Shrinking Suburbs in a Time of Crisis

Justin B. Hollander
Colin Polsky
Dan Zinder
Daniel M. Runfola

College of William and Mary, dsmillerrunfol@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/asbookchapters

Part of the Environmental Health and Protection Commons

Recommended Citation

This Book Chapter is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
The Routledge Companion to the Suburbs

Edited by Bernadette Hanlon and Thomas J. Vicino
Contents

List of figures viii
List of tables x
Notes on contributors xi
Preface xvi

Introduction 1
Bernadette Hanlon and Thomas J. Vicino

PART I
Suburban definitions and descriptions 11

1 Defining suburbs 13
 Ann Forsyth

2 Suburban stereotypes 29
 Richard Harris

3 In what sense a post-suburban era? 39
 Nicholas A. Phelps

PART II
Global perspectives on the suburbs 49

4 Toward a comparative global suburbanism 51
 Pierre Hamel and Roger Keil

5 Suburbanization in Latin America 62
 Lawrence A. Herzog

6 Suburbanization in Australia 72
 Robert Freestone, Bill Randolph, and Simon Pinnegar
Contents

7 Suburbanization in Europe: a focus on Dublin
Ruth McManus

8 Suburbanization in Asia: a focus on India
Annapurna Shaw

9 Suburbanization in Asia: a focus on Jakarta
Deden Rukmana, Fikri Zul Fahmi, and Tommy Firman

10 Suburbanization in Asia: a focus on Seoul
Chang Gyu Choi and Sugie Lee

PART III
Diversity, exclusion, and poverty in the suburbs

11 Queer suburbs: (sub)urban spaces and sexualities in the Global North
Andrew Gorman-Murray and Catherine J. Nash

12 Inequality and poverty in the suburbs: the case of metropolitan Cairo
Erina Iwasaki

13 Social exclusion and multiethnic suburbs in Sweden
Magnus Dahlstedt and David Ekholm

14 Uneven development and the making of Rio de Janeiro
Anjuli N. Fahlberg

15 Dividing the metropolis: the political history of suburban incorporation in the United States
Jon C. Teaford

16 Immigrants in U.S. suburbs
Kyle Walker

17 Poverty in U.S. suburbs
Katrin B. Anacker

18 From Sanford to Ferguson: race, poverty, and protest in the American suburb
Willow Lung-Amam and Alex Schafran

19 Stigma and the U.S. suburb
Whitney Airgood-Obrycki and Cody R. Price

87
100
110
121
133
135
147
163
173
184
193
208
220
230
PART IV
Planning, public policy, and reshaping the suburbs

20 Metropolitan governance in Paris
Theresa Enright

21 The French banlieue: renovating the suburbs
Juliet Carpenter

22 Shrinking suburbs in a time of crisis
Justin B. Hollander, Colin Polsky, Dan Zinder, and Dan Runfola

23 Redesigning the suburbs: new town and master-planned suburbs of the 1960s and 1970s
Lisa Benton-Short

24 Keeping up with the Joneses: residential reinvestment and mansionization in American inner-ring suburbs
Suzanne Lanyi Charles

25 Planning and the cultural landscapes of suburban Turkey
Bahar Durmaz-Drinkwater, Jaap Vos, and Asli Ceylan Öner

26 Cultural production in the suburban context
Alison L. Bain

PART V
Conclusion and future prospects

27 The end of the suburbs
John Remnie Short

28 Conclusion and future research on global suburbs
Bernadette Hanlon and Thomas J. Vicino

Index
Introduction

In recent years, increased scholarly attention has been paid to the fall-out from the 2008 sub-prime lending debacle, a national collapse of the housing market that resulted in massive foreclosures and widespread housing vacancy throughout the United States (Immergluck, 2011; Hollander, 2009). Its effect on perennially growing areas such as Sunbelt cities and suburban living was unprecedented (Goodman, 2007; Leland, 2007; Dash, 2011). From Atlanta to Fort Meyers to Phoenix, massive new housing developments sat largely unoccupied while older housing sat abandoned due to foreclosure (Runfola and Hankins, 2010). With the housing market in a tailspin, cities in the Sunbelt faced depopulation and housing vacancy akin to that observed in the early stages of industrial Rustbelt cities’ decline when their major industries began to falter.

It appeared that the Great Recession (the interval between 2006 and 2009) brought on a new era of shrinkage in formerly growing cities. In this chapter, we define shrinkage as net decline in occupied housing units. Lucy and Phillips (2006) note that decline in housing occupancy is a more meaningful indicator of decline than population loss, since the latter may indicate that units are being used differently rather than, for example, a community having more single or dual occupancy units where previously most units housed an entire family. In that instance, population decreases but the neighborhood has not necessarily experienced any destabilizing effects. The circumstances surrounding these new declines differ from Rustbelt population declines that date from the 1950s. In the Rustbelt, shrinkage has been driven by global economic conditions that pushed many manufacturing industries overseas – an economic trend unlikely to reverse in the near future. In contrast to this, the sun will always shine on the Sunbelt, likely driving an eventual return of the demand for retiree housing, even if tempered lending practices do not permit the same rate of consumption without capital.

Even if the circumstances around decline and shrinkage differ in these regions, we can still learn lessons from the Rustbelt about the process of shrinkage and the planning methods already undertaken in that region to encourage recovery. It has been suggested that once individual neighborhoods reach a certain threshold of vacancy, the likelihood of reversing that trend diminishes greatly (Hoyt, 1933; Wilson and Kelling, 1982; Wallace, 1989; Temkin and Rohe, 1996;
Shrinking suburbs in a time of crisis

Keenan et al., 1999). Even as the United States as a whole recovers, individual pockets, neighborhoods, or regions that are still declining will likely persist in doing so, posing increasingly daunting challenges such as crime, poverty, depopulation, and ultimately revenue loss to local planners and policymakers.

As planners in this new group of shrinking places develop strategies to address decline, there is much they can learn from the emerging body of literature on smart shrinkage (Popper and Popper, 2002; Schilling and Logan, 2008; Hollander et al., 2009). Smart shrinkage is a set of policies that help areas with declining populations manage the associated land use changes. Instead of fighting population loss, smart shrinkage begins with the idea that maintaining a high quality of life for the remaining residents can be achieved without growth.

Central to smart shrinkage is recognizing the “fallibility of the myth of endless growth” (Popper and Popper, 2002, p. 23). Smart shrinkage was mentioned as early as 1989, when Clark encouraged preserving declining areas for “parkland and recreational spaces” (p. 143) — a suggestion echoed recently by Schilling and Logan (2008). Armborst, D’Oca, and Theodore (2005) introduced the idea of widespread acquisitions of vacant lots as a means of expanding average lot sizes and better managing shrinking populations, a process they described as “blotting.”

A number of policymakers and lobbying groups have already implemented or considered smart shrinkage policies. Community leaders in Youngstown, Ohio, a city that has lost half of its population since 1950, adopted this approach with a new Master Plan to address its remaining population of 74,000. In the Plan, the city came to terms with its ongoing population loss and called for a “better, smaller Youngstown,” focusing on improving the quality of life for existing residents rather than attempting to grow the city (City of Youngstown, 2005; Hollander, 2009; Schatz, 2010). In Philadelphia, the nonprofit Public/Private Ventures office issued a report calling for “the consolidation of abandoned areas and, in some cases, the relocation of those households that remain in blocks that too often look like Dresden after the Second World War” (Hughes and Cook-Mack, 1999, p. 15). City leaders in New Bedford, Massachusetts, and Rochester, New York have also explored the potential of smart decline (Goodnough, 2009; Fairbanks, 2010).

As shrinkage spreads beyond a handful of Rustbelt capitals, the smart shrinkage approach may gain increasing prominence in planning practice. Before studying smart shrinkage as a solution, however, planners need to better understand the process of shrinkage. When places lose a sizable number of people, the first thing that changes is housing demand. Glaeser and Gyourko (2005) have demonstrated the durability of housing using economic analysis — that is, as people leave a place, homes do not leave in concomitant levels synchronously. In time, many factors will result in fewer occupied housing units, including abandonment, demolition, arson, or an unwillingness of landlords to lease their property.

In this chapter, we seek to understand the physical impacts of economic contraction on housing occupancy patterns before and after the Great Recession. Additionally, we ask whether or not different census–defined density–determined regions — urbanized areas, metropolitan statistical areas, and rural areas — were affected uniformly during economic contraction.

We answer these questions by exploring household residential delivery data acquired from the U.S. Postal Service for February of 2000, 2006, and 2011; these years roughly mark the beginning of the real estate boom, peak of the real estate market, and years of decline and instability in the housing market following that peak. These data contain household delivery counts for every zip code in the country. In analyzing this dataset, net changes in occupied housing by zip code were tabulated and mapped, and patterns of spatial clustering were explored using Global and Local Moran’s I statistics and Local Indicators of Spatial Association (LISA).
The planning context

Planners and developers have, for decades, been caught up in a false dichotomy: when a community grows in population it prospers, and when its population declines it suffers. E. F. Schumacher challenged that false dichotomy in 1973 with his volume *Small is Beautiful*. Popper et al. followed with *Urban Nongrowth* in 1976. But the on-the-ground world of practice never really responded to those critiques, and the growth/decline dichotomy prevailed until just recently.

Now, some local officials are asking if their communities can thrive and improve while staying small or even declining in population. In many ways, it is out of desperation driven by the profound failure of economic development strategies to arrest decline in many urban areas over the last several decades. The infusion of public monies into new stadiums, job training centers, infrastructure, and new housing in cities big and small has had a positive effect on some cities, but not all. Called the “forgotten cities” by Hoyt and Leroux (2007), the power and success of economic turn-around by building additional infrastructure has simply not worked everywhere. In fact, there is evidence that economic development has failed to reverse structural economic conditions contributing to decline more often than it has succeeded (Schumpeter, 1934; Boyer, 1983; Logan and Molotch, 1987).

Urban population decline has a bad reputation. Beauregard’s 2003 book *Voices of Decline* documented in fastidious detail the ways that the discourses of decline were developed and positioned in American culture. Beauregard concludes that modern society’s drive for bigger, faster, more of everything required that population and employment loss in mid-twentieth century cities was to be viewed in antipode to the growth and vitality of the suburbs. Lucy and Phillips’s 2000 work further illustrated the plight of suburbs facing disinvestment and decline. They argued that booming, growing suburbs were at the greatest risk for decline, because they generally lacked the sense of place that can continue to attract new residents. Lang and Lefurgy’s 2007 “boomburbs” analysis found that these growing suburbs were a significant phenomenon; they found 53 such boomburbs—places at high risk for decline in the event of economic contraction.

Little is known about how the Great Recession affected growing places like “boomburbs”: whether they lost housing, how pervasive that loss was, and whether it was geographically clustered or dispersed. As such, the Great Recession provides a useful natural experiment for studying how an economic crisis influences shrinkage.

Alternative methods of calculating neighborhood decline

Bowman and Pagano (2004) conducted an exhaustive study on this topic, seeking to understand the vacancy problem’s extent. They administered written surveys to local officials and assembled a database of abandoned buildings and vacant lot counts across more than a hundred U.S. cities. Unfortunately, this survey-based method was proven unreliable when cross-checked against housing unit counts from the Decennial Census (Hollander, 2009). Local officials across the country use very different strategies to account for vacancy and abandonment, making the use of locally distinct administrative data sources a suboptimal approach for producing national generalizations (Bowman and Pagano, 2000). Hillier et al. (2003) examined Philadelphia’s housing databases to track vacancy and abandonment data, but their systems are not interoperable, making comparative analysis practically impossible. Wilson and Margulis (1994) developed a similarly localized analysis in Cleveland. Runfola and Hankins (2010) conducted on-the-ground fieldwork in Atlanta to tally abandoned and derelict housing, but their method was time-intensive and thus only conducted in a limited number of census block groups.
Many remote-sensing and GIS-based studies have had some success measuring urban population change, examining areas experiencing growth throughout the duration of the studies (Weber and Puissant, 2003; Xiao et al., 2006; Yang and Lo, 2002). Examining urban shrinkage, Ryznar and Wagner (2001) attempted to study the effects of population decline but could only measure net change in forested and agricultural land, extrapolating their findings to housing and commercial land use changes. Banzhaf et al. (2007) explored shrinkage in Leipzig, Germany, but found that the necessary data to validate their findings was lacking.

While remote-sensing-based approaches suggest that urban change may one day be measured accurately by aerial and satellite imagery, the data and technical requirements can be out of reach for many planning departments, and widely replicable methodologies have not yet been developed. One possible solution is to reconsider some of the available data from the U.S. Decennial Census. Data from the census provides total counts of occupied housing units for neighborhood-level census tracts every 10 years. Each housing unit in the U.S. is classified as either occupied or vacant. If vacant, the Census Bureau devised several possible classifications to reflect different reasons including for sale, seasonal home, or a catchall category, “other vacant,” which researchers use to indicate abandoned homes (Hollander, 2010).

The challenge of using this dataset to produce insights into events such as the economic downturn is the process of population movement unfolds on a continuous basis whereas the census is only collected every 10 years. Other census data sources, such as the American Community Survey, provide annual updates; however, the finest scale on which these housing occupancy data are released is the municipal level, making this option inadequate for a neighborhood-level analysis.

Methodological approach

Occupied housing units offer a clear and useful path for studying abandonment at a national scale. This study explores a relatively unstudied data source, the U.S. Postal Service Delivery Statistics, as an alternative to the more spatially and time constractive datasets described in the previous section. Six days a week, every week of the year, USPS sends a postal worker to walk up and down nearly every street in America and collects data on total deliveries for each zip code. The USPS regularly releases datasets that provide information on occupied housing units for each U.S. zip code. When a postal worker determines that a housing unit has not been occupied for more than 90 days, the USPS removes the address from its active inventory, data which is aggregated to zip codes and made available on a monthly basis.

Basic tabulation

For this study, three USPS datasets were analyzed: February 2000, February 2006, and February 2011. Nearly all zip codes in the lower 48 states were included in the analysis. Two time intervals were selected for analysis: February 2000 to February 2006 and February 2006 to February 2011. The first interval corresponds with the housing boom in the decade’s first half and the second interval corresponds with the approximate tipping point of the boom into the foreclosure crisis and recession.

Change for each time interval was calculated by subtracting total occupied housing at the beginning point of each interval from occupied housing at the interval’s end. The later time intervals total households from the earlier time intervals (e.g., total households in Feb 2000 for zip code X subtracted from total households in Feb 2006 from that same zip code, produces a measurement of occupied housing change for the interval between 2000–2006, where a negative value implies shrinkage and a positive value implies population growth). Change in housing
occupancy was measured nationally (see Table 22.1) and for each of the four major census regions: Northeast (see Table 22.2), South (see Table 22.3), Midwest (see Table 22.4), and West (see Table 22.5). Additionally, the national and regional datasets were divided into three sub-regions based on "urban-ness" to test the severity in which more densely populated urban cores were impacted relative to less densely populated suburban and rural areas. Because the census categorizes regions as "Urbanized Areas" and "Metropolitan Statistical Areas" by population density, we used these boundaries as a rough approximation of different components of the metropolitan region for our study. Areas outside of Metropolitan Statistical Areas were identified as "rural and small towns."

Data mapping

Zip codes were also mapped nationally to show zip codes with net gains and declines for each interval (see Figures 22.1 and 22.2). Data from Figures 22.1 and 22.2 were combined into a third table.

Table 22.1 Summary statistics for national zip code district housing occupancy

<table>
<thead>
<tr>
<th>Interval 1: Total Count of Zip Codes</th>
<th>Urbanized Areas*</th>
<th>Metropolitan Statistical Areas**</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000–2006 Count of ZDHOs***</td>
<td>6686</td>
<td>12071</td>
<td>9855</td>
<td>28612</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>29.9%</td>
<td>11.3%</td>
<td>22.8%</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval 2: Total Count of Zip Codes</th>
<th>Urbanized Areas*</th>
<th>Metropolitan Statistical Areas**</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006–2011 Count of ZDHOs</td>
<td>6243</td>
<td>11447</td>
<td>9186</td>
<td>26906</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>35.9%</td>
<td>17.0%</td>
<td>26.4%</td>
<td>24.6%</td>
</tr>
</tbody>
</table>

Change in ZDHOs	239	584	175	998
Adjusted Change in ZDHOs	256	616	188	1061
% Change in ZDHOs	12.8%	45.2%	8.3%	18.9%

* Within Metropolitan Statistical Areas
** Excluding zip codes located in Urbanized Areas
*** Zip codes with a net decline in housing occupancy

Table 22.2 Summary statistics for Northeastern zip code district housing occupancy

<table>
<thead>
<tr>
<th>Interval 1: Total Count of Zip Codes</th>
<th>Urbanized Areas</th>
<th>Metropolitan Statistical Areas</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000–2006 Count of ZDHOs</td>
<td>1918</td>
<td>1966</td>
<td>1298</td>
<td>5182</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>22.6%</td>
<td>9.4%</td>
<td>13.1</td>
<td>15.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval 2: Total Count of Zip Codes</th>
<th>Urbanized Areas</th>
<th>Metropolitan Statistical Areas</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006–2011 Count of ZDHOs</td>
<td>1859</td>
<td>1874</td>
<td>1221</td>
<td>4954</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>30.1%</td>
<td>14.6%</td>
<td>17.4%</td>
<td>21.1%</td>
</tr>
</tbody>
</table>

Change in ZDHOs	126	89	42	257
Adjusted Change in ZDHOs	130	93	45	269
% Change in ZDHOs	30.0%	50.5%	26.3%	34.1%
Table 22.3 Summary statistics for Southern zip code district housing occupancy

<table>
<thead>
<tr>
<th>Interval</th>
<th>Urbanized Areas</th>
<th>Metropolitan Statistical Areas</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Count of Zip Codes</td>
<td>2048</td>
<td>4788</td>
<td>3044</td>
<td>9880</td>
</tr>
<tr>
<td>2000-2006 Count of ZDHOs</td>
<td>561</td>
<td>439</td>
<td>468</td>
<td>1468</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>27.4%</td>
<td>9.2%</td>
<td>15.4%</td>
<td>14.9%</td>
</tr>
<tr>
<td>Total Count of Zip Codes</td>
<td>1889</td>
<td>4611</td>
<td>2863</td>
<td>9363</td>
</tr>
<tr>
<td>2006-2011 Count of ZDHOs</td>
<td>621</td>
<td>579</td>
<td>553</td>
<td>1753</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>32.9%</td>
<td>12.6%</td>
<td>19.3%</td>
<td>18.7%</td>
</tr>
<tr>
<td>Change in ZDHOs</td>
<td>60</td>
<td>140</td>
<td>85</td>
<td>285</td>
</tr>
<tr>
<td>Adjusted Change in ZDHOs</td>
<td>65</td>
<td>145</td>
<td>90</td>
<td>301</td>
</tr>
<tr>
<td>% Change in ZDHOs</td>
<td>11.6%</td>
<td>33.1%</td>
<td>19.3%</td>
<td>20.5%</td>
</tr>
</tbody>
</table>

Table 22.4 Summary statistics for Midwestern zip code district housing occupancy

<table>
<thead>
<tr>
<th>Interval</th>
<th>Urbanized Areas</th>
<th>Metropolitan Statistical Areas</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Count of Zip Codes</td>
<td>1504</td>
<td>3379</td>
<td>4169</td>
<td>9052</td>
</tr>
<tr>
<td>2000-2006 Count of ZDHOs</td>
<td>660</td>
<td>480</td>
<td>1378</td>
<td>2518</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>43.9%</td>
<td>14.2%</td>
<td>33.1%</td>
<td>27.8%</td>
</tr>
<tr>
<td>Total Count of Zip Codes</td>
<td>1395</td>
<td>3286</td>
<td>3941</td>
<td>8635</td>
</tr>
<tr>
<td>2006-2011 Count of ZDHOs</td>
<td>679</td>
<td>766</td>
<td>1362</td>
<td>2807</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>48.7%</td>
<td>23.3%</td>
<td>34.6%</td>
<td>32.6%</td>
</tr>
<tr>
<td>Change in ZDHOs</td>
<td>19</td>
<td>286</td>
<td>-16</td>
<td>289</td>
</tr>
<tr>
<td>Adjusted Change in ZDHOs</td>
<td>20</td>
<td>294</td>
<td>-16</td>
<td>303</td>
</tr>
<tr>
<td>% Change in ZDHOs</td>
<td>31.0%</td>
<td>61.3%</td>
<td>-1.1%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

Table 22.5 Summary statistics for Western zip code district housing occupancy

<table>
<thead>
<tr>
<th>Interval</th>
<th>Urbanized Areas</th>
<th>Metropolitan Statistical Areas</th>
<th>Rural and Small Towns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Count of Zip Codes</td>
<td>1203</td>
<td>1925</td>
<td>1320</td>
<td>4448</td>
</tr>
<tr>
<td>2000-2006 Count of ZDHOs</td>
<td>344</td>
<td>255</td>
<td>352</td>
<td>951</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>28.6%</td>
<td>13.2%</td>
<td>26.7%</td>
<td>21.4%</td>
</tr>
<tr>
<td>Total Count of Zip Codes</td>
<td>1083</td>
<td>1681</td>
<td>1150</td>
<td>3914</td>
</tr>
<tr>
<td>2006-2011 Count of ZDHOs</td>
<td>373</td>
<td>324</td>
<td>299</td>
<td>996</td>
</tr>
<tr>
<td>Percentage ZDHOs</td>
<td>34.4%</td>
<td>19.3%</td>
<td>26.0%</td>
<td>25.4%</td>
</tr>
<tr>
<td>Change in ZDHOs</td>
<td>29</td>
<td>69</td>
<td>-53</td>
<td>45</td>
</tr>
<tr>
<td>Adjusted Change in ZDHOs</td>
<td>32</td>
<td>79</td>
<td>-46</td>
<td>51</td>
</tr>
<tr>
<td>% Change in ZDHOs</td>
<td>9.4%</td>
<td>31.0%</td>
<td>-13.1%</td>
<td>5.4%</td>
</tr>
</tbody>
</table>
Net Change In Housing Units

Lost Housing Units
Gained or Neutral Change
Not Mapped - (No Data)

Regional Boundaries

Figure 22.1 Change in occupied households 2000–2006

Net Change In Housing Units

Lost Housing Units
Gained or Neutral Change
Not Mapped - (No Data)

Regional Boundaries

Figure 22.2 Change in occupied households 2006–2011
Shrinking suburbs in a time of crisis

Net Change In Housing Occupancy Between Periods

- Net Gain from 2000-2006 And Loss From 2006-2011
- Net Loss from 2000-2006 And Gain From 2006-2011
- Net Loss In Both Periods
- Not Mapped - (No Data)

Regional Boundaries

Figure 22.3 Occupied housing trends: comparing 2000–2006 with 2006–2011

The national summary map (see Figure 22.3) showing trends over the full 11-year span by highlighting zip codes that declined in both intervals, Interval 1 only, and Interval 2 only.

To quantify severity of declines, maps were also created for all declining zip codes in each interval, showing what housing percentage was lost in these zip codes (see Figures 22.4 and 22.5). Declining zip codes from Interval 1 were divided into quartiles based on the percentage of the total housing stock lost during that interval. The quartile cutoff points for the first interval were applied to Interval 2 as well, to contrast how severe declines were for each interval.

Global and local indicators of spatial autocorrelation

Prior research has shown contagion effects for decline at the sub-neighborhood level (Harding et al., 2009). To test this, two univariate measures of spatial autocorrelation, Global Moran’s I and a Local Indicator of Spatial Association (LISA), are used to explore spatial clustering of USPS Housing Unit Occupancy Change (cf. Anselin, 1995). These tests identify geographic clustering of zip codes showing statistically similar occupancy trends. Identifying adjacent declining clusters not only shows where “contagion effects” have been prevalent, but also elucidates “hot spots” of shrinkage (and growth) across the United States for each time interval.

The Global Moran’s I analysis is employed to examine if household mail recipient losses and/or gains occurred in neighboring zip codes. Where the global statistic is statistically significant, the LISA analysis maps the clusters by partitioning them into groups of zip codes exhibiting anomalously high or low values, relative to the national mean.
Figure 22.4 Percentage occupied housing lost 2000–2006

Figure 22.5 Percentage occupied housing lost 2006–2011
Each zip code in a cluster is labeled according to four possible categories in the LISA test:

1) High-High clustering – zip codes that experienced anomalously high growth surrounded by zip codes that also experienced anomalously high growth;
2) Low-Low clustering – zip codes that experienced anomalously high loss surrounded by zip codes that also experienced anomalously high loss;
3) Low-High clustering – declining zip codes surrounded by gaining zip codes;
4) High-Low clustering – gaining zip codes surrounded by declining zip codes.

Of these results, only low-low results, indicating homogeneous local clustering of zip codes anomalously below the national mean were mapped. Only zip codes that shared a border (the “Queen’s” first-order contiguity matrix) were defined as being “neighbors.”

Methodological considerations

Similar to remotely sensed and census data sources, using zip codes to measure urban shrinkage comes with a number of methodological concerns. Zip code boundaries occasionally change. In some cases, zip codes are eliminated; in other cases, two or more neighboring zip codes may be merged. In both cases, our calculations for such zip codes might indicate spurious losses or gains. Luckily, the Postal Service makes these changes available through their biweekly publication, The Postal Bulletin, enabling an analysis of how much these changes might impact analysis. Between 2000–2011, of the roughly 30,000 zip codes in the United States, roughly 130 zip codes on average changed boundaries per year. Any zip code that had a boundary change was omitted from the analysis.

Additional zip codes were omitted from the 2006–2011 interval in instances where the housing total went from a positive number in 2006 to zero occupied housing units in 2011. While it is conceptually possible that a zip code could lose its entire housing stock, our preliminary analysis identified 356 egregious cases where a zip code containing many housing units in 2006 – thousands in some cases – would be reduced to 0 in 2011.

In addition to these challenges, zip codes face many issues common to census, town, or otherwise zonal datasets. The number of occupied housing units within a zip code is a one-dimensional metric, and negative changes may be unrelated to neighborhood decline. For instance, a zip code could lose households if a new civic center is built and residences demolished or if multi-family homes are converted into single-family.

Findings

Absolute change in housing occupancy

This analysis of the USPS dataset revealed a number of trends that provide new and expanded insight into the spatial context in which we understand the Great Recession and subprime lending crisis’ impact. Additionally, it provides a previously unavailable, imitable tool for periodic analysis of national and regional housing trends. As expected, more zip codes had a decline in occupied housing in the 2006–2011 interval than the 2000–2006 interval (see Table 22.1). Nationally, 998 more zip codes lost housing in the latter interval, resulting in a 19.6 percent increase in declining zip codes over the previous interval.

Each of the national sub-regions examined in this study experienced an increase in Zip Code District Housing Occupancy (ZDHOs) in the second interval. However, the magnitude
of that change was not uniform across urban areas. In both intervals, Urbanized Areas had the highest percentage of ZDHOs, rural areas and small towns the second highest, and Metropolitan Statistical Areas the lowest. However, Metropolitan Statistical Areas had far and away the largest increase in ZDHOs in the second interval. The finding that less densely populated sections of metropolitan areas outside of the urban core showed the greatest percentage change in ZDHOs was consistent with findings limited to the subdivision of Urbanized Areas (Zinder, 2009).

All four of the regions examined experienced an increase in ZDHOs. The Midwest had the greatest overall percentage of ZDHOs in both intervals, followed by the West, Northeast, and South, respectively. However, the West and Midwest had the smallest percentage increase of ZDHOs between the two intervals. The Northeast had the greatest percentage increase in ZDHOs. The two largest subregion percentage changes in ZDHOs occurred within Metropolitan Statistical Areas in the Midwest and Northeast, respectively. The only two sub-regions that did not show an increase in ZDHOs were Midwestern and Western Rural and Small Towns. The second interval was not only notable for an overall increase in ZDHOs but also for an increased migration in the distribution of ZDHOs from urban centers into suburban and exurban areas.

Comparing spatial distribution of ZDHOs between intervals

Only 9.3 percent of zip codes nationally declined in both intervals (see Figure 22.3). The majority of the ZDHOs only declined in one of the intervals, with 11.1 percent of zip codes nationally only declining in the first interval and 15.2 percent of the zip codes only declining in the second interval. The Midwest had the most continuity between the two intervals, but each region showed volatility in new areas for the second interval. Thus, the second interval was not only marked by a general increase in ZDHOs, but by a widespread number of zip codes and regions whose housing occupancy reversed from growth to decline. Conversely, many previously declining regions, notably the High Plains and Pacific Northwest, began to see reversal patterns towards growth in the second interval.

Magnitude

While the second interval has been thus far characterized as having more widespread and new instances of decline, the first interval was better characterized as having the sharpest declines. Housing occupancy of 50 percent of all ZDHOs declined by more than 3.5 percent in the first interval whereas only 29.9 percent declined at that rate in the second interval. These trends were fairly consistent regionally for the first interval with the Midwest and South, as well as rural and small towns experiencing slightly disproportionate numbers of ZDHOs that lost over 3.5 percent of their housing stock. Regions with a high number of zip codes that declined only in the second interval tended to have a high percentage of ZDHOs with housing occupancy losses below 1.4 percent.

Global Moran's I and LISA

The results of the Moran's I global autocorrelation test indicated gaining and losing zip codes tended to cluster on the landscape. This was true in both time intervals, with Moran's I results 0.16 (p < 0.05) for the 2000–2006 interval and 0.24 (p < 0.05) for the 2006–2011 interval. This prompted us to perform a Local Indicator of Spatial Autocorrelation (LISA) to determine where this spatial clustering occurred. These results are seen in Figures 22.3 and 22.4, focusing only on statistically significant (p < 0.05) zip codes that had a net loss of occupied households.
Shrinking suburbs in a time of crisis

Dark red areas show zip codes that experienced high losses of people receiving mail (relative to all zip codes) for a time interval, surrounded by other zip codes that also experienced high loss.

Centralized (clustered) housing loss occurred in both intervals; however, similar to ZDHO distribution, clustering patterns differed greatly between the two intervals. Clusters in the Great Plains, Mississippi and Missouri valleys, and along the Great Lakes stand out in the first interval. Clustering along the Great Lakes and in the Phoenix Metro area expanded in the second interval and popped up in Sun Belt metropolitan areas such as Las Vegas, Tampa, Miami, throughout California, and (for different reasons), New Orleans.

Conclusion

This research shows that the distribution of housing occupancy declines shifted between the 2000-2006 interval and the 2006-2011 interval. Many areas that previously exhibited perennial growth, particularly low-density suburban and exurban areas, and real estate-fueled markets in the Sun Belt, began to experience the initial stages of unoccupied housing challenges previously associated solely with centralized, densely populated urban areas. While housing occupancies have continued in many urban cores, particularly those within the Rust Belt and Great Plains, the rate and centralization of housing loss in these regions has tempered. Conversely, declines in lower-density areas across the United States and Sun Belt cities have not spiraled to the same extent that urban cores did in the late twentieth century. However, declines in these areas have become widespread.

Through the lens of housing occupancy, this chapter serves to initiate a first step in developing a methodological approach to identifying vulnerable neighborhoods and regions in a timely and accurate manner, and it further addresses a critical indicator of neighborhood health.

Understanding the scale and scope of housing unit declines throughout the United States contributes to the growing literature on smart shrinkage. The findings here lay a foundation for planners to begin to measure, and in turn manage, the physical changes that are occurring in their communities due to shrinkage. Additionally, the potential exists for USPS data to assist communities and RPOs in monitoring and analyzing shrinking areas within their boundaries.

Determining where these shrinkage hot spots are can aid planners and policymakers in developing tailor-made smart shrinkage strategies. For example, zip codes with high levels of shrinkage could be targeted for land banking, housing demolition, community-based agriculture, or expanded park systems. Additionally, such places might be receptive to a new form of zoning: relaxed zoning. Relaxed zoning addresses the fundamental economic problem in shrinking cities: excess supply of structures (housing, stores, schools) relative to demand (the number of people) (Hollander, 2011). Falling demand for housing will result in falling rents and house values (Hoyt, 1933; Temkin and Rohe, 1996). As prices fall, the ability to sell is impaired (especially if the mortgage exceeds the value of the property). As prices fall, the ability of landlords to recoup the costs of protecting and maintaining their properties in rents is likewise compromised (Keenan et al., 1999). A spiral of declining values, disinvestment, and deteriorating housing stock typically destroys stable neighborhoods and spreads dereliction (Bradbury et al., 1982).

This chapter examined, at the national scale, the patterns of urban growth and shrinkage from 2000 to 2011. Findings suggest that declining zip codes in the 2006 to 2011 interval were more dispersed and often in new territory, in comparison with 2000 to 2006. Further, more zip codes declined from 2006 to 2011 than the preceding interval. Future research could employ multivariate statistical techniques to explore the key attributes that cause places to decline and in such a clustered fashion. Focused studies on specific cases of intra-metropolitan shrinkage could provide policymakers with guidance on how shrinkage happens on a more local scale.
Guide to further reading

References

Hoyt, H. (1933) One Hundred Years of Land Values in Chicago. Chicago, IL: University of Chicago Press.

