. (1985) models are simple and robust, they do not 
yield direct information about year-specific instantaneous rates of mortality (equation 
8.1) or even exploitation rates (u;), which are often of interest to fisheries managers. 
Estimates S; can be converted to Z; using Ricker's (1975) equation: 

(8.24) 

and if information about M is available ( e.g. from one of the methods previously 
described), then estimates of F; are possible. Given estimates of the instantaneous rates, 
it is then possible to estimate u; if the timing of fishing (i.e. single pulse (Type I) fishery 
or continuous (Type II) fishery is known (Ricker, 1975); 

{
1-e-F' for Type I fishery 

ui = F; (1-e<-F,+M)) for Type II fishery 
F;+M 

(8.25) 
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Alternatively, if estimates of the instantaneous rates of mortality are unavailable, it 
is still possible to calculate year-specific estimates of exploitation (Pollock et al., 1990, 
Hoenig et al., 1998a) by 

u. =L... (8.26) 
I </JA 

where f is the short-term probability an individual survives the handling and tagging 
process with the tag intact and l is the tag-reporting rate (i.e. probability the tag will be 
reported given that that individual is harvested). The parameter f can be estimated by 
holding newly tagged individuals in cages or holding pens for a short period of time 
(e.g. 2-4 days) (Latour et al., 2001b), while the tag-reporting rate is best estimated by 
conducting a high-reward study (Henny and Burnham, 1976; Pollock et al., 2001). 

Regardless of the goals of a particular tag-recovery study (e.g. to estimate Si, Fi, etc.), 
it is advisable to assess the likelihood of assumption violation. This can involve either 
conducting auxiliary studies to address specific assumptions (e.g. experiments that 
allow estimation of the rates of tag-induced mortality, both short-term and chronic 
tag shedding, tag reporting, etc.) and, or by using diagnostic tools to assess model 
performance (Latour et al., 2001c). A variety of techniques specific to shark tagging 
studies have been used to assess and adjust for assumption violation. For example, 
Simpfendorfer (1999b) described a method of correcting dusky shark tag return rates 
for non-reporting by using compulsory catch information and the reporting rates of 
individual fishers. Xiao (1996) described a model for estimating shedding rates from 
a double tagging experiment with Australian blacktip sharks ( Carcharhinus tilstoni); 
Xiao et al. (1999) described the tag-shedding rates of school (Galeorhimts galeus) and 
gummy (Musteltts antarcticus) sharks. 

The use of tagging experiments can provide one of the best methods of estimating 
both fishing and natural mortality rates in shark populations. There are a wide variety 
of techniques available for the analysis of these types of data. The increased computing 
power available to most scientists and the development of software packages has 
enabled increasingly powerful techniques. These techniques, however, have been 
rarely used for shark populations. Grant, Sandland and Olsen (1979) estimated the 
fishing and natural mortality rates of school sharks using animals released in the 1950s. 
Simpfendorfer (1999b) estimated fishing mortality rates of juvenile dusky sharks based 
on tag recaptures in a commercial gillnet fishery and Xiao, Stevens and West (1999) 
estimated fishing and natural mortality rates of the school shark using a probabilistic 
model. 

8.3.4 Telemetry 
Terrestrial biologists often use telemetry methods to estimate mortality rates by 
regularly monitoring the status of individuals in a population. Despite their popularity 
in terrestrial biology, these approaches have rarely been used in aquatic studies. 
In terrestrial systems radio frequency telemetry methods are used that can locate 
individuals over relatively large distances, whereas in aquatic systems acoustic 
telemetry methods that have relatively short reception distances must normally be 
used. This limited reception distance and the large ranges of individuals makes most 
systems impractical for monitoring the status of individuals. Only one study of a shark 
population has used this technique. Heupel and Simpfendorfer (2002) used data from 
an acoustic monitoring system in a nursery area for blacktip sharks (Carcharhinus 
limbatus) to estimate both natural and fishing mortality rates. They used analytical 
techniques described by Hightower, Jackson and Pollock (2001) (Kaplan-Meier and 
Program SURVIV) to estimate mortality rates for the O+ segment of the population 
through time. This type of approach provides some of the most detailed understanding 
of the mortality process in a population (Figure 8.4), but requires a large amount of data 



8. Mortality estimation 139 
-------------------------·--------

and a high level of effort in the field. The 
success of the approach used by Heupel 
and Simpfendorfer (2002) in estimating 
mortality rates was due to the use of an 
array of data-logging acoustic monitors 
that continuously recorded the activity 
of up to 42 sharks a season within the 
relatively small and well-confined study 
site. Heupel and Simpfendorfer (2002) 
and Hightower, Jackson and Pollock 
(2001) provide more details of this 
approach. 

8.3.5 Others 
Cohort analysis is a popular method of 
estimating mortalities in fish populations. 
This often takes the form of Virtual 
Population Analysis (VPA), but also 
includes a method described by Paloheimo 
(1980) that bases mortality estimates on 
reductions in catches of a single cohort 
over time. Although commonly used in 
studies of teleost fish populations, these 
techniques have rarely been used in shark 
populations studies. Smith and Abramson 
(1990) used a reverse VPA to estimate the 
fishing mortality rates of leopard shark 
(Triakis semifasciata). Walker (1992) used 
the technique described by Paloheimo 
(1980) to estimate the natural mortality 
of gummy sharks as did Campana et 
al. (2002) to estimate total mortality 
in porbeagle sharks (Lamna nasus). 
These types of analysis are rarely used in 
studies of shark populations as the data 
requirements, in terms of the catch-at-

FIGURE 8.4 

Kaplan-Meier estimates of finite rate of survival from 
(a) natural mortality and (b) fishing mortality for 

juvenile blacktip sharks (data for 1999-2001 summers 
combined). Dashed lines indicate 95% confidence 
intervals. Graphs use the second week of May as 
week 1 (from Heupel and Simpfendorfer, 2002). 
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age and fishing effort information, are greater than are normally available. However, 
for populations where good data are available this type of approach can yield valuable 
information on mortality. 

8.4 CONCLUSIONS AND ADVICE 
The first choice that a researcher needs to make is whether to use a direct or an 
indirect method to estimate mortality. Early in the assessment of a population indirect 
methods are used as they can provide quick and easy results, especially for inclusion 
in a model. When indirect methods are used for input into a model it is prudent to 
construct multiple models that use as many of the indirect estimates as possible. This 
allows the researcher to include an understanding of the uncertainty associated with 
the estimates. Each method will provide different results and in most instances there is 
no information that can be used to choose between the different values (i.e. they are all 
equally likely). In some cases there is little difference between methods. For example, 
Simpfendorfer (1999b) used five different methods for dusky sharks and all but one 
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of the results fell within the range of 0.081. to 0.086. Alternatively, the estimates of 
different methods can be very variable. Simpfendorfer (1999a) used seven methods for 
the Australian sharpnose shark and found a range of values from 0.56 to 1.65. 

One first obvious result in population assessments is that the results are always 
dependent upon the values of mortality used (both F and M). Thus, as a researcher 
tries to make an assessment more precise and accurate, a direct estimate of mortality 
will provide a higher level of certainty about the results. It is at this point that direct 
methods of estimating mortality are normally applied. Unlike indirect methods direct 
estimates require a sampling strategy for the specific species to ensure satisfactory 
results. Thus, they require a much larger amount of field work and data analysis. The 
reward for this work can be a much better understanding of mortality in a population 
and so a more accurate assessment of its status. 

The choice between different direct methods depends on a couple of factors. 
Tagging studies probably provide the best data if they can be implemented properly. Of 
particular importance is the ability to get tag recapture information, tag shedding rates 
and tag reporting rates. Without these types of data the estimates of mortality will be 
biased and may yield results no more accurate than the indirect methods. In situations 
where tag recapture data may be more difficult to obtain the catch curve approach may 
prove more useful. Catch curves can produce accurate results, but the data must meet 
several assumptions (Section 8.3.2) to do so. Finally, telemetry methods are best used 
in situations where the mortality within a given system is required and the system 
can be adequately sampled acoustically, normally with data-logging monitors. While 
a telemetry approach may seem like a dream for some populations, technological and 
methodological advances are being made that will make this more and more available to 
:esearche~s. A~ such, it is likely to represent the future for the estimation of mortality 
m many situations. 
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