Hypoxia forecasts as a tool for Chesapeake Bay fisheries

M.A.M. Friedrichs
Virginia Institute of Marine Science

A. J. Bever
Virginia Institute of Marine Science

Carl Friedrichs
Virginia Institute of Marine Science

R.R. Hood

Follow this and additional works at: https://scholarworks.wm.edu/presentations

Part of the [Environmental Sciences Commons](https://scholarworks.wm.edu/presentations)

Recommended Citation

Friedrichs, M.A.M.; Bever, A. J.; Friedrichs, Carl; and Hood, R.R.. "Hypoxia forecasts as a tool for Chesapeake Bay fisheries". 4-25-2017. 8th NOAA Testbed Proving Ground Workshop, Kansas City, MO. https://doi.org/10.21220/V5JQ8M.

This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Hypoxia Forecasts as a tool for Chesapeake Bay Fisheries

Marjorie Friedrichs1, Aaron Bever2, Carl Friedrichs1, Raleigh Hood3 & Doug Wilson4

1Virginia Institute of Marine Science
2Anchor QEA
3Univ. of Maryland Center for Env. Science
4Caribbean Wind, LLC
Coastal and Ocean Modeling Testbed (COMT)

Overall COMT Mission:
• To accelerate transition of coastal ocean modeling research advances to improved operational ocean products and services, meeting the needs of a diverse user community

COMT Estuarine Hypoxia Objective:
• To assess the readiness of existing estuarine models for forecasting hypoxia events within the Chesapeake Bay
Motivation – Why Chesapeake Bay?

The Chesapeake Bay:

- Largest estuary in U.S.
- Benefits derived from Bay > $100 Billion annually
- Major anthropogenic impacts threatens Chesapeake’s economic/social services
- Additional impacts of climate change are not yet known
- One of longest & most comprehensive data sets (1985-present)
Motivation – Why focus on hypoxia?

Hypoxic (low oxygen) dead zones:

- Excessive nutrient run-off → algal blooms → algal decay → dead zones at bottom of the Bay
- Occur in summer: Warmer temperatures and less mixing
- Impact ecological resources in Bay, particularly demersal fish (low catches where DO < 3 mg/L)
Chesapeake hypoxia models:

- Multiple model comparison indicated Simple Respiration Model performed as well as more complex models (Irby et al. 2016)
- Apply this to Chesapeake (ChesROMS) grid
- Use same forcing as is used by NOAA’s Chesapeake Bay Operational Forecast (CBOFS) forecasts for physical variables (water level, salinity, temperature)
Methods – Evaluate with long term cruise data

Available data:

- Models were assessed by monthly data (semi-monthly in summer) at multiple locations throughout Bay from 1985-present.
- Data includes S, T, DO and multiple other ecological parameters.
Chesapeake Hypoxia Forecast Tool

Yesterday’s Oxygen Nowcast

2017-04-24

Green → **High bottom oxygen**
= Good bottom water
= Bottom fish and crabs

Orange → **Moderate/low bottom oxygen**
= Poor bottom water
= Fewer bottom fish and crabs

Red → **Very low bottom oxygen**
= Bad bottom water
= No bottom fish or crabs

http://www.vims.edu/research/topics/dead_zones/forecasts/cbay/index.php
Chesapeake Hypoxia Forecast Tool

1 June 2016 Oxygen Nowcast

3 June 2016 Oxygen Forecast
Chesapeake Hypoxia Forecast Tool

Blue → **Increasing oxygen**
(Improving bottom water in **eastern** Bay)

Red → **Decreasing oxygen**
(Degrading bottom water in **western** Bay)
SSE wind transports high oxygen surface water to the east, upwells low oxygen water in west.
“Quasi-operational” forecasts
on VIMS website:
http://www.vims.edu/research/topics/dead_zones/forecasts/cbay/index.php

transition

Truly operational forecasts
on NOAA on CBOFS site:
https://tidesandcurrents.noaa.gov/ofc/cbofs/cbofs.html
NOAA CBOFS Forecasts

Operational Forecast Site

Surface Temperature

Surface Salinity

Ecological Forecasting: oxygen/hypoxia?

Time/Date: 0200 (EDT) 04/26/17
Workshop summary:

- Attendees included fishermen as well as scientists/educators
- Strong enthusiasm for hypoxia forecasts as complementary tool with other information sources
- Several captains already use real-time observations for planning (e.g., water clarity, temperature, wave heights) and/or short-term model forecasts (e.g., currents from CBOFS)
- Little interest in hypoxia forecasts beyond 2-3 days because of limited trust in detailed weather/wind forecasts beyond 2-3 days
Suggestions for Hypoxia Forecast Tool:

- Oxygen at other depths

- Other variables (winds, salinity, temperature, water clarity, algal blooms)

- Model-data time series at observation station locations

- Historical averages as well as current conditions
COMT Estuarine Hypoxia Testbed

• Identified a simple oxygen model that can be easily used to produce hypoxia forecasts in the Chesapeake Bay

• Developed a “quasi-operational” Hypoxia Forecast Tool that has provided forecasts on VIMS website since Jan. 2016

• We have worked with NOAA NOS to get the oxygen formulation in the operational model and results posted to NOAA's developmental website for the Chesapeake

• Met with Chesapeake Bay Stakeholders to better understand what they are looking for in these forecasts, and the improvements they would like to see in the future
Future work:

Investigating methods for nudging modeled fields to observed high frequency fields (T, S, DO) at 10 locations.
Questions?