2-1991

From a Different Angle

Judi Harris

College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/educationpubs

Part of the Education Commons

Recommended Citation


This Article is brought to you for free and open access by the School of Education at W&M ScholarWorks. It has been accepted for inclusion in School of Education Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Logo LinX

From A Different Angle
by Judi Harris

I'll never forget that scene.

Voice over:
When you've used mathematical principles as a key to enjoyable physical activities, your feeling for mathematics is likely to be warmer, more personal, more engaged.
—Seymour Papert in Talking Turtle, a NOVA program produced by WGBH Public Television

Two young girls in black leotards performed a dance to a pulsating rock-and-roll song, mirroring each other's graceful movements.

Voices over:
We wrote the dance like we wrote the procedures for the computer.
—Mandy and Michelle in Talking Turtle

As Mandy and Michelle cartwheeled across the floor on my television screen, I felt another set of Logo project ideas begin to percolate in my subconscious.

I dream of helping more children experience mathematics as I do, with all the intimacy of dancing.
—Seymour Papert in Talking Turtle

Winter break is over. Many of you are now settling in to several months of uninterrupted school days. The weather is cold enough in many states to move gym classes inside, and physical education teachers can now spend some weeks on gymnastics, dancing, or yoga units. Why not integrate some Logo explorations into these naturally appealing physical activities?

We are all familiar with the facilitative effects of kinesthetic experiences of abstract concepts for learners. Encouraging children to "play turtle" as an integral part of the Logo graphics problem solving process is probably a well-established part of your "facilitator's repertoire" by now. Why not capitalize upon this symbiotic relationship between cognitive and physical activity?

Angular Notions

At one elementary school, it all began with a bulletin board. During one of my "I-need-to-relax" trips to a local bookstore, I happened upon a paperback authored by Olympic gymnast Kurt Thomas (Kurt Thomas on Gymnastics, Simon and Schuster, 1980). It contained many beautiful black-and-white photographs of his work on the rings, horse, and floor masts. The precision of his moves and his perfect muscular control were masterfully revealed through these still portraits. The angles formed by his limbs and torso were fascinating.

Books about ballet, yoga, and running seemed to jump out from the shelves. Why not help the children to see the beauty of disciplined bodily movements through geometric angles? I tucked the Thomas book into the crook of my arm, and headed for the cashier.

Viewing Angle

The bulletin board drew many thoughtful observers. I had selected 15 of the full-page pictures of Mr. Thomas that most vividly displayed different body angles, then added semicircles of white self-adhesive label material to identify the angles whose size I wanted the onlookers to estimate. I laminated the pictures, knowing that my students would be wise enough to use their hands to help them to judge angle size. I also hung up a protractor, with directions for its use in measuring angle size. The "answers" were provided under a flap of paper next to each picture.

It was exciting to see students and teachers stop in front of the display and become immersed in the presentation, often for long periods of time, and with no knowledge that they were being watched. The gym teacher asked for similar pictures to hang in the gymnasium, and I was happy to provide her with photographs of children in ballet poses. Students voluntarily began collecting and submitting action shots of football stars, wrestling matches, jazz dancers, and acrobats. Some even brought in cameras to photograph each other on the balance beam and uneven parallel bars.
New Angles

Truly, they had discovered a new way to look at their world. Angle estimation conversations around the displays would often become somewhat heated, and, to the teachers' delight, would be settled with the use of a protractor. It was interesting to watch how this difficult skill was passed on voluntarily from student to student. Many reacted with surprise when they realized that it was not as difficult as it had seemed when they had had to do it in their mathematics books.

It was no surprise, then, when the children's Logo work began to reflect this new area of interest. Some had just discovered the animation tools on the Terrapin Logo utilities diskette (SHAPE.EDIT). Others had found out how to use pen color 0 or penerase (PE) to erase simple shapes just drawn to achieve another type of animation. Still others began exploring text screen animation. Had they been using current versions of Logo, they could also have achieved animated effects with turtle shape changes.

One group of students created pictures of stick figures in all of the basic ballet positions. Another decided to draw ice skating moves. A third group, fascinated with sign language, began a graphic collection of simple signs, such as "I love you."

Personal Angles

I must confess to having been bitten by the same bug. Two projects occupied too much of my out-of-school time during those winter months. One was a "generic gymnast," whose body parts were subprocedures with variable inputs that represented the different joint angles needed to position her in any dance, yoga, gymnastic, or ice skating pose. The other was a traditional four-couple square dance in Sprite Logo from a bird's eye view.

The most energizing aspect of these varied investigations was their common denominator, a quite powerful idea. Seeing the angles of body position and feeling the geometry of movement added depth to the way all of us, students and teachers alike, perceived the world around us. There is a wonder and a balance to the physical experience of abstract notions; a bridge to deeper understanding, no matter what age the thinker.

Little by little, we are learning how the computer can make bridges between the mathematical and the sensual; the abstract and the intimate.
—Seymour Papert in Talking Turtle

(An earlier version of this article appeared in the January 1987 issue of Logo Exchange.)

Judi Harris works in the Department of Teacher Education at the University of Nebraska at Omaha as an assistant professor of educational technology. Her teaching, research and service interests include Logo (of course), developmental sequencing in interactive hypermedia materials design, computer-mediated educational telecommunications, and the expressive qualities of children's computer-assisted artwork.

BitNet: JHarris@unomaha
Internet: JHarris@Zeus.unomaha.edu
CompuServe: 75116, 1207

Second International Seminar
Educational Computing in Latin America
Strategies for the Use of Computers in Education
April 23-26, 1991
Mexico City, Mexico

sponsored by
The Ministry of Education of Mexico (SEP) and
The International Society for Technology in Education (ISTE)

Participants interested in presenting a paper should submit a one-page abstract by January 31, 1991 to:
Alfonso Ramirez/CPAR
Av. IPN 3600
Col. San Pedro Zacatenco
México, 07360, D.F.
México
Tel: (52-5) 5869172
Fax: (52-5) 5866759
BITNET:CPAR@UNAMVM1

For more information, write:
ISTE, 1787 Agate Street,
Eugene, OR 97403-1923

19