
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

4-26-2018 

Prospects for observing and localizing gravitational-wave Prospects for observing and localizing gravitational-wave 

transients with Advanced LIGO, Advanced Virgo and KAGRA transients with Advanced LIGO, Advanced Virgo and KAGRA 

B. P. Abbott 

LIGO Scientific Collaboration 

Virgo Collaboration 

Eugeniy E. Mikhailov 
William & Mary, eemikh@wm.edu 

H. Rew 
William & Mary 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

Recommended Citation Recommended Citation 
Abbott, B. P.; LIGO Scientific Collaboration; Virgo Collaboration; Mikhailov, Eugeniy E.; Rew, H.; Zhang, M.; 
and et al., Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, 
Advanced Virgo and KAGRA (2018). LIVING REVIEWS IN RELATIVITY, 21. 
https://doi.org/10.1007/s41114-018-0012-9 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Authors Authors 
B. P. Abbott, LIGO Scientific Collaboration, Virgo Collaboration, Eugeniy E. Mikhailov, H. Rew, M. Zhang, 
and et al. 

This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/aspubs/42 

https://scholarworks.wm.edu/aspubs/42


Living Rev Relativ (2018) 21:3
https://doi.org/10.1007/s41114-018-0012-9

REVIEW ARTICLE

Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO,
Advanced Virgo and KAGRA

Abbott, B. P. et al. (KAGRA Collaboration, LIGO
Scientific Collaboration and Virgo Collaboration)*

Received: 11 September 2017 / Accepted: 7 February 2018 / Published online: 26 April 2018
© The Author(s) 2018

Abstract We present possible observing scenarios for the Advanced LIGO, Advanced
Virgo and KAGRA gravitational-wave detectors over the next decade, with the inten-
tion of providing information to the astronomy community to facilitate planning for
multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the
network to transient gravitational-wave signals, and study the capability of the network
to determine the sky location of the source. We report our findings for gravitational-
wave transients, with particular focus on gravitational-wave signals from the inspiral of
binary neutron star systems, which are the most promising targets for multi-messenger
astronomy. The ability to localize the sources of the detected signals depends on the
geographical distribution of the detectors and their relative sensitivity, and 90% cred-
ible regions can be as large as thousands of square degrees when only two sensitive
detectors are operational. Determining the sky position of a significant fraction of
detected signals to areas of 5–20 deg2 requires at least three detectors of sensitivity
within a factor of ∼ 2 of each other and with a broad frequency bandwidth. When
all detectors, including KAGRA and the third LIGO detector in India, reach design
sensitivity, a significant fraction of gravitational-wave signals will be localized to a
few square degrees by gravitational-wave observations alone.

This article is a revised version of https://doi.org/10.1007/lrr-2016-1
Change summary: Major revision, updated and expanded.
Change details: Several updates to the document have been made. The most significant changes are the
inclusion of details regarding KAGRA, and results from O1 and O2, including GW170817, the first
detection with an unambiguous multi-messenger counterpart. The key differences are outlined in an
appendix.
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1 Introduction

Advanced LIGO (aLIGO; Harry 2010; Aasi et al. 2015a), Advanced Virgo (AdV;
Acernese et al. 2009; Accadia et al. 2012; Acernese et al. 2015) and KAGRA (Somiya
2012; Aso et al. 2013) are kilometer-scale gravitational-wave (GW) detectors that are
sensitive to GWs with frequencies of ∼ 20–2000 Hz.1 The era of GW astronomy
began with the detection of GW150914 (Abbott et al. 2016j), a signal from the coales-
cence of a binary black hole (BBH); the first confirmed multi-messenger counterpart
to a GW observation came with GW170817 (Abbott et al. 2017i), a signal from a
binary neutron star (BNS) coalescence which was accompanied by detections across
the electromagnetic spectrum (Abbott et al. 2017k). In this article, we describe the
currently projected schedule, sensitivity, and sky-localization accuracy for the GW-
detector network. We discuss the past and future planned sequence of observing runs
(designated O1, O2, O3, etc.) and the prospects for multi-messenger astronomy.

The purpose of this article is to provide information to the astronomy community
to assist in the formulation of plans for forthcoming GW observations. In particular,
we intend this article to provide the information required for assessing the features of
programs for joint observation of GW events using electromagnetic, neutrino, or other

1 LIGO is short for Laser Interferometer Gravitational-Wave Observatory. KAGRA is named after the
Japanese word for traditional sacred music and dance for the gods kagura; the name has a secondary
meaning as an abbreviation for KAmioka GRavitational-wave Antenna. Virgo is not an acronym, and is not
written in all caps.
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facilities (e.g., Abbott et al. 2016i; Adrian-Martinez et al. 2016; Albert et al. 2017c;
Abbott et al. 2017k).

The full science of ground-based GW detectors is broad (Abbott et al. 2016j), and is
not covered in this article. We concentrate solely on candidate GW transient signals. We
place particular emphasis on the coalescence of BNS systems, which are the GW source
for which electromagnetic follow-up is most promising (Metzger and Berger 2012;
Patricelli et al. 2016; Paschalidis 2017; Rosswog et al. 2017; Metzger 2017). How-
ever, we also mention BBHs, as they are the most commonly detected source (Abbott
et al. 2016c, 2017f). No electromagnetic emission is expected for vacuum BBH merg-
ers (Centrella et al. 2010), but is possible if there is surrounding material (Schnittman
2013), for example, remnants of mass lost from the parent star (Perna et al. 2016;
Janiuk et al. 2017) or if the binary was embedded in a circumbinary disc or a common
envelope (Bartos et al. 2017; Woosley 2016; Stone et al. 2017). For more general
introductory articles on GW generation, detection and astrophysics, we point readers
to Blanchet (2014), Pitkin et al. (2011), Sathyaprakash and Schutz (2009).

Although our collaborations have amassed a great deal of experience with GW
detectors and analysis, it is still difficult to make predictions for both improvements
in search methods and for the rate of progress for detectors which are not yet fully
installed or operational. The scenarios of detector sensitivity evolution and observing
times given here should not be considered as fixed or firm commitments.

As the detectors’ construction and commissioning progress, we intend to release
updated versions of this article. This is the third version of the article, written to
coincide with the close of the second observing run (O2) of the advanced-detector era.
Changes with respect to the previous version (Aasi et al. 2016) are given in Appendix A.
Progress has been made in the commissioning of the detectors. We include projections
for KAGRA for the first time; we also include results from the first observing run (O1)
and currently available results from O2.

2 Commissioning and observing phases

We divide the development of the GW observatories into three components:

Construction includes the installation and testing of the detectors. This phase ends
with acceptance of the detectors. Acceptance means that the interferometers
can lock for periods of hours: light is resonant in the arms of the interferome-
ter with no guaranteed GW sensitivity. Construction incorporates several short
engineering runswith no astrophysical output as the detectors progress towards
acceptance. The aLIGO construction project ended in March 2015. The con-
struction of AdV was completed at the end of 2016. KAGRA will be operational
in its full configuration by early 2019.

Commissioning improves the detectors’ performance with the goal of reaching
the design sensitivity. Engineering runs in the commissioning phase allow us to
understand our detectors and analyses in an observational mode; these are not
intended to produce astrophysical results, but that does not preclude the possi-
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bility of this happening.2 Rather than proceeding directly to design sensitivity
before making astrophysical observations, commissioning is interleaved with
observing runs.

Observing runs begin when the detectors have reached (and can stably maintain) a
significantly improved sensitivity compared with previous operation. Observ-
ing runs will produce astrophysical results, direct detections from some GW
sources and upper limits on the rates or energetics of others. During the first
two observing runs (O1 and O2), exchange of GW candidates with partners
outside the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration
was governed by memoranda of understanding (MOUs; Abadie et al. 2012d;
Aasi et al. 2013b). From the start of the third observing run (O3), all GW event
candidates identified with high confidence will be released immediately to the
full astronomical community. KAGRA will become a part of the global network
with full data sharing, once sensitivities comparable with aLIGO and AdV are
achieved.

The progress in sensitivity as a function of time will influence the duration of the
observing runs that we plan at any stage. Commissioning is a complex process which
involves both scheduled improvements to the detectors and tackling unexpected new
problems. While our experience makes us cautiously optimistic regarding the schedule
for the advanced detectors, we are targeting an order of magnitude improvement in
sensitivity relative to the previous generation of detectors over a wider frequency
band. Consequently, it is not possible to make concrete predictions for sensitivity or
duty cycle as a function of time. We can, however, use our experience as a guide to
plausible scenarios for the detector operational states that will allow us to reach the
desired sensitivity. Unexpected problems could slow down the commissioning, but
there is also the possibility that progress may happen faster than predicted here. The
schedule of commissioning phases and observation runs will be driven by a cost–
benefit analysis of the time required to make significant sensitivity improvements.
More information on event rates could also change the schedule and duration of runs.

In Sect. 2.1, we present the commissioning plans for the aLIGO, AdV and KAGRA
detectors. A summary of expected observing runs is in Sect. 2.2.

2.1 Commissioning and observing roadmap

The anticipated strain sensitivity evolution for aLIGO, AdV and KAGRA is shown
in Fig. 1. As a standard figure of merit for detector sensitivity, we use the range, the
volume- and orientation-averaged distance at which a compact binary coalescence
consisting of a particular mass gives a matched filter signal-to-noise ratio (SNR) of
8 in a single detector (Finn and Chernoff 1993). We define Vz as the orientation-
averaged spacetime volume surveyed per unit detector time; for a population with a
constant comoving source-frame rate density, Vz multiplied by the rate density gives
the detection rate of those sources by the particular detector. We define the range R

2 The detection of GW150914 occurred in the engineering run ER8 immediately preceding the formal start
of O1.
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Fig. 1 Regions of aLIGO (top left), AdV (top right) and KAGRA (bottom) target strain sensitivities as a
function of frequency. The binary neutron star (BNS) range, the average distance to which these signals
could be detected, is given in megaparsec. Current notions of the progression of sensitivity are given for
early, mid and late commissioning phases, as well as the design sensitivity target and the BNS-optimized
sensitivity. While both dates and sensitivity curves are subject to change, the overall progression represents
our best current estimates

as the distance for which (4π/3)R3 = Vz . In Table 1 we present values of R for
different detector networks and binary sources. For further insight into the range,
and a discussion of additional quantities such as the median and average distances to
sources, please see Chen et al. (2017). The BNS ranges, assuming two 1.4 M� neutron
stars, for the various stages of the expected evolution are provided in Fig. 1, and the
BNS and BBH ranges are quoted in Table 1.

There are currently two operational aLIGO detectors (Aasi et al. 2015a). The orig-
inal plan called for three identical 4-km interferometers, two at Hanford (H1 and H2)
and one at Livingston (L1). In 2011, the LIGO Lab and IndIGO consortium in India
proposed installing one of the aLIGO Hanford detectors (H2) at a new observatory in
India (LIGO-India; Iyer et al. 2011). In early 2015, LIGO Laboratory placed the H2
interferometer in long-term storage for use in India. The Government of India granted
in-principle approval to LIGO-India in February 2016.

The first observations with aLIGO have been made. O1 formally began 18 Septem-
ber 2015 and ended 12 January 2016; however, data from the surrounding engineering
periods were of sufficient quality to be included in the analysis, and hence the first
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Table 1 Plausible target detector sensitivities

LIGO Virgo KAGRA

BNS BBH BNS BBH BNS BBH
range/Mpc range/Mpc range/Mpc range/Mpc range/Mpc range/Mpc

Early 40–80 415–775 20–65 220–615 8–25 8–250

Mid 80–120 775–1110 65–85 615–790 25–40 250–405

Late 120–170 1110–1490 65–115 610–1030 40–140 405–1270

Design 190 1640 125 1130 140 1270

The different phases match those in Fig. 1. We quote the range, the average distance to which a signal could
be detected, for a 1.4 M�+1.4 M� binary neutron star (BNS) system and a 30 M�+30 M� binary black
hole (BBH) system

observations span 12 September 2015 to 19 January 2016. The run involved the H1 and
L1 detectors; the detectors were not at full design sensitivity (Abbott et al. 2016f). We
aimed for a BNS range of 40–80 Mpc for both instruments (see Fig. 1), and achieved
a 60–80 Mpc range. Subsequent observing runs have increasing duration and sensi-
tivity. O2 began 30 November 2016, transitioning from the preceding engineering run
which began at the end of October, and ended 25 August 2017. The achieved sen-
sitivity across the run was typically in the range 60–100 Mpc (Abbott et al. 2017f).
Several improvements to the aLIGO detectors will be performed between O2 and O3,
including further mitigation of technical noises, increase of laser power delivered to
the interferometer, and installation of a squeezed vacuum source. Assuming that no
unexpected obstacles are encountered, the aLIGO detectors are expected to achieve a
190 Mpc BNS range by 2020. After the first observing runs, it might be desirable to
optimize the detector sensitivity for a specific class of astrophysical signals, such as
BNSs. The BNS range may then become 210 Mpc. The sensitivity for each of these
stages is shown in Fig. 1.

The H2 detector will be installed in India once the LIGO-India Observatory is
completed, and will be configured to be identical to the H1 and L1 detectors. We refer
to the detector in this state as I1 (rather than H2). Operation at the same level as the
H1 and L1 detectors is anticipated for no earlier than 2024.

The AdV interferometer (V1; Accadia et al. 2012) officially joined O2 on 1 August
2017. We aimed for an early step with sensitivity corresponding to a BNS range of
20–65 Mpc; however, AdV used steel wires to suspend the test masses, instead of fused
silica fibers. This limited the highest possible BNS range in O2 to 40–60 Mpc; the BNS
range achieved was 25–30 Mpc. Fused silica fibers will be reinstalled between O2 and
O3. Other improvements such as reduction of technical noises, laser power increase
and installation of a squeezed vacuum source will also be performed, bringing the
AdV BNS range to 65–85 Mpc in 2018–2019. A configuration upgrade at this point
will allow the range to increase to approximately 65–115 Mpc in 2020. The design
sensitivity, with a BNS range of 125 Mpc, is anticipated circa 2021. The corresponding
BNS-optimized range would be 140 Mpc. The sensitivity curves for the various AdV
configurations are shown in Fig. 1.
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The KAGRA detector (K1; Somiya 2012; Aso et al. 2013) is located at the Kamioka
underground site. The first operation of a detector in an initial configuration with a
simple Michelson interferometer occurred in March 2016 (Akutsu et al. 2018). The
detector is now being upgraded to its baseline design configuration. Initial operation at
room temperature is expected in 2018. Subsequently, the detector will be cryogenically
cooled to reduce thermal noise. Early cryogenic observations may come in 2019–2020
with a range of 8–25 Mpc. Since sensitivity will lag behind that of aLIGO and AdV,
observing runs are planned to be short to allow commissioning to proceed as quickly as
possible; longer observing runs may begin when the detector nears design sensitivity
of 140 Mpc. The exact timing of observations has yet to be decided, but it is currently
intended to have a three-month observing run in early 2020, and a six-month run at the
start of 2021. The sensitivity curves for the various KAGRA commissioning stages
are shown in Fig. 1.

GEO 600 (Lück et al. 2010; Dooley et al. 2016) will continue to operate as a GW
detector beyond O3 as techniques for improving the sensitivity at high frequency are
investigated (Affeldt et al. 2014). At its current sensitivity, it is unlikely to contribute
to detections, but with a deliberate focus on high frequency narrow band sensitivity at
a few kilohertz, GEO 600 may contribute to the understanding of BNS merger physics,
as well as sky localization for such systems, by around 2021. In the meantime, it will
continue observing with frequent commissioning and instrument science investiga-
tions related to detuned signal recycling and novel applications of squeezed light, as
well as increasing the circulating power and levels of applied squeezing (Abadie et al.
2011; Grote et al. 2013; Aasi et al. 2013a; Brown et al. 2017).

Finally, further upgrades to the LIGO and Virgo detectors, within their existing
facilities (e.g., Hild et al. 2012; Miller et al. 2015; Aasi et al. 2015c) as well as
future third-generation observatories, for example, the Einstein Telescope (Punturo
et al. 2010; Hild et al. 2011; Sathyaprakash et al. 2012) or Cosmic Explorer (Abbott
et al. 2017d), are envisioned in the future. It is also possible that for some sources,
there could be multiband gravitational-wave observations, where detection with a
space-borne detector like the Laser Interferometer Space Antenna (LISA; Amaro-
Seoane et al. 2012, 2013) could provide early warning and sky localization (Sesana
2016), as well as additional information on system parameters (Vitale 2016), forma-
tion mechanisms (Nishizawa et al. 2016a, b; Breivik et al. 2016) and tests of general
relativity (Barausse et al. 2016). These potential future developments are beyond the
scope of this paper.

2.2 Past and envisioned observing schedule

Keeping in mind the important caveats about commissioning affecting the scheduling
and length of observing runs, the following are plausible scenarios for the operation
of the ground-based GW detector network over the next decade:

2015–2016 (O1) A four-month run (12 September 2015–19 January 2016) with
the two-detector H1L1 network at early aLIGO sensitivity (60–80 Mpc BNS
range). This is now complete.
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with the expected sensitivities given
by the data in Fig. 1 for future runs, and the achieved sensitivities in O1 and in O2. There is significant
uncertainty in the start and end times of planned the observing runs, especially for those further in the future,
and these could move forward or backwards relative to what is shown above. The plan is summarised in
Sect. 2.2

2016–2017 (O2) A nine-month run with H1L1, joined by V1 for the final month.
O2 began on 30 November 2016, with AdV joining 1 August 2017 and ended
on 25 August 2017. The expected aLIGO range was 80–120 Mpc, and the
achieved range was in the region of 60–100 Mpc; the expected AdV range was
20–65 Mpc, and the initial range was 25–30 Mpc.

2018–2019 (O3) A year-long run with H1L1 at 120–170 Mpc and with V1 at
65–85 Mpc beginning about a year after the end of O2.

2020+ Three-detector network with H1L1 at full sensitivity of 190 Mpc and V1
at 65–115 Mpc, later increasing to design sensitivity of 125 Mpc.

2024+ H1L1V1K1I1 network at full sensitivity (aLIGO at 190 Mpc, AdV at
125 Mpc and KAGRA at 140 Mpc). Including more detectors improves sky
localization (Klimenko et al. 2011; Veitch et al. 2012; Nissanke et al. 2013;
Rodriguez et al. 2014; Pankow et al. 2018) as well as the fraction of coincident
observational time. 2024 is the earliest time we imagine LIGO-India could be
operational.

This timeline is summarized in Fig. 2; we do not include observing runs with LIGO-
India yet, as these are still to be decided. Additionally, GEO 600 will continue
observing, with frequent commissioning breaks, during this period. The observational
implications of these scenarios are discussed in Sect. 4.
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3 Searches for gravitational-wave transients

Data from GW detectors are searched for many types of possible signals (Abbott
et al. 2017j). Here we focus on signals from compact binary coalescence (CBCs) and
on generic transient or burst signals. CBCs include BNS, neutron star–black hole
(NS–BH) and BBH systems.

Observational results of searches for transient signals are reported in Abbott et al.
(2016e, c, l, 2017b, 2016q, 2017l, f, g, h, i). The O1 results include two clear detections
GW150914 (Abbott et al. 2016k) and GW151226 (Abbott et al. 2016g), and a lower
significance candidate LVT151012 (Abbott et al. 2016e, c). All three originate from
BBH coalescences (Abbott et al. 2016m, c). No other transient sources have been
identified in O1 (Abbott et al. 2016q, 2017b, m). The first results of O2 have been
announced: GW170104 (Abbott et al. 2017f), GW170608 (Abbott et al. 2017g) and
GW170814 (Abbott et al. 2017h) are from BBH coalescences, and GW170817 (Abbott
et al. 2017i) is the first detection of a BNS coalescence.

Using our observation of GW170817, we calculate that the merger rate density has a
90% credible range of 320–4740 Gpc−3 yr−1 (Abbott et al. 2017i). This initial estimate
assumes that neutron star masses are uniformly distributed between 1M� and 2M�
and their dimensionless spins are less than 0.4. Compatible estimates for the merger
rate were derived from the rate of electromagnetic transients similar to the counterpart
of GW170817 (Siebert et al. 2017; Kasliwal et al. 2017; Smartt et al. 2017; Yang et al.
2017; Zhang et al. 2018). Complementary rate estimation based upon astrophysical
population models and observations of Galactic BNS systems (e.g., Abadie et al.
2010b; Kim et al. 2013; Dominik et al. 2015; Vangioni et al. 2016; de Mink and
Belczynski 2015; Eldridge et al. 2017; Belczynski et al. 2017; Kruckow et al. 2018)
remains an active are of research.

While the rates per unit volume of NS–BH and BBH mergers are expected to
be lower than for BNSs, the distance to which they can be observed is larger.
Consequently, the predicted observable rates are comparable (Abadie et al. 2010b;
Rodriguez et al. 2015; Abbott et al. 2016b; Li et al. 2017). From our observations
of BBHs, we infer that their rate of mergers is in the range ∼ 1.2 × 10−8–
2.13 × 10−7 Mpc−3 yr−1 (Abbott et al. 2017f). The non-detection of NS–BHs in
O1 allows us to place a 90% upper limit of the merger rate of 3.6×10−6 Mpc−3 yr−1,
assuming 1.4M� + 5M� binaries with isotropically distributed spins (Abbott et al.
2016q); the upper limit on the rate decreases for higher mass black holes. Expected
detection rates for other transient sources are lower and/or less well constrained.

For the purpose of detection, the gravitational waveform from the inspiral phase of
a BNS coalescence is well modeled and matched filtering can be used to search for
signals (Lindblom et al. 2008; Buonanno et al. 2009; Brown et al. 2012; Read et al.
2013; Abbott et al. 2016e; Harry et al. 2016). For systems containing black holes, or
in which the component spin is significant, uncertainties in the waveform model can
reduce the sensitivity of the search (Nitz et al. 2013; Harry et al. 2014; Dal Canton
et al. 2015; Taracchini et al. 2014; Pan et al. 2014; Schmidt et al. 2015; Khan et al.
2016; Bustillo et al. 2017).

Searches for bursts make few assumptions on the signal morphology, using time–
frequency decompositions to identify statistically significant excess-power transients
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in the data. Burst searches generally perform best for short-duration signals (� 1 s),
although search development remains an area of active research (e.g., Klimenko et al.
2008; Sutton et al. 2010; Chassande-Mottin et al. 2010; Thrane et al. 2011; Adams et al.
2013; Thrane and Coughlin 2013; Cornish and Littenberg 2015; Thrane et al. 2015;
Kanner et al. 2016); their astrophysical targets include core-collapse supernovae, mag-
netar flares, BBH coalescences, cosmic string cusps, and, possibly, as-yet-unknown
systems.

In the era of advanced detectors, we are searching in near real-time for CBC and
burst signals for the purpose of rapidly identifying event candidates. A prompt notice
of a potential GW transient can enable follow-up observations in the electromagnetic
spectrum.

A first follow-up program including low-latency analysis, event candidate selection,
position reconstruction and the sending of alerts to several observing partners (optical,
X-ray, and radio) was implemented and exercised during the 2009–2010 LIGO–Virgo
science run (Abadie et al. 2012c, b; Evans et al. 2012). Latencies of less than 1 h were
achieved.

In the present follow-up program, the LSC and Virgo distribute the times and
sky localizations using the Gamma-ray Coordinates Network (GCN) system, widely
used in the astronomical community for the multiwavelength follow-up of gamma-ray
bursts.3 Messages are sent as machine-readable GCN Notices and as prose GCN Cir-
culars, and astronomers communicate the results of observations using GCN Circulars.
A shared infrastructure, including a database of results, allows observing partners to
announce, coordinate and visualize the coverage of their observations.4

Prior to O1, 74 teams signed MOUs to participate in the electromagnetic follow-up
program, and for the first event candidate later confirmed as GW150914, 63 were oper-
ational and covered the full electromagnetic spectrum (Abbott et al. 2016i, n). For the
first observations with the advanced detectors, thorough checks were performed before
alerts were released, resulting in latencies much greater than 1 h. We expect this latency
to be improved in the future as we gain experience with the instruments, and aim for
automatic alerts being sent out with only a few minutes latency; continued checks may
lead to retractions of some of these low-latency alerts. In the case of GW150914, 25
teams responded to the GW alert and operated ground- and space-based instruments
spanning 19 orders of magnitude in electromagnetic wavelength (Soares-Santos et al.
2016; Annis et al. 2016; Connaughton et al. 2016; Ackermann et al. 2016; Savchenko
et al. 2016; Kasliwal et al. 2016; Palliyaguru et al. 2016; Hurley et al. 2016; Morokuma
et al. 2016; Copperwheat et al. 2016; Lipunov et al. 2017a; Kawai et al. 2017; Smartt
et al. 2016b, b; Evans et al. 2016c; Díaz et al. 2016; Brocato et al. 2017). Analyses of
archival data were also performed (Troja et al. 2016; Tavani et al. 2016). No significant
electromagnetic counterpart and no afterglow emission was found in optical, ultravi-

3 Details of the GCN are available from gcn.gsfc.nasa.gov, and archives of messages for GW150
914 (gcn.gsfc.nasa.gov/other/G184098.gcn3), LVT151012 (gcn.gsfc.nasa.gov/other/G197392.gcn3), GW
151226 (gcn.gsfc.nasa.gov/other/G211117.gcn3), GW170104 (gcn.gsfc.nasa.gov/other/G268556.gcn3),
GW170608 (gcn.gsfc.nasa.gov/other/G288732.gcn3), GW170814 (gcn.gsfc.nasa.gov/other/G297595.
gcn3) and GW170817 (gcn.gsfc.nasa.gov/other/G298048.gcn3) are now publicly available.
4 More information about the follow-up program is available at gw-astronomy.org/wiki/LV_EM/TechInfo.
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olet, X-rays, or GeV gamma rays. The weak transient found in Fermi-GBM data 0.4 s
after GW150914 (Connaughton et al. 2016; Bagoly et al. 2016) was not confirmed by
other instruments like INTEGRAL SPI-ACS (Savchenko et al. 2016), AGILE (Tavani
et al. 2016) or any other experiments of the InterPlanetary Network (Hurley et al.
2016). Models have been proposed to tentatively explain electromagnetic emission
from BBHs, but there is no clear favorite as yet (Loeb 2016; Woosley 2016; Perna
et al. 2016; Janiuk et al. 2017; Bartos et al. 2017; Stone et al. 2017; Li et al. 2016;
Yamazaki et al. 2016; Ryan and MacFadyen 2017; Murase et al. 2016; Morsony et al.
2016; Dai et al. 2017; Lyutikov 2016; de Mink and King 2017). There was no sig-
nificant neutrino emission temporally and spatially coincident with the event, and all
detected neutrino candidates are consistent with the background (Adrian-Martinez
et al. 2016; Gando et al. 2016; Aab et al. 2016; Abe et al. 2016; Agostini et al. 2017).

Similar follow-up campaigns have been performed for subsequent BBHs.3

LVT151012 was only identified in an offline search (Abbott et al. 2016e), as an online
CBC search for BBHs was not running at the time. Nevertheless, some searching
of archival data has been done, and no confident electromagnetic counterpart has
been found (Racusin et al. 2017). GW151226 was identified by a low-latency online
search (Abbott et al. 2016g) and a variety of teams followed up; no electromagnetic
counterpart has been reported (Cowperthwaite et al. 2016; Smartt et al. 2016a; Cop-
perwheat et al. 2016; Racusin et al. 2017; Evans et al. 2016b; Adriani et al. 2016;
Palliyaguru et al. 2016; Yoshida et al. 2017; Serino et al. 2017; Brocato et al. 2017).
No significant neutrino counterpart was found in coincidence with either LVT151012
or GW151226 (Albert et al. 2017c; Gando et al. 2016; Aab et al. 2016; Abe et al.
2016; Agostini et al. 2017). For GW170104 (Abbott et al. 2017f), a Circular with
initial localization was sent in under 7 h; no confirmed electromagnetic or neutrino
counterpart has been reported (Bhalerao et al. 2017; Verrecchia et al. 2017; Corsi et al.
2017; Stalder et al. 2017; Goldstein et al. 2017b; Agostini et al. 2017; Savchenko
et al. 2017b; Albert et al. 2017a).3 Identification of GW170608 was delayed due
to maintenance work being undertaken at Hanford at the time of the event (Abbott
et al. 2017g), but a Circular was still issued within 14 h.3 No conclusive counterpart
has yet been reported. GW170814 was the first event to be confidently detected by
Virgo and the inclusion of the third detector significantly improved the localization
for this event (Abbott et al. 2017h). A Circular and initial sky localization was issued
in under 2 h.3 No counterpart has been reported so far (Arcavi et al. 2017b). A lack
of counterparts is unsurprising given our current understanding of BBHs.

GW170817 was the first GW transient for which a firm electromagnetic counterpart
was discovered (Abbott et al. 2017k). On 2017 August 17 12:41:06 UTC, Fermi-
GBM triggered on a short GRB, GRB 170817A (Goldstein et al. 2017a), and a GCN
was sent after 14 s. About 6 min later, a GW trigger was identified; the signal was
consistent with a BNS coalescence (Abbott et al. 2017i) occurring ∼ 1.7 s before
GRB 170817A (Abbott et al. 2017e), and a GCN was issued at 13:08:16 UTC.3 A three-
detector GW localization was issued within 11 h of detection. An extensive observing
campaign was launched, leading to the discovery of the bright transient AT 2017gfo by
the One-Meter, Two-Hemisphere team with the 1-m Swope Telescope (Coulter et al.
2017), and confirmed by other teams within an hour (Soares-Santos et al. 2017; Valenti
et al. 2017; Arcavi et al. 2017a; Tanvir et al. 2017; Lipunov et al. 2017b). Subsequent
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infrared–ultraviolet observations targeted the transient and measured its brightness
and spectrum, revealing a red-ward evolution (e.g., Villar et al. 2017). X-ray (Troja
et al. 2017; Margutti et al. 2017; Haggard et al. 2017; Ruan et al. 2018; Pooley et al.
2017; D’Avanzo et al. 2018) and radio (Hallinan et al. 2017; Alexander et al. 2017;
Mooley et al. 2018) afterglows were discovered at the position of the transient after
∼ 9 day and ∼ 16 day respectively; these were later joined by observation of the optical
afterglow (Lyman et al. 2018; Margutti et al. 2018). Follow-up observations did not
reveal any neutrino (Albert et al. 2017b) or high-energy gamma-ray (Abdalla et al.
2017) emission at the position of AT 2017gfo. These multimessenger observations
support the hypothesis that GW170817 came from a BNS coalescence, which was the
source of the short GRB 170817A (Goldstein et al. 2017a; Savchenko et al. 2017a)
and a kilonova powered by the radioactive decay of r-process nuclei produced in the
collision (Pian et al. 2017; McCully et al. 2017; Smartt et al. 2017; Chornock et al.
2017; Nicholl et al. 2017; Shappee et al. 2017).

The multimessenger observations for GW170817 allow for different studies ranging
from astrophysics to fundamental physics and cosmology. The GW and gamma-ray
data show that the BNS coalescence and the short gamma-ray are associated (Abbott
et al. 2017e). The time delay of ∼ 1.7 s between GW170817 and GRB 170817A
places a constraint on the size and bulk Lorentz factor of the emitting region; fur-
thermore, this delay constrains the difference between the speed of light and the
speed of gravity, places new bounds on the violation of Lorentz invariance, and tests
the equivalence principle by constraining the Shapiro delay between gravitational
and electromagnetic radiation (Abbott et al. 2017e). These results limit the range of
potential viable alternative theories of gravity (e.g., Creminelli and Vernizzi 2017;
Sakstein and Jain 2017; Ezquiaga and Zumalacárregui 2017; Boran et al. 2018; Baker
et al. 2017; Arai and Nishizawa 2017). GWs can be used as standard sirens for cos-
mological measurements (Schutz 1986). Combining the inferred GW distance with
the redshift of the host galaxy NGC 4993, it was possible to infer the Hubble con-
stant (Abbott et al. 2017a); the result is in agreement with the values determined
from supernova (Riess et al. 2016) and cosmic microwave background measurements
(Ade et al. 2016).

Increased detection confidence, improved sky localization, and identification of
host galaxy and redshift are just some of the benefits of joint GW–electromagnetic
observations. With this in mind, we focus on two points of particular relevance for
follow-up of GW events: the source localization afforded by a GW network as well
as the relationship between signal significance, or false alarm rate (FAR), and source
localization.

3.1 Detection and false alarm rates

Detection pipelines search the data looking for signal-like features. Candidate triggers
flagged by a pipeline are assigned a detection statistic to quantify how signal-like
they are. For CBC searches, this involves matching a bank of waveform tem-
plates (Sathyaprakash and Dhurandhar 1991; Owen 1996; Owen and Sathyaprakash
1999; Babak et al. 2006; Cokelaer 2007; Prix 2007; Harry et al. 2009; Ajith et al.
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2014; Brown et al. 2012; Capano et al. 2016; Dal Canton and Harry 2017) to the
data (Abbott et al. 2016e, c); for burst searches, requirements on waveform morphol-
ogy are relaxed, but coherence of the signal in multiple detectors is required (Abbott
et al. 2016l, 2017b). The detection statistic is used to rank candidates; we assess sig-
nificance by comparing results with those from an estimated background distribution
of noise triggers. It is difficult to theoretically model the behaviour of non-Gaussian
noise, and therefore the distribution must be estimated from the data (Abadie et al.
2010a; Babak et al. 2013; Abadie et al. 2012a; Abbott et al. 2016a; Capano et al.
2017; Messick et al. 2017; Abbott et al. 2016e, c, l, 2017b; Nitz et al. 2017). From
the background noise distribution we can map a value of the detection statistic to a
FAR, the expected rate of triggers with detection statistics equal to or greater than
that value, assuming that the data contain no signals. While each pipeline has its own
detection statistic, they all compute a FAR, making it easy to compare results. The
FAR, combined with the observation time, may then be used to calculate a p value, the
probability of there being at least one noise trigger with a FAR this small or smaller
in the observed time.5 As the FAR or p value of a trigger decreases, it becomes more
significant, and more likely to be a genuine astrophysical signal.

The rate of noise triggers above a given SNR depends critically upon the data
quality of the advanced detectors; non-stationary transients or glitches (Aasi et al.
2012, 2015b; Abbott et al. 2016d) produce an elevated background of loud triggers.
Over 200,000 auxiliary channels record data on instrumental and environmental con-
ditions (Effler et al. 2015; Abbott et al. 2016d). These channels act as witnesses of
disturbances that may couple into the GW channel. An intensive study of the data
quality is used to veto stretches of acquired data ranging from seconds to hours in
duration. When a significant problem with the data is identified or a known instru-
mental issue affects the searches’ background, the contaminated data are removed
from the analysis data set. Our experience to date is that this removes a small percent-
age of the data; for example, in O1 vetoes removed less than 5% of the coincident data
from the CBC analysis, with a single intermittent instrumental problem accounting for
4.65% of that total (Abbott et al. 2016d, c, 2017b, 2018). For low-mass CBC searches,
the waveforms are well modeled, and signal consistency tests reduce the background
significantly (Allen 2005; Cannon et al. 2015; Usman et al. 2016). For burst sources
which are not well modeled, or which spend only a short time in the detectors’ sen-
sitive band, it is more difficult to distinguish between the signal and a glitch, and so a
reduction of the FAR comes at a higher cost in terms of reduced detection efficiency
(or live-time if more vetoes are used).

Search pipelines are run both online, analysing data as soon as they are available in
order to provide low-latency alerts of interesting triggers, and offline, taking advantage

5 The p value is distinct from the probability that a trigger is not a real astrophysical GW signal. The p
value assumes that the data contain no signals, whereas the probability of there being a GW must include
the hypothesis that there is an astrophysical signal. To calculate the probability that a trigger is a real signal
(or not) requires an extra layer of inference, folding in both our knowledge of the distribution of triggers,
assumptions about the signal distribution (such as that sources are uniformly distributed in volume), and
knowledge and assumptions about the merger rate per unit volume for a class of sources. A method for
doing this is described in Abbott et al. (2016p, o, c).
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Fig. 3 Offline transient search results for the first observing run: the cumulative number of triggers with
false alarm rates (FARs) smaller than the abscissa value. The dashed line shows the expected noise-only
distribution, and the dotted lines show the 90% confidence interval assuming no signals. Potential sig-
nals are identified by having smaller FARs than expected. The plots are truncated at a minimum FAR
of 10−2 yr−1. Left: Compact binary coalescence search results (Abbott et al. 2016c, q). We show results
from two search algorithms, GstLAL (Cannon et al. 2012; Privitera et al. 2014; Messick et al. 2017) and
PyCBC (Dal Canton et al. 2014; Usman et al. 2016). The most significant triggers for both are LVT151012,
GW151226 and GW150914; GW150914 and GW151226 have FARs less than 10−2 yr−1. Right: Burst
search results (Abbott et al. 2017b). We show results from three search algorithms, coherent Wave
Burst (cWB; Klimenko et al. 2016, 2008), Omicron–LALInferenceBurst (oLIB; Lynch et al. 2017)
and BayesWave follow-up of cWB (cWB+BW; Kanner et al. 2016). All three found GW150914 (the only
cWB trigger above the BayesWave follow-up threshold) with a FAR less than 10−2 yr−1. GW151226
and LVT151012 fall below the burst search’s detection threshold

of improved calibration of the data and additional information regarding data quality.
In Fig. 3, we show the offline transient search results for O1.6

For CBC, we show the cumulative number of triggers at a given FAR for two
pipelines: PyCBC (Dal Canton et al. 2014; Usman et al. 2016) and GstLAL (Cannon
et al. 2012; Privitera et al. 2014; Messick et al. 2017). In the O2 analysis, PyCBC
uses an improved detection statistic (Nitz et al. 2017). GW150914, LVT151012 and
GW151226 are visible in both the GstLAL and PyCBC results (Abbott et al. 2016e, c)
shown in Fig. 3.

For bursts, we show distributions for coherent Wave Burst (cWB; Klimenko
et al. 2016, 2008), Omicron–LALInferenceBurst (oLIB; Lynch et al. 2017) and
BayesWave (Cornish and Littenberg 2015; Littenberg and Cornish 2015). The cWB
analysis is split into two frequency bands, above and below 1024 Hz. The oLIB search
is split into two bins, based upon the quality factor Q of the sine–Gaussian it uses to
model the signal; no triggers were identified by the low-Q search. BayesWave is run
as a follow-up to triggers identified by cWB (Kanner et al. 2016), and hence is not com-
pletely independent. GW150914 was identified by all three search algorithms (Abbott
et al. 2016l, 2017b).

For CBC signals, we conservatively estimate that a network SNR threshold of
ρc � 12 is required for a FAR below ∼ 10−2 yr−1 in the advanced-detector era (Abadie

6 Strain data from published probable events in O1 and O2 are publicly available from the LIGO Open
Science Center losc.ligo.org (Vallisneri et al. 2015). Full data from O1 are also available, and data from
other observing runs will be added in the future.
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et al. 2012f; Aasi et al. 2016; Berry et al. 2015). A combined SNR of 12 corresponds
to a single-detector SNR of 8.5 in each of two detectors, or 7 in each of three detectors
(assuming an orientation and sky location for which the detectors have equal sensitiv-
ity). The exact threshold will depend upon data quality in each observing run as well
as the mass of the source; in O1, we found that the threshold SNR was lower, around
10.

3.2 Localization

Following the detection of a GW transient posterior probability distributions for the
position are constructed following a Bayesian framework (Veitch et al. 2015; Cornish
and Littenberg 2015; Singer and Price 2016; Abbott et al. 2016m), with information
for the sky localization coming from the time of arrival, plus the phase and amplitude
of the GW.

An intuitive understanding of localization can be gained by considering triangula-
tion using the observed time delays between sites (Fairhurst 2009, 2011). The effective
single-site timing accuracy is approximately

σt = 1

2πρσ f
, (1)

where ρ is the SNR in the given detector and σ f is the effective bandwidth of the
signal in the detector, typically of order 100 Hz. Thus a typical timing accuracy is on
the order of 10−4 s (about 1/100 of the 10 ms light travel time between sites). This
sets the localization scale. The simple model of Eq. (1) ignores many other relevant
issues such as information from the signal amplitudes and phases across the detector
network, uncertainty in the emitted gravitational waveform, instrumental calibration
accuracies, and correlation of sky location with other binary parameters (Fairhurst
2009; Vitale and Zanolin 2011; Vitale et al. 2012; Nissanke et al. 2011; Veitch et al.
2012; Nissanke et al. 2013; Singer et al. 2014; Berry et al. 2015; Singer and Price
2016; Fairhurst 2017). While many of these affect the measurement of the time of
arrival in individual detectors, such factors are largely common between two similar
detectors, so the time difference between the two detectors is relatively uncorrelated
with these additional parameters.

The timing-triangulation approach underestimates how well a source can be local-
ized, since it does not include all the relevant information. Its predictions can be
improved by introducing the requirement of phase and amplitude consistency between
detectors (Grover et al. 2014; Fairhurst 2017): it always performs poorly for a two-
detector network, but, with the inclusion of phase coherence, can provide an estimate
for the average performance of a three-detector network (Berry et al. 2015).

Source localization using only timing for a two-site network yields an annulus on
the sky; see Fig. 4. Additional information such as signal amplitude and phase, and
precession effects resolve this to only parts of the annulus, but even then sources will
only be localized to regions of hundreds to thousands of square degrees (Singer et al.
2014; Berry et al. 2015). An example of a two-detector BNS localization is shown in
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Fig. 4 Source localization by timing triangulation for the aLIGO–AdV network. The locations of the three
detectors are indicated by black dots, with LIGO Hanford labeled H, LIGO Livingston as L, and Virgo as
V. The locus of constant time delay (with associated timing uncertainty) between two detectors forms an
annulus on the sky concentric about the baseline between the two sites (labeled by the two detectors). For
three detectors, these annuli may intersect in two locations. One is centered on the true source direction
(S), while the other (S′) is its mirror image with respect to the geometrical plane passing through the three
sites. For four or more detectors there is a unique intersection region of all of the annuli. Image adapted
from Chatterji et al. (2006)

Fig. 5. The posterior probability distribution is primarily distributed along a ring, but
this ring is broken, such that there are clear maxima.

For three detectors, the time delays restrict the source to two sky regions which
are mirror images with respect to the plane passing through the three sites. It is
often possible to eliminate one of these regions by requiring consistent amplitudes
in all detectors (Fairhurst 2017). For signals just above the detection threshold, this
typically yields regions with areas of several tens to hundreds of square degrees.
If there is significant difference in sensitivity between detectors, the source is
less well localized and we may be left with the majority of the annulus on the
sky determined by the two most sensitive detectors. With four or more detec-
tors, timing information alone is sufficient to localize to a single sky region, and
the additional baselines help to limit the region to under 10 deg2 for some sig-
nals.

From Eq. (1), it follows that the linear size of the localization ellipse scales inversely
with the SNR of the signal and the frequency bandwidth of the signal in the detec-
tor (Berry et al. 2015). For GWs that sweep across the band of the detector, such as
CBC signals, the effective bandwidth is ∼ 100 Hz, determined by the most sensitive
frequencies of the detector. Higher mass CBC systems merge at lower frequencies and
so have a smaller effective bandwidth. For burst transients, the bandwidth σ f depends
on the specific signal. For example, GWs emitted by various processes in core-collapse
supernovae are anticipated to have relatively large bandwidths, between 150 Hz and
500 Hz (Dimmelmeier et al. 2008; Ott 2009; Yakunin et al. 2010; Ott et al. 2011),
largely independent of detector configuration. By contrast, the sky localization region
for narrowband burst signals may consist of multiple disconnected regions and exhibit
fringing features; see, for example, Klimenko et al. (2011), Abadie et al. (2012c),
Essick et al. (2015).

123



Prospects for observing and localizing GW transients... Page 17 of 57 3

In addition to localizing sources on the sky, for CBC signals it is possible to provide
distance estimates, since the waveform amplitude is inversely proportional to the
luminosity distance (Veitch et al. 2015; Abbott et al. 2016m). Uncertainty in distance
measurement is dominated by the degeneracy with the binary’s inclination, which also
determines the signal amplitude (Cutler and Flanagan 1994; Nissanke et al. 2010; Aasi
et al. 2013c). The degeneracy could be broken by observing with more non co-aligned
detectors (Veitch et al. 2012; Rodriguez et al. 2014), or if precession of the orbital
plane is observed (Vecchio 2004; van der Sluys et al. 2008; Vitale et al. 2014), but this
is not expected for slowly spinning BNS (Farr et al. 2016). Distance information can
further aid the hunt for counterparts, particularly if the the localization can be used
together with galaxy catalogs (Nissanke et al. 2013; Hanna et al. 2014; Fan et al. 2014;
Blackburn et al. 2015; Singer et al. 2016a).

Some GW searches are triggered by electromagnetic observations, and in these
cases some localization information is known a priori. For example, in GW searches
triggered by gamma-ray bursts (Abadie et al. 2012e; Aasi et al. 2014c, b; Abbott
et al. 2017l), the triggering space-based telescope provides a localization. The
coincident observation of GW170817 (Abbott et al. 2017k) and GRB 170817A (Gold-
stein et al. 2017a; Savchenko et al. 2017a) confirms that BNS mergers are a
progenitor for short gamma-ray bursts (Abbott et al. 2017d), and therefore that
gamma-ray bursts are interesting targets for triggered GW searches. Other possi-
ble targets for these externally-triggered GW searches could be electromagnetic
or neutrino emission from Galactic core-collapse supernovae. It is therefore of
great scientific value to have telescopes capable of observing the high-energy
spectrum operating during the advanced-detector era (and beyond). Furthermore,
the rapid identification of a GW counterpart to such a trigger could prompt fur-
ther spectroscopic studies and longer, deeper follow-up in different wavelengths
that may not always be done in response to gamma-ray bursts (cf. Abbott et al.
2017k). This is particularly important for gamma-ray bursts with larger sky local-
ization uncertainties, such as those reported by the Fermi-GBM, which are not
followed up as frequently as bursts reported by Swift or Fermi-LAT; in the case
of GW170817, the LIGO–Virgo localization was tighter than the localization from
Fermi-GBM and INTEGRAL (Abbott et al. 2017e; Goldstein et al. 2017a; Savchenko
et al. 2017a) and also showed that the source was nearby (40+8

−14 Mpc; Abbott
et al. 2017i), making it a prime target for further follow-up. All GW data are
stored permanently, so that it is possible to perform retroactive analyses at any
time.

3.2.1 Localization of binary neutron star coalescences

Providing prompt localizations for GW signals helps to maximise the chance that
electromagnetic observatories can catch a counterpart. Localizations are produced at
several different latencies, with updates coming from more computationally expensive
algorithms that refine our understanding of the source.

For CBC signals, rapid localization is performed using bayestar (Singer and
Price 2016), a Bayesian parameter-estimation code that computes source location
using output from the detection pipeline. It can produce sky localizations (as in Fig. 5)
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with latencies of only a few seconds. A similar approach to low-latency localization
has been separately developed by Chen and Holz (2015), which find results consistent
with bayestar. bayestar can also provide distance estimates (Singer et al. 2016a).
These can be easily communicated as an additional component of the sky localization:
for each line of sight, the distance posterior probability is approximated as a Gaussian
multiplied by the distance squared (Singer et al. 2016a, b).7 Results from bayestar
are shared at low latency for prompt follow-up efforts.

At higher latency, CBC parameter estimation is performed using the stochastic
sampling algorithms of LALInference (Veitch et al. 2015). LALInference con-
structs posterior probability distributions for system parameters, not just location like
bayestar, but also mass, orientation, etc. (Aasi et al. 2013c; Abbott et al. 2016m),
by matching GW templates to the detector strain (Cutler and Flanagan 1994; Jara-
nowski and Królak 2012). Computing these waveforms is computationally expensive;
this expense increases as the detectors’ low-frequency sensitivity improves and wave-
forms must be computed down to lower frequencies. The quickest LALInference
BNS follow-up is computed using waveforms that do not include the full effects of
component spins (Singer et al. 2014; Berry et al. 2015; Abbott et al. 2017f), local-
izations can then be reported with latency of hours to a couple of days. Parameter
estimation is then performed using more accurate waveform approximates, those that
include fuller effects of spin precession and the effects of tidal distortions of neutron
stars (Farr et al. 2016; Abbott et al. 2016h, 2017f, i). Provided that BNSs are slowly
spinning (Mandel and O’Shaughnessy 2010), the restrictions on the spins should cause
negligible difference between the mid-latency LALInference and the high-latency
fully spinning LALInference localizations (Farr et al. 2016). Methods of reducing
the computational cost are actively being investigated (e.g., Canizares et al. 2013;
Pürrer 2014; Canizares et al. 2015; Smith et al. 2016; Vinciguerra et al. 2017).

Sky localization results from an astrophysically motivated population of BNS sig-
nals, assuming a detection threshold of a SNR of 12, are shown in Fig. 6 (Singer et al.
2014; Berry et al. 2015). Results are quantified using the 90% credible region CR0.9,
the smallest area enclosing 90% of the total posterior probability, and the searched area
A∗, the area of the smallest credible region that encompasses the true position (Sidery
et al. 2014): CR0.9 gives the area of the sky that must be covered to expect a 90%
chance of including the source location, and A∗ gives the area that would be viewed
before the true location is found using the given sky localization. Results from both the
low-latency bayestar and mid-latency LALInference analyses are shown. These
are discussed further in Sects. 4.1 and 4.2. The two-detector localizations are slightly
poorer in O2 than in O1. This is because although the detectors improve in sensitivity
at every frequency, with the assumed noise curves the BNS signal bandwidth is lower
in O2 for a given SNR because of enhanced sensitivity at low frequencies (Singer et al.
2014). Sky localization improves with the expansion of the detector network (Schutz
2011; Klimenko et al. 2011; Veitch et al. 2012; Rodriguez et al. 2014; Gaebel and
Veitch 2017; Pankow et al. 2018).

7 A data release of example three-dimension localizations in this format, constructed using results from
bayestar and LALInference for BNS signals, is available from dcc.ligo.org/P1500071/public/html.
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Fig. 5 Posterior probability density for sky location for an example simulated binary neutron star coales-
cence observed with a two-detector network. Left: Localization produced by the low-latency bayestar
code (Singer et al. 2014; Singer and Price 2016).Right: Localization produced by the higher-latency (neglect-
ing spin) LALInference (Veitch et al. 2015), which also produces posterior estimates for other parameters.
These algorithms are discussed in Sect. 3.2.1, and agreement between them shows that the low-latency local-
ization is comparable to the one produced by the higher-latency pipelines. The star indicates the true source
location. The source is at a distance of 266 Mpc and has a network signal-to-noise ratio of ρc = 13.2 using a
noise curve appropriate for the first aLIGO run (O1, see Sect. 4.1). The plot is a Mollweide projection in geo-
graphic coordinates. Figure reproduced with permission from Berry et al. (2015), copyright by AAS; further
mock sky localizations for the first two observing runs can be found at www.ligo.org/scientists/first2years/
for binary neutron star signals and www.ligo.org/scientists/burst-first2years/ for burst signals

The results in Fig. 6 show there is negligible difference between the low-latency
bayestar and the LALInference analyses if the BNS signal is loud enough to
produce a trigger in all detectors. However, when the signal is sub-threshold in one,
LALInference could give a more precise localization, as it still uses strain data from
the non-triggered detector (Singer et al. 2014; Singer and Price 2016). In preparation
for the start of joint three-detector observations in O2, the online CBC pipelines and
bayestar have been enhanced to capture and make use of sub-threshold signals in all
detectors. Consequently, there should be negligible difference between the low-latency
bayestar and LALInference localizations even for events that register weakly in
one or more detectors. This was the case for GW170817, where both analyses produced
a 90% credible area of ∼ 30 deg2 (Abbott et al. 2017k).

For the BNS signals from the sky-localization studies, the average fractional dis-
tance uncertainty, defined as the posterior standard deviation divided by the mean, is
∼ 0.25–0.30 (Berry et al. 2015; Farr et al. 2016).

LALInference also has the ability to include the effects of the detectors’ cali-
bration uncertainty on parameter estimation (Abbott et al. 2016m, c). Calibration is
refined as additional measurements are taken, hence sky localization can improve as
uncertainty is reduced. Initial results for GW150914 assumed a calibration uncer-
tainty of 10% for the amplitude of the GW strain and 10 deg for its phase (Abbott et al.
2017c). Incorporating this calibration uncertainty into the analysis, the 90% credible
area was 610 deg2 (Abbott et al. 2016m). By the end of O1, the calibration uncer-
tainty had been improved, such that the 90% credible area was 230 deg2 (Abbott et al.
2016c). If the detectors were assumed to be perfectly calibrated, such that calibration
uncertainty could be ignored, the 90% credible area would be 150 deg2. Sky local-
ization is particularly sensitive to calibration uncertainty and distance is less affected.
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Fig. 6 Anticipated binary neutron star sky localization during the first two observing runs (top: O1, see
Sect. 4.1; bottom: O2, see Sect. 4.2). Detector sensitivities were taken to be in the middle of the early (for
aLIGO in O1 and AdV in O2) and mid (for aLIGO in O2) bands of Fig. 1. The plots show the cumulative
fractions of events with sky-localization areas smaller than the abscissa value. Left: Sky area of 90% credible
region CRBNS

0.9 , the (smallest) area enclosing 90% of the total posterior probability. Right: Searched area

ABNS∗ , the area of the smallest credible region containing the true position. Results are shown for the
low-latency bayestar (Singer and Price 2016) and higher-latency (neglecting spin) LALInference (LI;
Veitch et al. 2015) codes. The O2 results are divided into those where two detectors (2-det) are operating
in coincidence, and those where three detectors (3-det) are operating: assuming a duty cycle of 70–75%
for each instrument, the two-detector network would be operating for 42–44% of the total time and the
three-detector network 34–42% of the time. The shaded areas indicate the 68% confidence intervals on the
cumulative distributions. A detection threshold of a signal-to-noise ratio of 12 is used and results are taken
from Berry et al. (2015), Singer et al. (2014)

For GW150914, the initial distance estimate was 410+160
−180 Mpc (Abbott et al. 2016m),

the estimate at the end of the run was 420+150
−180 Mpc, and the equivalent result with-

out calibration uncertainty was 420+140
−170 Mpc (Abbott et al. 2016c). The effects of

calibration uncertainty depend upon the signal’s SNR, bandwidth and position of the
source relative to the detectors. For GW151226, LVT151012 and GW170104, there is
negligible difference between the sky areas or distances with and without calibration
uncertainty using the final calibration uncertainties (Abbott et al. 2016c, 2017f).
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3.2.2 Localization of bursts

Sky localizations are also produced for burst triggers and distributed for follow up.
The lowest latency burst sky localizations are produced as part of the cWB detec-
tion pipeline (Klimenko et al. 2008, 2016). Sky localizations are produced using a
constrained likelihood algorithm that coherently combines data from all the detectors.
The cWB sky localizations are calculated with a latency of a few minutes; following
detection, further parameter-estimation codes analyze the data.

At higher latency, burst signals are analyzed by LALInferenceBurst (LIB), a
stochastic sampling algorithm similar to the LALInference code used to reconstruct
CBC signals (Veitch et al. 2015), and BayesWave, a reversible jump Markov-
chain Monte Carlo algorithm that models both signals and glitches (Cornish and
Littenberg 2015). LIB uses sine–Gaussian waveforms (in place of the CBC tem-
plates used by LALInference), and can produce sky localizations in a few hours.
BayesWave uses a variable number of sine–Gaussian wavelets to model a signal
and glitches while also fitting for the noise spectrum using BayesLine (Litten-
berg and Cornish 2015); it produces sky localizations with a latency of a few
days.

The sky-localization performance of burst algorithms depends upon the type of
signal. Studies of burst localization usingBayesWave in the first year of the advanced-
detector era, and using cWB and LIB in the first two years have been completed in
Bécsy et al. (2016) and Essick et al. (2015), respectively. These assumed sensitiv-
ities in the middle of the early band for aLIGO in O1, and in the middle of the
mid band for aLIGO and the early band for AdV in O2. Sky localization was quan-
tified by the searched area. For the cWB and LIB pipelines an approximate FAR
threshold of 1 yr−1 was used to select events; BayesWave was run as a follow-up
to triggers identified by cWB (Kanner et al. 2016), and sky localization was only
performed on triggers also detected by BayesWave (and not classified as noise
or a glitch). The median localization was shown to be ∼ 100–200 deg2 for a two-
detector network in O1 and ∼ 60–110 deg2 for a three-detector network in O2,
with the localization and relative performance of the algorithms depending upon
the waveform morphology. Results for Gaussian, sine–Gaussian, broadband white-
noise and BBH waveforms are shown in Fig. 7 (for the two-detector O1 network and
the three-detector O2 network, cf. Fig. 6). The variety of waveform morphologies
reflect the range of waveforms that could be detected in a burst search (Abadie et al.
2012c).

A high mass BBH, like GW150914 (Abbott et al. 2016k), could be detected by
both burst and CBC analyses. In this case, we expect that the CBC localization, which
makes use of the additional information available from constraining signals to match
waveform templates, is more accurate than the burst localization (cf. Vitale et al. 2016).
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Fig. 7 Simulated sky localization for Gaussian (G; top left), sine–Gaussian (SG; top right), broadband
white-noise (WN; bottom left) and binary black hole (BBH; bottom right) bursts during the first two
observing runs (O1, see Sect. 4.1, and O2, see Sect. 4.2). The plots show the cumulative fractions of events
with searched areas A∗ smaller than the abscissa value. Results are shown for the low-latency coherent
WaveBurst (CWB; Klimenko et al. 2005, 2008, 2016), and higher-latency LALInferenceBurst (LIB;
Veitch et al. 2015) and BayesWave (Cornish and Littenberg 2015) codes. The O2 results consider only a
three-detector (3-det) network; assuming an instrument duty cycle of 70–75%, this would be operational 34–
42% of the time. The BayesWave results are only for O1 and include only events that could be detected by
the code. The shaded areas indicate the 68% confidence intervals on the cumulative distributions. A detection
threshold of a false alarm rate of approximately 1 yr−1 is used for cWB and LIB, and BayesWave is run
as a follow-up for cWB triggers. Results are taken from Essick et al. (2015) and Bécsy et al. (2016)

4 Observing scenarios

In this section we estimate the sensitivity, possible number of detections, and local-
ization capability for each of the observing runs laid out in Sect. 2.2. We discuss each
future observing run in turn and also summarize the results in Table 3.

In the following, we estimate the expected number of BNS coalescence detections
using the inferred 90% credible range for the BNS source rate density, 320–
4740 Gpc−3 yr−1 (Abbott et al. 2017i). Given the detectors’ noise spectral densities,
the ρc detection threshold can be converted into the (source sky-location and orien-
tation averaged) BNS sensitive detection range RBNS (Abadie et al. 2010b, 2012g).
From this, the BNS source rate density can be converted into an estimate of the num-
ber of expected detected events; this estimate carries the large error on the source rate
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Table 2 Percentage of time during the first observing run that the LIGO detectors spent in different
operating modes as entered by the on-duty operator

Detector Hanford Livingston

Operating mode Observing 64.6% 57.4%

Locking 17.9% 16.1%

Environmental 9.7% 19.8%

Maintenance 4.4% 4.9%

Commissioning 2.9% 1.6%

Planned engineering 0.1% 0.0%

Other 0.4% 0.4%

Since several factors may influence detector operation at any given time, there is a certain subjectivity to
the assignments. Maintenance includes a planned 4-h weekly period (∼ 2.4% of the total). Coincident
operation of the detectors occurred ∼ 43% of the time

density. Similar estimates may be made for NS–BH binaries using the fact that the
NS–BH range is approximately a factor of 1.6 larger than the BNS range,8 though the
uncertainty in the NS–BH source rate density is slightly larger (Abadie et al. 2010b).
We assume a nominal ρc threshold of 12, at which the expected FAR is ∼ 10−2 yr−1.
However, such a stringent threshold may not be appropriate for selecting candidate
triggers for electromagnetic follow-up. For example, selecting CBC candidates at
thresholds corresponding to a higher background rate of 1 yr−1 (100 yr−1) would
increase the number of true signals subject to electromagnetic follow-up by about
30% (90%). The area localization for these low-threshold signals is, on average, only
fractionally worse than for the high-threshold population—by approximately 20%
(60%). The localization of NS–BH signals is expected to be similar to that of BNS
signals.

For typical burst sources, the gravitational waveform is not well known. However,
the performance of burst searches is largely independent of the detailed waveform
morphology (Abadie et al. 2012a; Essick et al. 2015), allowing us to quote an approx-
imate sensitive range determined by the total energy EGW emitted in GWs, the central
frequency f0 of the burst, the detector noise spectrum S( f ), and the single-detector
SNR threshold ρdet (Sutton 2013),

Rburst �
[

G

2π2c3

EGW

S( f0) f 2
0 ρ2

det

]1/2

. (2)

In this article, we quote ranges using EGW = 10−2 M�c2 and f0 = 150 Hz; EGW =
10−2 M�c2 is an optimistic value for GW emission from stellar collapse (e.g., Abadie
et al. 2012e); the uncertainty in EGW means that the quoted burst ranges are more
uncertain than their BNS counterparts. We use a single-detector SNR threshold of 8,
corresponding to a typical network SNR of ∼ 12.

8 This assumes a black hole mass of 5 M�.
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The run durations discussed below are in calendar time. In O1, the H1–L1 network
had a duty factor of approximately 43%. Table 2 illustrates how the up time for each
detector was impacted by various activities or the environment. The two biggest non-
observing categories for each detector are Locking and Environmental. Locking refers
to the amount of time spent in bringing the interferometers from an uncontrolled state
to their lowest noise configuration (Staley et al. 2014). Environmental effects include
earthquakes, wind and the microseism noise arising from ocean storms (Effler et al.
2015; Abbott et al. 2016d). The latter two effects have seasonal variation, with the
prevalence of storms being higher during the winter months. L1 has a greater sensitivity
to microseism noise and to earthquakes than H1 mainly due to the local geophysical
environment (Daw et al. 2004). During O1, L1 lost over twice as much observing
time to earthquakes, microseism noise and wind than did H1. While we can expect
some improvement in duty factors from operating during non-winter months, we can
continue to expect at least a 10% impact on operating time from environmental effects.
Adding in maintenance, both planned and unplanned, and time spent in locking we
currently expect duty factors of at most 70–75% for each instrument during extended
runs. Assuming downtime periods are uncorrelated among detectors, this means that all
detectors in a three-detector network will be operating in coincidence approximately
34–42% of the time, and at least two detectors will be operating for 78–84% of the time.
For a four-detector network, three or more detectors will be operational around 65–74%
of the time, and for a five-detector network, three of more detectors will be operating
for 84–90% of the time. Our estimates for the expected number of detections and the
fraction of sources localized account for these duty cycles. The downtime periods are
sometimes correlated between detectors, for example, planned maintenance periods
are often coordinated, and so these coincidence times may be conservative estimates.
The number of detections also account for the uncertainty in the detector sensitive
ranges as indicated in Fig. 1, but do not include any cosmological evolution of the
merger rate.

4.1 2015–2016 run (O1): aLIGO

This was the first advanced-detector observing run, lasting four months, starting 12
September 2015 and ending 19 January 2016.

The aLIGO sensitivity was expected to be similar to the early band in Fig. 1, with
a BNS range of 40–80 Mpc, and a burst range of 40–60 Mpc for EGW = 10−2 M�c2.
The achieved sensitivity was at the better end of this span, with a BNS range of ∼
60–80 Mpc.

The O1 BNS search volume was ∼ 2 × 105 Mpc3 yr, and the dominant source of
uncertainty on this value is the calibration of the detectors (Abbott et al. 2016q). The
search volume is VzT , where Vz = (4π/3)R3 is the time-averaged volume surveyed
and T is the observing time incorporating the effects of the detectors’ duty cycles.
We would therefore expect 0.05–1 BNS detections. No BNS detections were made,
consistent with these expectations (Abbott et al. 2016q).

With the two-detector H1–L1 network any detected events are unlikely to be well
localized. A full parameter-estimation study using realistic detector noise and an
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astrophysically-motivated source catalog has been completed for 2015–2016 (Berry
et al. 2015).9 This used a noise curve in the middle of the early range shown in Fig. 1—
the early curve specified in Barsotti and Fritschel (2012). The distribution of results
is shown in Fig. 6. In Table 3, we present results calculated using bayestar (Singer
and Price 2016) for a population of BNS signals, assuming an SNR threshold of 12;
the results agree with those of Berry et al. (2015). The median 90% credible region
for is 460–530 deg2; the searched area ABNS∗ is smaller than 20 deg2 for 14–17% of
events and smaller than 5 deg2 in 4–6%.

Equivalent (but not directly comparable) results for bursts are found in Essick et al.
(2015). Specific results depend upon the waveform morphology used, but the median
searched area is ∼ 1–2 times larger than for BNS signals; part of this difference is due
to the burst study using a less-stringent FAR threshold of ∼ 1 yr−1. The distribution
of searched areas for four waveform morphologies are shown in Fig. 7.

The localizations of GW150914, GW151226 and LVT151012 exhibit the character-
istic broken arc for a two-detector network (Abbott et al. 2016i, c). The 90% credible
regions are 230 deg2, 850 deg2 and 1600 deg2 respectively (Abbott et al. 2016c).
The sky localization for a CBC signal consistent with the properties of GW150914 is
shown in Fig. 8. This shows the localization with the two-detector O1 network as well
as with other detector network configurations (Gaebel and Veitch 2017).

The poor localization from a two-detector network makes follow-up challenging.
The electromagnetic follow-up effort for GW150914 is described in Abbott et al.
(2016i), Abbott et al. (2016n), and the search for coincident neutrinos is described in
Adrian-Martinez et al. (2016), Albert et al. (2017c).

4.2 2016–2017 run (O2): aLIGO joined by AdV

This was an approximately nine-month run with three detectors for the second part
of the run. The aLIGO performance was expected to be similar to the mid band
in Fig. 1, with a BNS range of 80–120 Mpc, and a burst range of 60–75 Mpc for
EGW = 10−2 M�c2: the achieved BNS range is towards the lower part of this band,
around 60–100 Mpc (Abbott et al. 2017f). The AdV range was anticipated to be within
the early band in Fig. 1, approximately 20–65 Mpc for BNS and 20–40 Mpc for bursts.
On 1 August 2017, AdV joined O2 with a BNS range of 25–30 Mpc.

The potential improvement in sky localization from the addition of a third detector
is illustrated in Fig. 8.

Anticipated BNS sky localization for 2016–2017 (in addition to 2015–2016) was
investigated in Singer et al. (2014). This assumed a noise curve which lies in the
middle of the mid range in Fig. 1 for aLIGO—the mid curve specified in Barsotti
and Fritschel (2012)—and the geometric mean of the upper and lower bounds of
the mid region in Fig. 1 for AdV. The distribution of results is shown in Fig. 6. In
Table 3, we give results for an astrophysically-motivated BNS population, with an
SNR threshold of 12, assuming a three-detector network with each detector having

9 This study used noise from the sixth science run of initial LIGO, recolored to the expected O1 sensitivity
curve. The source catalog, as well as the analysis pipeline, is shared with Singer et al. (2014).
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Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with
the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the
detectors’ commissioning progress

Epoch 2015 – 2016 2016 – 2017 2018 – 2019 2020+ 2024+

Planned run duration 4 months 9 months 12 months (per year) (per year)

Expected burst range/Mpc LIGO 40 – 60 60–75 75–90 105 105

Virgo – 20–40 40–50 40–70 80

KAGRA – – – – 100

Expected BNS range/Mpc LIGO 40–80 80–120 120–170 190 190

Virgo – 20–65 65–85 65–115 125

KAGRA – – – – 140

Achieved BNS range/Mpc LIGO 60–80 60–100 – – –

Virgo – 25–30 – – –

KAGRA – – – – –

Estimated BNS detections 0.05–1 0.2–4.5 1–50 4–80 11–180

Actual BNS detections 0 1 – – –

90% CR % within 5 deg2 < 1 1–5 1–4 3–7 23–30

20 deg2 < 1 7–14 12–21 14–22 65–73

Median/deg2 460–530 230–320 120–180 110–180 9–12

Searched area % within 5 deg2 4–6 15–21 20–26 23–29 62–67

20 deg2 14–17 33–41 42–50 44–52 87–90

Ranges reflect the uncertainty in the detector noise spectra shown in Fig. 1. The burst ranges assume standard-

candle emission of 10−2 M�c2 in gravitational waves at 150 Hz and scale as E1/2
GW, so it is greater for more

energetic sources (such as binary black holes). The binary neutron star (BNS) localization is characterized
by the size of the 90% credible region (CR) and the searched area. These are calculated by running the
BAYESTAR rapid sky-localization code (Singer and Price 2016) on a Monte Carlo sample of simulated
signals, assuming senisivity curves in the middle of the plausible ranges (the geometric means of the upper
and lower bounds). The variation in the localization reflects both the variation in duty cycle between 70%
and 75% as well as Monte Carlo statistical uncertainty. The estimated number of BNS detections uses
the actual ranges for 2015–2016 and 2017–2018, and the expected range otherwise; future runs assume a
70–75% duty cycle for each instrument. The BNS detection numbers also account for the uncertainty in the
BNS source rate density (Abbott et al. 2017i). Estimated BNS detection numbers and localization estimates
are computed assuming a signal-to-noise ratio greater than ∼ 12. Burst localizations are expected to be
broadly similar to those derived from timing triangulation, but vary depending on the signal bandwidth;
the median burst searched area (with a false alarm rate of ∼ 1 yr−1) may be a factor of ∼ 2–3 larger than
the values quoted for BNS signals (Essick et al. 2015). No burst detection numbers are given, since the
source rates are currently unknown. Localization numbers for 2016–2017 include Virgo, and do not take
into account that Virgo only joined the observations for the latter part the run. The 2024+ scenario includes
LIGO-India at design sensitivity

an individual duty cycle of 70–75%. The results are calculated using bayestar. The
median 90% credible region is 230–320 deg2, and 7–13% of events are expected to
have CRBNS

0.9 smaller than 20 deg2. The searched area is smaller than 20 deg2 for 33–
41% of events and smaller than 5 deg2 for 16–21%. The burst study (Essick et al. 2015)
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Fig. 8 Sky localization of a signal with parameters consistent with those for GW150914. The lines enclose
the 90% credible regions with different detector networks. Dark blue is for the O1 two-detector network;
light blue is for the same Hanford–Livingston network at design sensitivity; red is for the three-detector
network including Virgo, with all detectors at early sensitivity, similar to what was expected for O2, and
black is for the three detector network at design sensitivity. The plot is an orthographic projection with right
ascension measured in hours and declination measured in degrees. Results taken from Gaebel and Veitch
(2017)

gives approximately equivalent results, producing median searched areas a factor of
∼ 2–3 larger than the BNS results; these results are shown in Fig. 7.

GW170104 (Abbott et al. 2017f) and GW170608 (Abbott et al. 2017g) were
detected prior to Virgo joining O2. Therefore, like the O1 events, they have large 90%
credible areas of 1200 deg2 and 860 deg2 respectively. The addition of Virgo made
a significant impact for GW170814 (Abbott et al. 2017h) and GW170817 (Abbott
et al. 2017i). For GW170814, the initial bayestar 90% credible area is reduced from
1160 deg2 to 100 deg2 with the addition of Virgo, and the final LALInference three-
detector localization is 60 deg2. For GW170817, the initial bayestar 90% credible
area is reduced from 190 deg2 to 31 deg2 with the addition of Virgo, and the final LAL-
Inference three-detector localization is 28 deg2. The inclusion of the third detector to
the network enhances localization whether or not it detects the signal, provided that it
could detect the signal, as the observed amplitude constrains the source position. As a
result of being observed with a three-detector network, and its high SNR, GW170817
has the best GW localization to date.

GW170817 is the first GW signal to have a confirmed electromagnetic counterpart.
The discoveries associated with this detection are highlighted in Sect. 3. An overview
of the extensive multi-messenger observations accompanying GW170817 is given in
Abbott et al. (2017k).

123



3 Page 28 of 57 Abbott, B. P. et al.

4.3 2018–2019 run (O3): aLIGO 120–170 Mpc, AdV 65–85 Mpc

This is envisioned to be a year long run with three detectors. The aLIGO and AdV
sensitivities will be similar to the late and mid bands of Fig. 1 respectively, with BNS
ranges of 120–170 Mpc and 65–85 Mpc, and burst ranges of 75–90 Mpc and 40–
50 Mpc for EGW = 10−2 M�c2. This gives an expected update 1–50 BNS detections.
Both the range and the typical sky localization should increase relative to the 2016–
2017 run. Table 3 gives bayestar localizations assuming detector sensitivities which
are the geometric means of the upper and lower bounds of the relevant bands in Fig. 1.
The median 90% credible region is 120–180 deg2, and 12–21% of events are expected
to have CRBNS

0.9 smaller than 20 deg2.

4.4 2020+ runs: aLIGO 190 Mpc, AdV 65–125 Mpc

At this point we anticipate extended runs with the detectors at or near design sensitivity.
The aLIGO detectors are expected to have a sensitivity curve similar to the design
curve of Fig. 1. AdV may be operating similarly to the late band, eventually reaching
the design sensitivity circa 2021. Potential localization for a GW150914-like BBH
signal is shown in Fig. 8. The fraction of signals localized to areas of a few square
degrees is increased compared to previous runs. This is due to the much larger detector
bandwidths, particularly for AdV, as well as the increased sensitivity of the network;
see Fig. 1.

4.5 2024+ runs: aLIGO (including LIGO-India) 190 Mpc, AdV 125 Mpc,
KAGRA 140 Mpc

The five-site network incorporating LIGO-India at design sensitivity would have both
improved sensitivity and better localization capabilities. The per-year BNS search
volume increases giving an expected 11–180 BNS detections annually. The addition
of more detector sites leads to good source localization over the whole sky (Schutz
2011; Veitch et al. 2012; Nissanke et al. 2013; Rodriguez et al. 2014). Table 3 gives
bayestar localizations for an astrophysical population of BNSs, assuming design
sensitivity and a 70–75% duty cycle for each detector. The median 90% credible
region is 9–12 deg2, 65–73% of events are expected to have CRBNS

0.9 smaller than
20 deg2, and the searched area is less than 20 deg2 for 87–90%.

5 Conclusions

We have presented possible observing scenarios for the Advanced LIGO, Advanced
Virgo and KAGRA network of GW detectors, with emphasis on the expected sensi-
tivities and sky-localization accuracies. This network began operation in September
2015 with the two LIGO detectors. Virgo joined the network in August 2017, dramat-
ically improving sky localization. With a four- or five-site detector network at design
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sensitivity, we may expect a significant fraction of GW signals to be localized to within
a few square degrees by GW observations alone.

The first BBH detection was made promptly after the start of observations in
September 2015; they are the most commonly detected GW source, but are not a
promising target for multi-messenger observations. GW detections will become more
common as the sensitivity of the network improves. The first BNS coalescence was
detected in August 2017. This was accompanied by observations across the elec-
tromagnetic spectrum (Abbott et al. 2017k). Multi-messenger observations of BNSs
provide new insights into binary evolution, nuclear physics, cosmology and gravita-
tional physics.

Optimizing the multi-messenger follow-up and source identification is an outstand-
ing research topic (e.g., Abadie et al. 2012b; Aasi et al. 2014a; Kasliwal and Nissanke
2014; Singer et al. 2014; Cannon et al. 2012; Evans et al. 2016a; Gehrels et al. 2016;
Ghosh et al. 2016; Chan et al. 2017; Rana et al. 2017; Salafia et al. 2017; Patricelli et al.
2018). Triggering of focused searches in GW data by electromagnetically-detected
events can also help in recovering otherwise hidden GW signals (Aasi et al. 2014c).
Multi-messenger follow-up of GW candidates may help confirm GW candidates that
would not be confidently identified from GW observations alone. However, such
follow-ups need to deal with large position uncertainties, with areas of many tens
to thousands of square degrees. This is likely to remain the situation until late in the
decade.

The purpose of this article is to provide information to the astronomy community
to facilitate planning for multi-messenger astronomy with advanced GW detectors.
While the scenarios described here are our best current projections, they will evolve
as detector installation and commissioning progress. We will therefore update this
article regularly.
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A Changes between versions

Since publication of the previous version (Aasi et al. 2016), several updates to the
document have been made. The most significant changes are the inclusion of details
regarding KAGRA, and results from O1 and O2, including GW170817, the first detec-
tion with a unambiguous multi-messenger counterpart (Abbott et al. 2017k). The key
differences are outlined below.

A.1 Updates to detector commissioning

The plausible detector scenarios remain largely unchanged, but details of O1 and O2
have been updated. Specific updates to the detector scenarios are:

1. The addition of KAGRA to Figs. 1 and 2.
2. Table 1 has been added which includes BNS ranges and 30 M�+30 M� BBH

ranges.
3. The O1 sensitivity has been updated following the completion of the run (12

September 2015–19 January 2016). We believed that the O1 BNS range would
plausibly be 40–80 Mpc, and the actual range was 60–80 Mpc.

4. The formal transition to O2 was 30 November 2016, and the run ended 25 August
2017. The run is approximately nine calendar months in duration, but includes a
two-week break at the end of December and a three-week commissioning break
in May. The achieved aLIGO BNS range was approximately 60–100 Mpc (Abbott
et al. 2017f).

5. The AdV detector officially joined the O2 run on 1 August 2017. The achieved
AdV BNS range was approximately 25–30 Mpc.

6. As a consequence of the extended O2 run, the start of O3 is now expected to be in
2018, approximately a year after the end of O2. O3 is now planned to be a year in
duration.

7. Figure 2 has been updated to show the current planned timeline.
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8. Based on our experience in O1 and O2, we have revised our predicted duty cycles,
we believe that single-detector duty cycles of 70–75% for extended runs are more
realistic than the previous value of 80%.

9. We have updated the final observing scenario, the 2024+ case, to be a five-detector
network including KAGRA.

10. Progress has been made towards establishing LIGO-India, with the the Indian
government granting in-principle approval; however, it is still too early to give
a definite timeline for the observing schedule. 2024 is the earliest we imagine it
could be operational.

11. Some of the BNS ranges associated with different observing scenarios have
changed as a result of using an updated calculation, including cosmological correc-
tions. For all cosmological calculations, we assume a flat cosmology with Hubble
parameter H0 = 67.9 km s−1 Mpc−1, and density parameters �m = 0.3065 and
�� = 0.6935 (Ade et al. 2016). The sensitivity curves themselves have not been
modified. Ranges are rounded to the nearest megaparsec below 15 Mpc, rounded
to the nearest 5 Mpc between 15 Mpc and 1000 Mpc, and to the nearest 10 Mpc
above 1000 Mpc.

A.2 Updates to data analysis

In addition to the progress made with regards to the detectors, there have also been
significant advances from analysing the data. We now include results from O1 (Abbott
et al. 2016c, q, 2017b) and initial results from O2; these include the first detections
of BBH and BNS systems (Abbott et al. 2016k, g, c, 2017f, g, h, i). Multi-messenger
searches for counterparts to these detections are described in Abbott et al. (2016i, n);
Adrian-Martinez et al. (2016); Albert et al. (2017c); Abbott et al. (2017k). Specific
updates that have been made are:

1. Figure 3 has been updated to include O1 results; the surrounding text has been
updated to discuss the detection pipelines used in O1 (Abbott et al. 2016e, c, l,
2017b).

2. Results using the BayesWave algorithm (Bécsy et al. 2016), appropriate for O1,
have been included in Fig. 7.

3. Figure 8 shows a sky localization, created using current parameter-estimation tech-
niques, illustrating how localization improves for different network configurations
for a GW150914-like signal (Gaebel and Veitch 2017).

4. Table 3 now includes numbers summarising results from O1 and the new 2024+
scenario including KAGRA. Sky localization numbers for are now calculated using
bayestar (Singer and Price 2016) for all epochs.

5. BNS merger rates have been updated following the observation of GW170817. The
post-detection range is 320–4740 Gpc−3 yr−1 (Abbott et al. 2017i), consistent with
the previous expectation of 10–104 Gpc−3 yr−1 (Abadie et al. 2010b).

We defer describing the full results of O2 until a future update.
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