The role of oyster in nitrous oxide emissions from oyster reefs

Anne Arfkin
Virginia Institute of Marine Science

Ashley Smyth
Virginia Institute of Marine Science

Bongkeun Song
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/presentations

Part of the *Natural Resources Management and Policy Commons*

Recommended Citation

Arfkin, Anne; Smyth, Ashley; and Song, Bongkeun. "The role of oyster in nitrous oxide emissions from oyster reefs". 10-9-2015. VIMS 75th Anniversary Alumni Research Symposium.

This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Background

- Anthropogenic nitrogen (N) loading has been linked to excessive algal growth, fish kills, and overall decrease of water quality in Virginia’s estuaries and bays.
- During denitrification biologically-available N is reduced to the gaseous form N₂, an unreactive form of N, and N₂O and an important greenhouse gas.
- Oyster microbiomes may play a significant role in the biogeochemical N cycle and N₂O emissions in estuarine and coastal ecosystems.
- Rates of denitrification and N₂O production were measured from live oysters and oyster shells collected at a coastal lagoon and a tidal estuary in the Chesapeake Bay.

Objectives

- Characterize the spatial and temporal variation of denitrification in oyster reef ecosystems.
- Evaluate the relative production of N₂ and N₂O as end products of denitrification.

Methods

- Sample Collection
- Incubation
- Study Sites
 - Microcosms, with oyster shell, live oysters or oyster reef sediment were incubated in a continuous flow system.
 - Production of N₂ and N₂O were quantified.

Results: Source of N₂O

- Relationship between N₂ and N₂O
 - Figure 3: Linear relationship between N₂ and N₂O, suggesting that N₂ production (denitrification) is the source of N₂O.

Conclusions

- Production of both N₂ and N₂O was detected in live oysters and oyster shells collected from both study sites.
- There was a strong positive relationship between N₂ and N₂O production, suggesting denitrification was the major source of N₂O.
- Higher activities of denitrification were found in summer than fall.
- Live oysters from both study sites had the highest rates of denitrification and N₂O. This indicates that oysters are an important N remover and a N₂O source in coastal ecosystems.