2007

Bruce D. Bartholow

Cheryl L. Dickter
College of William and Mary, cldickter@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/asbookchapters

Part of the Cognition and Perception Commons

Recommended Citation

This Book Chapter is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
PERSON PERCEPTION,
STEREOTYPING,
AND PREJUDICE
Although social psychologists have long been interested in understanding the cognitive processes underlying social phenomena (e.g., Markus & Zajonc, 1985), their methods for studying them traditionally have been rather limited. Early research in person perception, like most other areas of social-psychological inquiry, relied primarily on verbal reports. Researchers using this approach have devised clever experimental designs to ensure the validity of their conclusions concerning social behavior (see Reis & Judd, 2000). The cognitive revolution of the 1970s and 1980s provided a new conceptual model derived in part from a computer metaphor of human thought, involving input (perception), information processing (cognition), and output (behavior), as well as new methods for examining the mental operations underlying social behavior that did not depend on participants’ self-reports (e.g., response latency; see Fazio, 1990).

Recently, another conceptual shift has occurred, based on the notion that complex human behaviors cannot be fully explicated by either a strictly biological or a strictly social-psychological approach (e.g., Cacioppo, Berntson, Sheridan, & McClintock, 2000). That is, although human beings (and therefore human behaviors) are inherently social, a purely social level of analysis may ignore or misrepresent important biological events that mediate human action. At the same time, reducing behavior to its biological underpinnings generally does not satisfactorily account for situational
differences in behavioral expression. In contrast, a social neuroscience (or social cognitive neuroscience) approach is based on the premise that the most comprehensive understanding of a host of psychological processes is achieved only by examining them at social, cognitive, and neural levels of analysis (Ochsner, 2004; Ochsner & Lieberman, 2001). The aim of this chapter is to review recent developments in social cognitive neuroscience associated with one admittedly narrow topic in the field of social psychology, that of person perception, and specifically to review work that examines this topic through one primary technique—the event-related brain potential (ERP). We begin with a brief overview of ERP theory and measurement (for more comprehensive reviews of the theory and methods of ERP research, see Fabiani, Gratton, & Coles, 2000) and conclude by reviewing recent research in which ERPs have been used as a tool for addressing theoretical questions in person perception.

ERPs AND HUMAN INFORMATION PROCESSING

Background and Theory

Hans Berger (1929) first demonstrated that it is possible to record the electrical activity of the human brain (the electroencephalogram; EEG) by placing a pair of electrodes on the surface of the scalp connected to a differential amplifier. When stimuli are presented during EEG recording, epochs of the EEG that are time-locked to stimulus onset can be defined. With repeated samplings of data from epochs time-locked to the same stimulus (or stimulus class), EEG activity that is not time-locked to stimulus onset will vary randomly across epochs and thus tend to average to zero; the remaining average waveform reflects activity associated directly with processing of the stimulus in question (i.e., the ERP). Physiologically, ERPs are assumed to reflect the postsynaptic activity of groups of neurons that are active synchronously and that share an electrical field orientation that permits their effects at the scalp to cumulate. Psychologically, ERP components—positive and negative voltage deflections in the waveform—reflect various sensory, cognitive, and motor processes based on their responsiveness to experimental manipulations (see Fabiani et al., 2000; Friedman & Johnson, 2000; Rugg & Coles, 1995; Stern, Ray, & Quigley, 2001).

Deriving the ERP

ERPs are recorded with an array of electrodes placed on the scalp (usually fixed in a nylon-lycra cap) according to standard location conventions (e.g., the 10–20 international electrode placement system; Jasper, 1958). The electrodes are connected to amplifiers, and the outputs of the amplifiers are converted to numbers using an analog-to-digital converter. Electrical
potentials are generally sampled at a frequency ranging from 100 to 10,000 Hz (samples per second); sampling rates of 250–1,000 Hz are common. Potentials may be recorded continuously during an experimental session (in which case epochs are defined later) or during predefined epochs around stimulus or response events. Deriving the ERP from the raw EEG begins with attenuating (filtering) portions of the EEG that are not of interest. A typical filter setting for recording ERPs will attenuate frequencies above 30–40 Hz (low-pass filter) and those below approximately 0.5 Hz (high-pass filter). Large artifacts in the data, typically defined as voltage deflections larger than some criterion (e.g., 100 µV), also must be removed or attenuated; this is typically accomplished with automated, regression-based procedures (e.g., Semlitsch, Anderer, Schuster, & Presslich, 1986).

ERP Components and their Interpretation

Components are typically described according to their polarity (positive or negative) and the latency (in milliseconds) at which they typically peak. Component amplitude reflects the extent of neural activation associated with a particular cognitive operation, whereas component latency reflects the time required to carry out that operation (e.g., Gehring, Gratton, Coles, & Donchin, 1992; Rugg & Coles, 1995). Although a group of very short-latency *exogenous* components is elicited in the ERP, most social neuroscientists focus on the longer latency *endogenous* components (see Figure 17.1), which are associated with higher cognitive processes such as those typically of interest to social psychologists (e.g., attention, memory, evaluation, categorization).

![Figure 17.1](image_url)

FIGURE 17.1. A schematic representation of endogenous ERP components elicited by a novel visual stimulus. Very early components (approximately 0–100 ms after stimulus onset; i.e., *exogenous* components) tend to be described with a different nomenclature and are not typically examined in social neuroscience research. The vertical arrow on the timeline represents stimulus onset (i.e., time zero); the 100 milliseconds preceding time zero represents a hypothetical prestimulus baseline period. Negative voltage is plotted up as a matter of convention, though ERPs are not always presented this way.
Notable endogenous components include the N100, P200, N200, and P300. Both the N100 and P200 (also sometimes called the P1 because it is the first notable positive peak) have been linked to attentional processes (see Fabiani et al., 2000; Rugg & Coles, 1995), with increasing amplitude of the components reflecting increased direction of implicit attention to a stimulus (e.g., Hopfinger & Mangun, 2001; Mangun, Hillyard, & Luck, 1993). In social neuroscience work, the N100 and P200 have been associated with automatic direction of attention to negative relative to positive information (Bartholow, Pearson, Gratton, & Fabiani, 2003; Smith, Cacioppo, Larsen, & Chartrand, 2003) and increased attention to outgroup relative to in-group members (Ito, Thompson, & Cacioppo, 2004; Ito & Urland, 2003). The N200 has been associated both with stimulus infrequency (e.g., Nieuwenhuis, Yeung, Van Den Wildenberg, & Ridderinkhof, 2003; Squires, Squires, & Hillyard, 1975) and with conflict between the response demands associated with concurrent tasks (i.e., response conflict; see Botvinick, Braver, Barch, Carter, & Cohen, 2001).

One of the most widely studied endogenous components of the ERP is the P300, a large positive component that usually peaks between 300 and 800 milliseconds. The P300 has been associated with the brain’s response to novelty (Friedman, Cycowicz, & Gaeta, 2001) in that P300 amplitude increases as the subjective probability of an eliciting event decreases (e.g., Donchin & Coles, 1988; Duncan-Johnson & Donchin, 1977; Squires et al., 1975; see also Nieuwendhuis, Aston-Jones, & Cohen, 2005). The P300 has been described as a manifestation of context updating in working memory, based on numerous studies indicating better subsequent memory for stimuli that elicit larger P300 amplitude (e.g., Donchin, 1981; Donchin & Coles, 1988; Friedman & Johnson, 2000). The latency at which the P300 peaks serves as a neural indicator of stimulus evaluation or categorization time, with longer latencies indicating more effortful categorization (see Coles, 1989). It is not uncommon for the P300 to peak substantially later than 300 milliseconds; in tasks involving complex social or emotional stimuli, peaks often occur between 550 and 800 milliseconds. Thus, some researchers refer to this component more generically as the “late positive potential,” or LLP, to refer to its general time course and polarity without reference to a specific temporal anchor (e.g., see Cacioppo, Crites, Gardner, & Berntson, 1994, 1995; Ito, Larsen, Smith, & Cacioppo, 1998).

Why Use ERPs to Study Person Perception?

Person perception research has a deep and important history in social psychology, involving such seminal topics as stereotyping, causal attribution, impression formation, and expectancy effects, to name just a few (see Jones, 1990, for a review). It goes without saying that the behavioral methods typically used in person perception research, including recall (i.e., person memory), response latency, and self-reported evaluations (among oth-
ers; see Olson, Roese, & Zanna, 1996), have provided a strong foundation for advancing our understanding of how people come to know what others are “really like” (Jones, 1990). However, the nature of the cognitive and affective processes thought to be important in driving person perception makes certain theoretical questions difficult to address when using such methods alone. For example, when participants are better able to recall information about people in one condition versus another, we infer that the information in the former condition received more extensive processing than the information in the latter condition. In this sense, recall represents one outcome of some cognitive activity associated with memory, but a number of processes likely intervene between stimulus encoding and recall that are not well represented in a memory measure. ERPs can provide a direct index of such intervening processes.

A related issue concerns the temporal specificity of cognitive measures. A number of theoretical models (e.g., Brewer, 1988; Fiske & Neuberg, 1990) posit multiple steps or stages of person perception, each of which may represent a distinct cognitive process or set of processes. Given that most social cognitive processes are assumed to unfold very quickly (e.g., Bargh, 1997; Higgins, 1996), behavioral and self-report measures are not especially well suited to represent them as they happen. In contrast, the temporal specificity of the ERP makes it an ideal measure for examining hypothesized sequential components of information processing involved in person perception (e.g., see Ito et al., 2004), allowing identification of various stages of processing that mediate the link between perception and overt behavior (e.g., see Rugg & Coles, 1995). Even the act of responding to stimuli (as with a response latency measure) can introduce noise into the data associated with response preparation and execution, effectively confounding relevant cognitive processes with irrelevant motor-related processes. In this regard, P300 latency provides an advantage over more traditional measures of processing time (e.g., response latency) in that it is independent of behavioral responses (though it often correlates with response latency; see McCarthy & Donchin, 1981). Thus this measure serves as an indicator of stimulus categorization time that is not confounded with the duration of response-related motor processes or task-relevant response selection requirements (Ito & Cacioppo, 2000; Kutas, McCarthy, & Donchin, 1975; McCarthy & Donchin, 1981; Smid, Mulder, Muller, & Brands, 1992). This issue is particularly relevant for researchers interested in separating relatively automatic from more controlled processes. Another advantage is that the brain activity represented by ERPs generally is less controllable than self-reported data, thereby reducing concerns with self-presentational biases and permitting examination of the effects of a stimulus that individuals are either unable or unwilling to report.

P300 amplitude is particularly relevant for research in person perception for several reasons. First, the P300 can index the effects of probabilis-
tic beliefs such as stereotypes and expectancies on perceivers’ implicit reactions to others (see Ito & Cacioppo, 2007). Second, given the link between the P300 and working memory processes (see Friedman & Johnson, 2000), P300 amplitude can serve as an online, neural marker for person memory effects (see Bartholow, Fabiani, Gratton, & Bettencourt, 2001). Third, the P300 is known to index evaluative categorization (e.g., Ito & Cacioppo, 1999), a fundamental aspect of differentiating friend from foe. Finally, research suggests that the P300 can reveal task-irrelevant categorization processes (Ito & Cacioppo, 2000) and therefore may indicate implicit cognitive processes of which the participant is unaware.

In addition to these cognitive processes, affective processes also play a central role in many models of person perception. As one example, some models of expectancy processes (e.g., Burgoon, 1993; Mandler, 1990) predict that perceivers experience affective arousal when others behave in unexpected ways. However, the precise nature of these affective reactions has been debated. Some models (e.g., Mandler, 1990; Olson et al., 1996) predict that expectancy violations will always result in negative affect for the perceiver (at least initially) because unpredictability and uncertainty are generally unpleasant. Other models (e.g., Bettencourt, Dill, Greathouse, Charlton, & Mulholland, 1997; Kernahan, Bartholow, & Bettencourt, 2000), however, predict that the affective reaction to an expectancy violation depends on the valence of the violating information. As we review later, the temporal specificity of electrophysiological measures can allow direct tests of these theoretical assertions that have been difficult to obtain with self-report measures.

ERP STUDIES OF PERSON PERCEPTION

Cacioppo and his colleagues (Cacioppo, Crites, Berntson, & Coles, 1993) were among the first to study social perception using ERPs. These researchers reasoned that because the P300 serves as an index of subjective probability in categorization processes (e.g., Donchin & Coles, 1988; Friedman et al., 2001), it also should mark the implicit categorization of evaluatively consistent and inconsistent attitude objects. Early research by this group (e.g., Cacioppo, Crites, Berntson, & Coles, 1993) supported this hypothesis, showing that P300 amplitude was enhanced when participants implicitly categorized attitude words that differed in valence from a preceding context established by other attitude words. Similar research showed that the P300 to evaluative categorization (e.g., good, bad) differs from that to nonevaluative categorization (e.g., vegetable, nonvegetable; Crites & Cacioppo, 1996). Extending this paradigm to person perception, Cacioppo, Crites, Gardner, and Berntson (1994) showed that the P300 also indexes evaluative categorization of positive and negative personality traits and that this effect is associated with categorization per se rather than with
response processes (Crites, Cacioppo, Gardner, & Berntson, 1995), suggesting that the P300 might assess implicit interpersonal attitudes.

Expectancies and Expectancy Violation

Based in part on the findings of Cacioppo and colleagues, Bartholow et al. (2001) reasoned that cognitive activity associated with interpersonal expectancy violations also should be manifest in P300 amplitude. A large literature in social and developmental psychology indicates that expectancy-violating information about people tends to be recalled better than expectancy-confirming information (e.g., Stangor & McMillan, 1992). Theoretical models (e.g., Srull & Wyer, 1989) posit that this recall advantage reflects updating of working memory that occurs as people attempt to reconcile the discrepancy between new information and existing “person concepts,” a process generally known as *inconsistency resolution*. The long-standing notion that the P300 is an electrocortical index of working memory updating (e.g., Donchin, 1981; Donchin & Coles, 1988; Friedman & Johnson, 2000) suggests that the amplitude of this component should reflect the neural processes associated with inconsistency resolution.

To test these assertions, Bartholow and colleagues (2001) asked participants to read paragraph descriptions of several fictitious individuals in order to form impressions of them and then to read sentences (presented one word at a time on a computer monitor) depicting behaviors that were either consistent or inconsistent with those impressions. The valence of trait information was varied so that physiological responses to both positive and negative expectancy violations could be compared (Bettencourt et al., 1997; Olson et al., 1996). To examine affective reactions to expectancy violations, Bartholow et al. (2001) recorded the electrical activity of the *corrugator supercilii* muscle (under the brow) using electromyography (EMG). Previous research had established activity of the *corrugator* as an index of negative affective reactions that may be too small or too fleeting to be noticed with the “naked eye” (e.g., Cacioppo, Petty, Losch, & Kim, 1986; see also, e.g., Dimberg & Petterson, 2000; Hess, Blairy, & Kleck, 2000; Vanman, Paul, Ito, & Miller, 1997).

As predicted, Bartholow et al. (2001) found that expectancy-violating behaviors elicited larger P300 amplitude than did expectancy-consistent behaviors (see Figure 17.2). Similarly, expectancy-violating behaviors subsequently were recalled better than expectancy-consistent behaviors, supporting the idea that the P300 reflects working memory updating during person perception. Moreover, although earlier research suggested that the P300 to evaluatively inconsistent words was similar in amplitude regardless of word valence (Cacioppo et al., 1993), Bartholow et al. (2001) found that P300 effects were larger to inconsistent negative behaviors than to inconsistent positive behaviors (see Figure 17.2, bottom panel), consistent with the literature on positive–negative asymmetry in person perception (e.g.,
Peeters & Czapinski, 1990; Reeder & Coover, 1986; Ybarra, Schaberg, & Keiper, 1999) and with other ERP evidence that supports an implicit negativity bias (Ito, Larsen, Smith, & Cacioppo, 1998). Finally, facial EMG data indicated that the corrugator was activated by negative but not by positive expectancy-violating behaviors, supporting the notion that valence is an important determinant of affective reactions to expectancy violation (e.g., Bettencourt et al., 1997).

Bartholow et al.’s (2001) findings indicated that the recall advantage long known to accompany expectancy violations (e.g., Stangor & McMillan, 1992) results from evaluative categorization processes occurring.

FIGURE 17.2. Difference waveforms representing effects of expectancy violation (top panel) and behavior valence (bottom panel) in the ERP recorded at the Pz (midline parietal) electrode site. Difference waveforms were created by subtracting amplitudes elicited by irrelevant behaviors from those elicited by expectancy-violating and expectancy-consistent behaviors (top panel), and from negative and positive behaviors (bottom panel). From Bartholow, Fabiani, Gratton, and Bettencourt (2001). Copyright 2001 by the Association for Psychological Science. Reprinted by permission.

Peeters & Czapinski, 1990; Reeder & Coover, 1986; Ybarra, Schaberg, & Keiper, 1999) and with other ERP evidence that supports an implicit negativity bias (Ito, Larsen, Smith, & Cacioppo, 1998). Finally, facial EMG data indicated that the corrugator was activated by negative but not by positive expectancy-violating behaviors, supporting the notion that valence is an important determinant of affective reactions to expectancy violation (e.g., Bettencourt et al., 1997).

Bartholow et al.’s (2001) findings indicated that the recall advantage long known to accompany expectancy violations (e.g., Stangor & McMillan, 1992) results from evaluative categorization processes occurring.
very rapidly following perception and strongly implicates a role for working memory—one of a host of so-called executive cognitive functions thought to be mediated by activity in the prefrontal cortex—in the process of inconsistency resolution (see also Macrae, Bodenhausen, Schloerscheidt, & Milne, 1999). To further explore the role of executive working memory in the inconsistency resolution processes reflected in the P300, Bartholow et al. (2003) conducted an experiment in which participants consumed either a moderate (0.40 g/kg ethanol) or high (0.80 g/kg ethanol) dose of alcohol or a placebo beverage just prior to engaging in the person-perception task used by Bartholow et al. (2001). Theory (e.g., Steele & Josephs, 1990) and research (e.g., Herzog, 1999) on the effects of alcohol has suggested that controlled processes are impaired following consumption but that automatic processes are relatively unaffected. Inconsistency resolution arguably involves both automatic (e.g., early direction of attention to novel or salient information) and controlled (e.g., comparison of new information with preexisting person concepts) components. Moreover, alcohol’s effects on interpersonal behaviors are commonly attributed to impairment of executive cognitive functions thought to be mediated by the prefrontal cortex (e.g., Hoaken, Giancola, & Pihl, 1998; Peterson, Rothfleisch, Zelazo, & Pihl, 1990; Steele & Josephs, 1990). Given these factors and the evidence suggesting an important role for executive function in person perception (e.g., Macrae et al., 1999), Bartholow et al. (2003) reasoned that inconsistency resolution might be impaired during intoxication and used ERPs to specify which processes would be affected.

The main findings from this experiment are presented in Figure 17.3. For participants in the placebo condition, the ERP results largely replicated those of the earlier report (Bartholow et al., 2001), in that (negative) expectancy-violating behaviors presented in a positive context elicited enhanced P300 amplitude compared with expectancy-consistent behaviors, whereas (positive) expectancy-violating behaviors presented in a negative context did not. This finding is consistent with other data indicating that negative expectancy violations elicit more processing than do positive expectancy violations (e.g., Sherman & Frost, 2000; Trafimow & Finlay, 2001; Ybarra, Schaberg, & Keiper, 1999; see also Ybarra, 2002). For participants in the alcohol conditions, however, the opposite pattern emerged, with generally larger expectancy-violation effects associated with positive behaviors presented in a negative context. This reversal likely reflects the effects of alcohol-induced activation of the cerebral reward system on working memory operations associated with processing reward-congruent stimuli (see London, Ernst, Grant, Bonson, & Weinstein, 2000). These differential patterns of processing as a function of valence were corroborated by recall data. Whereas participants in the placebo condition recalled more negative expectancy-violating behaviors, those in the alcohol conditions recalled more positive expectancy-violating behaviors. Importantly, though, alcohol did not appear to disrupt the direction of attention to nega-
tive information in early processing stages. The N100 component was larger to negative than to positive behaviors among all participants, regardless of alcohol dose. This finding is consistent with prior research suggesting that alcohol does not disrupt relatively automatic aspects of person perception (Herzog, 1999) and that, instead, its effects are limited to somewhat later, more effortful processing stages associated with working memory updating. Distinguishing alcohol’s effects on these two stages of processing would not have been possible in this paradigm using a recall measure alone. This study also illustrates the use of alcohol as a tool in social neuroscience research. Given that many social cognitive phenomena are presumed to be mediated by prefrontal cortical activity, examining social cognitive processes in healthy individuals temporarily impaired by alcohol provides a method for bridging gaps between research in neuropsy-

Social Categorization: Processes and Consequences

A major focus of person perception research over the past 50 years has been on understanding the influence of perceiving others as members of social categories. However, this research is made difficult by participants’ unwillingness or inability to divulge their true reactions to others, particularly on issues pertaining to out-group prejudice. In this regard, ERPs can provide relevant information concerning how differential categorization covertly influences information processing and ultimately behavioral responses.

A study by Osterhout, Bersick, and McLaughlin (1997) provided an early example of the use of ERPs to study the covert effects of social categorization. Participants were presented with sentences that violated definitional (e.g., “The fireman took a shower after she got home”) or stereotypical (e.g., “Our aerobics instructor gave himself a break”) noun–pronoun agreement (or violated neither) while ERPs were recorded. The results showed that both definitionally and stereotypically incongruent sentences elicited enhanced P300 amplitude. Moreover, these ERP effects were independent of participants’ judgments of grammatical and syntactical acceptability, highlighting the effectiveness of ERPs in revealing implicit judgment processes.

In a more recent series of experiments, Ito and her colleagues (Ito & Cacioppo, 2000; Ito et al., 2004; Ito & Urland, 2003) have used ERPs to examine implicit and explicit aspects of categorization (for a more comprehensive review of physiological measures of implicit cognition, see Ito & Cacioppo, 2007). In one such study, Ito and Cacioppo (2000) found enhanced P300 amplitude to negative images and to images of people (compared with objects), regardless of whether participants were explicitly categorizing the images. Also, consistent with many of the studies reviewed here (see also Bartholow et al., 2001; Bartholow et al., 2003; Ito et al., 1998), Ito and Cacioppo (2000) found larger effects of evaluative inconsistency with negative as compared with positive targets. In two follow-up experiments, Ito and Urland (2003) showed that several ERP components are sensitive to implicit racial and gender categorization processes. Early components, such as the N100 and P200, appeared sensitive to processing of race and gender information, with larger amplitudes indicating more cognitive resources devoted to processing images of blacks and men, respectively. Later working memory-related processes, as indexed by the P300, were activated by individuals whose racial or gender categories differed from that of the social context established by the preceding images. Another recent study by this group (Ito et al., 2004) showed that the evaluative categorization effects reflected in the P300 correlated with
perceivers’ level of explicit prejudice toward out-group members, establish-
ing P300 amplitude as an implicit measure of out-group bias that, unlike
other implicit measures (e.g., Implicit Association Test; see Greenwald,

When combined with behavioral measures, ERPs can also reveal the
cognitive processes associated with the behavioral expression of racial bias.
Because racial stereotypes are so pervasive in American culture, the be-
havior of white Americans—even those who believe themselves to be
egalitarian—is often unintentionally biased against blacks. In other words,
whites who are low in prejudice often face situations in which their egali-
tarian goals are in conflict with behavioral tendencies engendered by the
automatic activation of stereotypes (e.g., Plant & Devine, 1998). Such situa-
tions exemplify response conflict—that is, prepotent, well-learned re-
sponses are in conflict with less automatic, goal-driven behaviors (see
Botvinick et al., 2001). Two neural systems are posited to produce intended
behaviors when conflict arises: a conflict-detection system that monitors
ongoing responses for occasions of conflict and a regulatory control system
designed to implement intended responses once conflict has been detected.

Amodio and his colleagues (2004) used ERPs to examine whether
race-biased responses occur because the conflict-detection system fails to
recognize that a given behavior is at odds with an individual’s non-
prejudiced beliefs. These researchers presented participants with trials in
which a black or white face prime was followed by an image of either a
gun or a tool. The participants’ task was to categorize the second image
(gun or tool) by pressing one of two buttons. Previous research using this
paradigm (e.g., Payne, 2001) had established that participants are more
likely to miscategorize tools as guns following black primes than follow-
ing white primes, revealing racial bias associated with the stereotype that
blacks are violent. As a neural index of conflict detection associated with
this bias, Amodio et al. (2004) measured the amplitude of the error-
related negativity (ERN) on miscategorization trials. The ERN is a
response-locked ERP component that peaks within 100 milliseconds after
a response and is thought to reflect activation of the conflict-detection
system (see Botvinick et al., 2001; but also see Bartholow et al., 2005).
As predicted, the conflict-detection system was more strongly engaged on
trials in which a tool was mistaken for a gun following black primes
(black–tool error) than following White primes (White-tool error). Never-
theless, participants were much more likely to mistake a tool for a gun
on Black prime trials (see Amodio et al., 2004, Figure 2), indicating that
racially biased responses occur despite the brain’s detection of the conflict
inherent in those responses and suggesting that bias might result from
failure of the regulatory control system to overcome well-learned (though
unintentional) response tendencies.

In a recent test of this latter possibility, Bartholow, Dickter, and Sestir
(2006) examined the influence of stereotype activation on biased respond-
ing using a task designed to assess the role of the regulatory control system in withholding prejudiced responses. An important aspect of self-regulation of behavior is the ability to inhibit well-learned but potentially maladaptive responses in favor of other responses that are more appropriate in a given context (e.g., MacDonald, Cohen, Stenger, & Carter, 2000). Experimental tests of inhibitory control often involve the use of “go–stop” paradigms that engage participants in responding to “go” signals while “stop” signals occasionally inform them to withhold their responses (see Logan & Cowan, 1984). In such paradigms, responding in the presence of a stop signal represents a failure of the regulatory control system to implement top-down inhibitory control.

Bartholow et al. (2006) used a go–stop racial priming paradigm in which participants responded to trait adjectives associated with stereotypes of blacks (e.g., violent, athletic) and whites (e.g., educated, uptight) or to control words (descriptors of houses) following pictures of black or white faces or pictures of houses. Their task was to indicate (via a key press) whether or not each word could ever be true of the person (or house) that preceded it (see Dovidio, Evans, & Tyler, 1986). On one-fourth of the trials, a stop signal appeared shortly after the trait adjective, indicating that no response should be made. To the extent that face primes activate racial stereotypes, stereotype-consistent responses should be facilitated and more inhibitory control should be required to withhold responses on stereotype-consistent stop trials (e.g., a black face followed by violent) than on stereotype-violation stop trials (e.g., a black face followed by educated). Bartholow et al. (2006) measured the frequency of inhibition errors (i.e., failures to inhibit) in participants’ responses, as well as the amplitude of the negative slow wave (NSW), a stimulus-locked ERP component that develops late in trial epochs (see Figure 17.1) and indexes activity in the regulatory control system (see West & Alain, 1999).

As an additional manipulation of cognitive control of inhibition, Bartholow et al. (2006) assigned participants to one of three alcohol dose conditions, as in previous research (Bartholow et al., 2003). A substantial number of studies have indicated that moderate doses of alcohol significantly impair behavioral inhibition but have no effect on the activation and implementation of responses (e.g., Easdon & Vogel-Sprott, 2000; Fillmore & Vogel-Sprott, 2000; Mulvihill, Skilling, & Vogel-Sprott, 1997) and that these effects stem specifically from alcohol’s impairment of the regulatory cognitive control system (Abroms, Fillmore, & Marczinski, 2003; Easdon & Vogel-Sprott, 2000). Recent ERP evidence (Curtin & Fairchild, 2003) has shown that these effects are evident in an alcohol-induced reduction of NSW amplitude that correlates with behavioral undercontrol. Therefore, alcohol provides an excellent tool for testing hypotheses associated with the role of regulatory control in expression of racial bias. Bartholow et al. (2006) reasoned that alcohol’s effects on regulatory control should result in a dose-dependent increase in the frequency of inhibition errors, but only (or
primarily) on stereotype-consistent trials, which should be most difficult to inhibit. This pattern of impairment also was predicted for NSW amplitude, with smaller amplitude of the component reflecting less effective implementation of regulatory cognitive control.

The primary findings from Bartholow et al.’s (2006, Experiment 2) study are presented in Figure 17.4. As predicted, the inhibition error data (Figure 17.4a) indicated a linear increase in failures to inhibit on stereotype-consistent trials as a function of alcohol dose, but no significant effect of alcohol on stereotype-violation trials. The ERP waveforms (Figure 17.4b) nicely mirrored the behavioral data. First, the amplitude of the NSW was significantly reduced by alcohol, consistent with the idea that alcohol impairs cognitive control (Curtin & Fairchild, 2003). More important, stereotype-consistent trials elicited larger NSW amplitude than did stereotype-violation trials, but only among those in the placebo group. This finding supports the idea that withholding dominant, prejudiced responses engages more regulative cognitive control resources and that this process is impaired following alcohol consumption. Although the data presented in Figure 17.4a are restricted to the middle fronto-central electrode location, this effect was fairly broadly distributed over frontal, central, and anterior parietal scalp regions. These data indicate that intact regulatory control is a critical component of inhibiting unintentional race-biased behaviors. These data also suggest that motivation to control prejudice (e.g., Plant & Devine, 1998; Monteith, Ashburn-Nardo, Voils, & Czopp, 2002) is only part of what determines whether or not bias will be expressed; a high level of motivation to exert control might not be enough to ensure unbiased responding when regulatory control is impaired. These findings, along with those of Amodio et al. (2004), provide important evidence of the neural underpinnings of racial bias and its control.

Racial Priming Effects: ERP Evidence of Response Conflict

In a number of the studies just described, various priming techniques were used to demonstrate the effects of automatic stereotype activation on behavior. It has long been argued that racial primes facilitate stereotype-consistent responses because of spreading activation, the process through which activation of particular constructs (e.g., racial category labels) increases the accessibility of related constructs (e.g., stereotypically associated traits) in semantic memory and decreases the accessibility of unrelated constructs (e.g., counterstereotypic traits; see Higgins, 1996; Schank & Abelson, 1977). This hypothesized memory structure provides a concise explanation for the faster response latencies typically associated with stereotype-consistent prime-word pairs, which are assumed to reside near one another in semantic space and thus require less time to “spread” activation from the category to the trait, compared with stereotype-violating prime-word pairs, which are assumed to occupy more distant semantic
FIGURE 17.4. Inhibition errors (panel A) and ERP waveforms elicited over the midline frontocentral cortex (panel B) on stop trials as a function of alcohol dose and trial type. Increased inhibition errors (panel A) on stereotype-consistent (SC) trials relative to stereotype-violating (SV) trials indicate difficulty inhibiting race-biased behaviors. The larger negative slow wave (NSW) amplitude associated with stereotype-consistent trials in the placebo group (panel B) indicates greater implementation of cognitive control resources to inhibiting responses on those trials. Time zero indicates onset of the stop signal. The decrease in NSW amplitude associated with the high alcohol dose indicates alcohol-induced impairment of cognitive control. Adapted from Bartholow, Dickter, and Sestir (2006).
spaces (e.g., Dovidio et al., 1986; Fazio, Jackson, Dunton, & Williams, 1995; Gaertner & McLaughlin, 1983).

Recent evidence from cognitive neuroscience studies of response conflict suggests an alternative explanation for response facilitation in priming paradigms. As discussed previously, response conflict occurs when a well-learned or prepotent response must be overridden by an alternative response in order to respond correctly in a given context. A classic paradigm used to induce response conflict is the Eriksen flanker task (Eriksen & Eriksen, 1974), in which a target stimulus (e.g., a letter) is flanked by so-called noise stimuli. The participant's task is to categorize the target by pressing one of two keys. A very robust response facilitation is produced in this task on low-conflict, compatible trials (when the target and flankers are identical; e.g., \textit{HHHHH}) compared with high-conflict, incompatible trials (when the target and flankers represent opposing categories; e.g., \textit{SSHSS}). Research shows that the lateralized readiness potential (LRP)—a response-locked component of the ERP that reflects motor cortex activity associated with instigating behavioral responses—reveals initial activation of incorrect response channels preceding activation of the correct response on high-conflict trials in this task (for a review, see Coles, Smid, Scheffers, & Otten, 1995). This initial activation of the incorrect response requires some degree of effort (and time) to reverse, leading to longer response latencies on high-conflict trials (see Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988). To the extent that responding to stereotype-incongruent prime-word pairs induces response conflict, incorrect response activation that occurs on such trials could provide an alternative account for the longer response latencies in racial priming experiments. This response activation should be evident in the LRP.

To test this assertion, Bartholow and Dickter (2006) recently conducted a series of experiments using a modified Eriksen flanker task in which the targets were facial photos of blacks and whites and the flankers were words associated with cultural stereotypes for blacks and whites. In this case, compatible trials were defined as those in which the race of the target was congruent with the stereotypicality of the flanker words (e.g., a black face flanked by \textit{violent}) and incompatible trials were those in which the target’s race was incongruent with the stereotypicality of the flanker words (e.g., a white face flanked by \textit{violent}). The participants’ task was simply to categorize the target person as white or black by pressing one of two keys, while attempting to ignore the flanker words.

In their first experiment, Bartholow and Dickter (2006) simply measured response latencies on compatible and incompatible trials. The data showed that participants were faster to categorize targets by race when they were flanked by stereotype-congruent than by stereotype-incongruent words, suggesting that response conflict occurs in this version of the paradigm even though the flankers were not associated with either response and shared only an implicit semantic relationship with the targets. However,
these data do not directly address whether the slowed categorization of incongruent flankers results from initial activation of the incorrect response channel. (See Amodio, Chapter 16, this volume, for a fuller account of this and related studies.)

To address this question, Bartholow and Dickter (2006) added LRP measures in Experiment 2. These waveforms are presented in Figure 17.5. According to the logic of the LRP (see Coles et al., 1995), cortical activity associated with incorrect response activation results in a positive-going waveform, whereas correct response activation is associated with negative voltage (see also DeJong, Liang, & Lauber, 1994; Gratton et al., 1988). As shown in Figure 17.5, correctly categorized incompatible trials tended to elicit a small (but significant) degree of incorrect response activation (seen as the initial positive-going “dip” in the waveform around 50 ms) prior to the activation of the correct response. In contrast, compatible trials were associated only with correct response activation. LRP activity also can be used to infer when behavioral responses will be emitted (see Gratton et al., 1988). The horizontal dotted lines in Figure 17.5 represent hypothetical response thresholds for commission of correct (upper line) and incorrect (lower line) responses. Examining the point at which the LRP waveform crosses this threshold in each condition provides a visual representation of

![Figure 17.5](image-url)

FIGURE 17.5. Lateralized readiness potential (LRP) waveforms elicited on stereotype-congruent trials (i.e., compatible trials; solid line) and stereotype-incongruent trials (incompatible trials; dashed line), measured over left and right motor cortex areas. The “error dip” evident in the incompatible-trials waveform indicates initial activation of the incorrect response at the neural level prior to the correct response being activated and emitted.
the delay in response latency caused by initial incorrect response activation in the incompatible condition. Thus these data suggest that stereotype-incongruent trials result in slower behavioral responses because they initially engender activation of the incorrect response, delaying activation of the correct response. This interpretation is at odds with notions from spreading activation theory that stereotype-incongruent constructs are activated slowly because of their distance from racial categories in semantic memory. Instead, these data support a response-conflict account, whereby responses are activated quickly at the neural level but the initial activation is incorrect. It is this “confused” activation of both response channels that slows response latency. This finding has a number of implications. For our purposes here, one important implication is that ERPs provide a more complete understanding of the apparent interference caused by stereotype-related contextual information during racial categorization than could be gained with reaction time measures alone. In this way, this study stands as a clear example of the promise of the social-cognitive neuroscience approach, which holds that processes of interest can be best understood when examined at the social, cognitive, and neural levels of analysis (see Ochsner & Lieberman, 2001).

CONCLUSIONS

The aim of this chapter was to outline ways in which electrocortical measures can be used to answer important theoretical questions in person perception. As the research reviewed here demonstrates, ERPs provide an additional tool for the experimental social psychologist’s arsenal of methods. We contend, however, that ERPs are most fruitfully employed in conjunction with more traditional behavioral methods. Most important, ERPs are only as effective in solving theoretical dilemmas as the experimental designs in which they are applied (e.g., Cacioppo et al., 2003; Willingham & Dunn, 2003). It is our hope that this chapter, along with the other chapters in this volume, will inform researchers as to the potential value of including the ERP and other physiological measures in their research programs.

In closing, it is important to briefly address when researchers should choose ERPs as opposed to other measures of brain function. A host of other psychophysiological measures not discussed in this review, including (but not limited to) brain imaging techniques designed to specify which brain structures and systems underlie social cognitive processes (e.g., functional magnetic resonance imaging; fMRI), also are now important tools for social neuroscientists interested in person perception (e.g., see Phelps et al., 2000; Richeson et al., 2003). Deciding which kind of neural measure(s) to use is driven by theoretical, as well as practical, considerations. On the practical side, electrophysiological measures (such as ERPs) can be em-
ployed at far less cost than fMRI and can be incorporated into a social cognition lab with relatively modest physical renovations and technical expertise. Acquiring fMRI technology requires a substantial, often institution-wide, commitment of financial and personnel resources to purchase and operate a magnet and construct a space in which to house it. More important, ERPs and fMRI are simply suited to addressing different theoretical questions. In general, ERPs are among the best tools available for specifying the temporal sequence of cognitive processes associated with social perception, but their usefulness for determining the neural sources of these processes is limited (but see Koles, 1998). In contrast, fMRI provides exceptional spatial resolution but, at least at present, poor temporal resolution (on the order of 4–6 seconds poststimulus). An ideal scenario for many researchers would involve the combined use of ERPs and fMRI in order to specify both spatial and temporal parameters of the neural events underlying person perception. Some relatively new technologies combining these properties already have been applied in cognitive neuroscience (e.g., see Gratton & Fabiani, 1998). Use of such techniques has promise for fostering further links between social and biological approaches and for advancing our understanding of the neural machinery driving social-psychological phenomena.

REFERENCES

& A. W. Kruglanski (Eds.), Social psychology: Handbook of basic principles (pp. 211–238). New York: Guilford Press.

