The Contribution of Local and Transport Processes to Phytoplankton Biomass Variability Over Different Timescales in the Upper James River, Virginia

Qubin Qin
Virginia Institute of Marine Science, qubin@vims.edu

Jian Shen
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/articles
Part of the Environmental Monitoring Commons, and the Population Biology Commons

Recommended Citation
Qin, Qubin and Shen, Jian, "The Contribution of Local and Transport Processes to Phytoplankton Biomass Variability Over Different Timescales in the Upper James River, Virginia" (2018). Articles. 73.
https://scholarworks.wm.edu/articles/73

This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact wmpublish@wm.edu.
The contribution of local and transport processes to phytoplankton biomass variability over different timescales in the Upper James River, Virginia

Qubin Qin* and Jian Shen

Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, 23062, USA

*Corresponding Author:
Qubin Qin
Virginia Institute of Marine Science
College of William and Mary
Gloucester Point, VA 23062

Email: qubin@vims.edu
Phone: (804) 684-7670
The contribution of local and transport processes to phytoplankton biomass variability over different timescales in the Upper James River, Virginia

Qubin Qin* and Jian Shen

Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, 23062, USA

Abstract

Although both local processes (photosynthesis, respiration, grazing, and settling), and transport processes (advective transport and diffusive transport) significantly affect local phytoplankton dynamics, it is difficult to separate their contributions and to investigate the relative importance of each process to the local variability of phytoplankton biomass over different timescales. A method of using the transport rate is introduced to quantify the contribution of transport processes. By combining the time-varying transport rate and high-frequency observed chlorophyll a data, we can explicitly examine the impact of local and transport processes on phytoplankton biomass over a range of timescales from hourly to annually. For the Upper James River, results show that the relative importance of local and transport processes differs on different timescales. Local processes dominate phytoplankton variability on daily to weekly timescales, whereas the contribution of transport processes increases on seasonal to annual timescales and reaches equilibrium with local processes. With the use of the transport rate and high-frequency chlorophyll a data, a
method similar to the open water oxygen method for metabolism is also presented to estimate phytoplankton primary production.

Keywords: Transport rate; phytoplankton biomass; high-frequency observational data; primary production; timescale; open water method
1. **Introduction**

Phytoplankton dynamics, such as the variability of biomass at a location, are controlled by both local processes and physical transport processes. Local environmental conditions, such as temperature, light, nutrient supply, and grazing pressure, strongly regulate phytoplankton growth and primary production through both bottom-up and top-down controls (Kremer and Nixon, 1978). Transport processes in aquatic systems, including advective transport and diffusive transport, affect phytoplankton biomass by redistributing either biomass (direct effect), or dissolved and particulate constituents such as nutrients that regulate phytoplankton growth (Lucas et al., 1999; Cloern, 2001; Paerl et al., 2006; Lancelot and Muylaert, 2011).

The interactions between local and transport processes are complex, and their contributions to phytoplankton dynamics can vary under different dynamic conditions. Because each external forcing (e.g. tide, flow, and wind) and environmental factor (light and temperature) has its own periodic fluctuation, the fluctuation will affect these two processes. We hypothesize that the relative importance of local and transport processes varies with timescales, which is also indicated by previous literature. Lucas et al. (2006) suggest that intra-daily variability of phytoplankton biomass is largely controlled by both the diurnal light cycle and the semidiurnal tidal oscillation, which implies the importance of contributions from both local environmental conditions and tide on the hourly timescale. Lake et al (2013) conduct measurements of photosynthetic rates and integrate daily production on summer months in the York River for both the spring and neap tides. They find that daily primary production does not show a clear variation.
during spring-neap cycle, which suggests that the local biological processes are dominant for daily primary production rather than transport processes. Shen et al. (2008) show that the high biomasses of macroalgae and phytoplankton are the dominant cause of diurnal variation of dissolved oxygen concentration (DO) resulting from high production during daytime and high respiration at night. It suggests that local biological processes can be the dominant processes for primary production for the daily timescale in estuaries and shallow-water systems. Conversely, changes in freshwater discharge are considered to be a major factor driving strong seasonal and annual patterns of phytoplankton biomass in river-dominated estuaries, which modulate the location and strength of algal blooms through transport and nutrient supply (Valdes-Weaver et al., 2006; Reaugh et al., 2007; Costa et al., 2009; Peierls et al., 2012).

Bukaveckas et al. (2011) show that algal blooms vary longitudinally along the Upper James River, and peak at the location where residence time becomes large due to a change of geometry, where about two-thirds of the net primary production is respired locally, and the remaining one-third is transported out of the region by fluvial and tidal advection. It suggests that the variability of phytoplankton biomass can be altered by a dynamic condition resulting from a change of local geometry.

These studies point out the relative importance of transport processes compared to local biological processes on particular timescales. However, due to the difficulty to explicitly separate their contributions, few contributions to the literature discuss how the comparison changes over a range of timescales from days to years though which is interesting to know for some studies. For example, Lucas et al. (2009) suggest that the
variability of phytoplankton biomass can be described by a steady-state balance between local biological processes and transport processes described by residence time (i.e., it assumes that the variability of phytoplankton biomass is negligible, and local and transport processes are equal but counterbalanced in contribution). While this steady-state balance assumption may hold for long-term timescales, it is questionable for short-term timescales, such as daily and weekly timescales. A relevant discussion on the comparison of relative importance of the two processes is helpful to answer on what range of timescales the assumption is valid.

The relative importance of each process on phytoplankton dynamics also needs to be evaluated for studies based on in situ observational data. As the development of instruments, many water quality parameters like DO and chlorophyll-\(a\) fluorescence can be measured in situ at 15-minute intervals, which is often referred to as high-frequency data (http://web2.vims.edu/vecos/). The easy accessibility of high-frequency DO data has prompted wide applications of the open water method for estimating ecosystem primary production and metabolism (Odum, 1956; Howarth and Michaels, 2000; Cole et al., 2000; Caffrey, 2004; Kemp and Testa, 2011). When applying this method for estimating daily ecosystem primary production and metabolism, the effect of physical transport processes is usually neglected (Staehr et al., 2010). This estimation without considering transport, however, may have large biases when biological metabolism or DO is significantly influenced by transport processes (Kemp and Boynton, 1980). In the discussion section of this study, we applied a similar open water method to estimate phytoplankton primary production using high-frequency chl-\(a\) concentration (denoted
by chl-a) data. The question as to whether the approach will cause more bias using phytoplankton data is unknown as spatial horizontal gradients of chl-a are often larger than those of DO. To evaluate the approach, the contribution of the transport processes on the daily timescale needs to be addressed.

The objective of this study is to evaluate how the relative importance of local and transport processes to the local variability of phytoplankton biomass vary over a range of timescales from hours to years. Because the transport processes not only affect the phytoplankton biomass but also affect the nutrient transport, when evaluating the relative importance of transport processes to biomass variability, the contribution of transport processes is restricted to the direct effect that redistributes biomass, and therefore other indirect effects that regulate phytoplankton growth, such as temperature, light availability, and nutrient limitation, are attributed to the contribution of local processes. The Upper James River was selected as the study site where both local and transport processes contribute greatly to phytoplankton dynamics (Bukaveckas et al., 2011).

2. Methods

In this section we first presented how to attribute the variability of phytoplankton biomass to the contributions of local and transport processes separately by decomposing the transport equation. Then we presented a detailed procedure to compute each contribution by using in situ observational phytoplankton data and dynamic fields. The phytoplankton biomass dynamics and contribution of local
processes were estimated using observational data, while the contribution of transport processes was estimated using dynamic fields computed by a dynamic model. Lastly, we statistically analyzed to evaluate the relative importance of local and transport processes, respectively, over a range of timescales.

2.1. Decompose change of biomass

The observation of phytoplankton data can be described by a three-dimensional transport equation with source and sink terms (Chapra, 1997). For simplicity, the first-order reaction transport equation for volumetric phytoplankton biomass in the x-direction can be expressed as follows:

\[\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} - \frac{\partial}{\partial x} \left(K \frac{\partial C}{\partial x} \right) = gC \]

where C denotes volumetric phytoplankton biomass (g C m\(^{-3}\)), x and t denote location and time, respectively, u is current velocity (m s\(^{-1}\)), K is diffusivity (m\(^{2}\) s\(^{-1}\)), and g denotes the growth rate of phytoplankton (d\(^{-1}\)) as a result of local processes. We combined growth and loss as a net growth term g, as \(g = G - R - M \), where G is the gross growth rate, R is the respiration/excretion rate, and M is the mortality rate due to both grazing and settling. The gross growth rate G is a function of available light, nutrients, and temperature (Chapra, 1997). Note that Eq. (1) only includes terms in the x-direction for making the following derivations clear and all variables vary vertically. The terms on the left-hand side of Eq. (1) are the time derivative term, advective transport, and diffusive transport, respectively. Transport processes may increase local concentration of a property if the incoming water has higher concentrations, or decrease it if the
incoming water has lower concentrations. Thus, the impact of transport processes does not only depend on hydrodynamic fields \((u \text{ and } K)\) but also on the horizontal gradient of phytoplankton biomass \((\partial C / \partial x)\).

Areal phytoplankton biomass \((\text{g C m}^{-2})\) can be conventionally obtained by vertical integration of volumetric phytoplankton biomass \(C\) from the bottom to the surface, i.e.,

\[
B = \int_0^H C\,dz,
\]

where \(z\) is the vertical location, and \(H\) is the water depth \((\text{m})\), \(B = C \cdot H\) if the water column is well-mixed. As no phytoplankton is transported across the surface or the bottom, integrating Eq. (1) gives the transport equation for areal phytoplankton biomass:

\[
\frac{\partial B}{\partial t} + \int_0^H \left[u \frac{\partial C}{\partial x} - \frac{\partial}{\partial x} \left(K \frac{\partial C}{\partial x} \right) \right] \,dz = g_B B
\]

(2)

where \(g_B\) is the vertical mean growth rate that accounts for the growth of areal biomass \(B\).

Analogous to the algal growth for biological process, we express transport processes as a transport rate \(F_B\), which is defined as

\[
F_B = \frac{1}{B} \int_0^H \left[u \frac{\partial C}{\partial x} - \frac{\partial}{\partial x} \left(K \frac{\partial C}{\partial x} \right) \right] \,dz,
\]

(3)

and the governing equation (1) can be transformed into the expression:

\[
\frac{\partial B}{\partial t} = (g_B - F_B)B
\]

(4)

Dividing Eq. (4) by \(B\) on both sides gives the equation for the rates:

\[
\frac{1}{B} \frac{\partial B}{\partial t} = g_B + (-F_B)
\]

(5)
Note that the impact of transport processes, expressed by F_B in Eq. (3), depends on \(\partial C / \partial x \). The non-zero \(\partial C / \partial x \) can be caused by either the change of dynamic conditions due to interaction between forcings (i.e., flow, tide) and geometry, or the spatially inhomogeneous local biological processes. Thus, the contribution of transport processes in fact comes from both the dynamically induced transport (referred to as physical transport) and the non-physical transport. The contribution of non-physical transport can be expected to be relatively small locally as biological processes have less spatial gradient compared to the physical transport. Our interest is to understand the physical transport that contributes the change of biomass. We introduce transport rate F that only expresses the physical transport and we can now write Eq. (5) as follows:

\[
\begin{align*}
\frac{r}{\partial t} &= g_B + \left(-F \right) + \left(F - F_B \right) \\
&= \mu + \left(-F \right)
\end{align*}
\]

(6)

where r is the rate to express the variability of phytoplankton biomass as $r = \frac{\partial B}{B \partial t}$, and can be estimated from in situ observations of phytoplankton biomass B. The physical transport rate F is unknown but it can be estimated by using hydrodynamic field and boundary conditions. $\mu = g_B + (F - F_B)$, which represents the growth rate of biomass that resulted from the combined local contributions. Once we know both values of r and F, μ can be computed as $(r - F)$. When g_B is zero (such as conservative properties) or it is spatially homogenous, F equals F_B, and μ equals g_B. We will refer to r as the relative growth rate, and to μ as the effective growth rate in the following sections. As F only represents the transport contribution, a negative F value corresponds
to a “transport in” process that increases biomass, and a positive F value corresponds to a “transport out” process that decreases biomass in accordance with Eq. (6), and a zero F means there is no contribution of transport processes on local phytoplankton variability.

Eq. (6) demonstrates that the relative change of biomass is a result of competition between local and transport processes, and their contributions could be evaluated by comparing the effective growth rate μ to the transport rate F:

1) $\mu > F$ leads to $r > 0$, biomass increases
2) $\mu < F$ leads to $r < 0$, biomass decreases
3) $\mu = F$ leads to $r = 0$, biomass remains constant

Note that μ and F could both have negative values. For example, the observed biomass B at a location may increase at night ($r > 0$) when photosynthesis does not occur ($\mu < 0$), but biomass can increase due to a transport of biomass to this location ($F < 0$, “transport in”).

2.2. Study site

The James River is a tributary of the lower Chesapeake Bay located along the U.S. East Coast (Fig. 1). The Upper James River is the tidal freshwater region where salinity is between 0 and 0.05. Calibrated time series data (15-minute intervals) were collected from Chesapeake Bay Continuous Monitoring Station JMS073.37 at the Virginia Commonwealth University Rice Rivers Center (‘RC’, green triangle, http://web2.vims.edu/vecos/), from March to November 2006, 2007, and 2008. Data
were measured using YSI 6600 data sondes with the Clean Sweep Extended Deployment System, include a number of parameters such as chl-a, temperature, turbidity, and water depth \((H)\). All calibration and maintenances follow the YSI, Inc. operating manual methods. Particularly, chl-a data were obtained using laboratory calibrated sensors that converts \textit{in vivo} fluorescence of chlorophyll \(a\) to chl-a. The sondes were deployed around 0.5 to 0.9 meters below the surface of the water during the observational period, while the mean water depth \(H\) was about 2.5 m, and the mean tidal range was about 0.76 m at Station RC. Hourly irradiation data were obtained at nearby Richmond Airport. Also, monthly time series data of surface chl-a were collected from Chesapeake Bay Program Long-term Monitoring Stations TF5.4 and TF5.5 (blue squares).

The monthly data were used for three long-term timescales (monthly, seasonal, and annual), while the high-frequency data were used to analyze the relative importance of each contribution for continuously increased timescales from hourly to annually.

2.3. \textit{Compute relative growth rate}

As the instantaneous relative growth rate is defined as \(r = \frac{\partial \ln B}{\partial t}\), the solution is \(B_{t+\Delta t} = B_t e^{r\Delta t} \ (\Delta t \to 0)\), which computes biomass measured at time \(t + \Delta t \ (B_{t+\Delta t})\) from the biomass at time \(t \ (B_t)\). This indicates that the relative growth rate can be calculated by the change of biomass. Thus, for a time series of \textit{in situ} measured phytoplankton biomass with an observational time interval of \(\Delta t\), a time series of relative growth rate \(r_{\Delta t}\) that reflects the change in biomass from time \(t\) to \(t + \Delta t\) can be calculated as:
where B_t and $B_{t+\Delta t}$ are the biomass measured at times t and $t + \Delta t$, respectively. For example, $r_{\Delta t}$ is the relative growth rate over daily timescale when $\Delta t = 1$ d; $r_{\Delta t}$ is the relative growth rate over monthly timescale when $\Delta t = 30$ d.

\textit{chl-a} data were used to obtain phytoplankton biomass. High-frequency \textit{chl-a} data collected at 15-minute intervals were first smoothed to 1-h averages. Using hourly mean \textit{chl-a} in the units of g m$^{-3}$, the biomass in the water column can be estimated as $B = C \cdot H = (C: \text{chl-a}) \cdot \text{chl-a} \cdot H$. Here, the assumption of a well-mixed water column was applied. This assumption is reasonable for the shallow Upper James River with no persistent stratification (Bukaveckas et al., 2011), while the mean euphotic depth is about 2-3 m. For a constant \textit{C: chl-a ratio} (g C/g \textit{chl-a}), the rate can be estimated according to Eq. (7):}

\begin{equation}
 r_{hr} = \frac{1}{\Delta t} \ln \left[\frac{(\text{chl-a} \cdot H)_t + \Delta t}{(\text{chl-a} \cdot H)_t} \right], \text{ with } \Delta t = 1 \text{ hr},
\end{equation}

where the subscript “hr” denotes the observed hourly growth rate, and \textit{C: chl-a ratio} was withdrawn since it did not affect rate computation. The \textit{C: chl-a ratio} varies with seasons and species, which can be measured using observations. We applied a constant \textit{C: chl-a ratio} at Stations TF5.5 and RC as the seasonal variation of \textit{C:chl-a ratio} is relatively small and the average \textit{C: chl-a ratio} was 39±2 g C/g \textit{chl-a} (Bukaveckas et al., 2011).
2.4. **Compute transport rate**

The transport rate \(F \) can be computed based on a conservative tracer using a 3D numerical model. For a conservative tracer \(\theta \), it is governed by Eq. (1) with zero growth rate (Note that \(C \) is replaced by tracer concentration \(\theta \) for clarity):

\[
\frac{\partial \theta}{\partial t} + \frac{\partial u\theta}{\partial x} + \frac{\partial v\theta}{\partial y} + \frac{\partial w\theta}{\partial z} = \frac{\partial}{\partial x} \left(K_x \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial \theta}{\partial z} \right)
\]

(9)

where \(u, v, w \) represent velocities in the \(x, y, \) and \(z \) directions, respectively; and \(K_x, K_y, K_z \) represent diffusivit in the \(x, y, \) and \(z \) directions, respectively. For the modeling domain, no tracer comes from the boundaries at all times, i.e. \(\theta_{in} = 0 \) at both river and open boundaries. By using this boundary condition, it assumes that phytoplankton in the Upper James River are mainly from autochthonous sources, which is reasonable in James River as the \(chl-a \) at the fall-line of the James River is much lower than the \(chl-a \) downstream (Bukaveckas et al., 2011). The initial condition, \(\theta_0 = 1 \), is set everywhere within the domain. The tracer is transported by the dynamic fields, which results in the change of horizontal tracer gradient due to the change of geometry and dynamic forcing conditions. Therefore, the transport rate for tracer concentration, \(F_\theta \), can be computed as \(F_\theta = -\frac{\partial \theta}{\partial t} = -\frac{\partial ln \theta}{\partial t} \), and the transport rate \(F \) used in this paper to represent the contribution of transport processes can be computed as \(F = -\frac{1}{\int_0^H \theta dz} \frac{\partial \int_0^H \theta dz}{\partial t} \). Because the rate of \(F \) is normalized by the tracer, the initial condition and the magnitude of the tracer concentration will not affect the model results after a sufficient initial simulation period, and the impact of the initial condition is negligible in the calculation of \(F \).
A real-time three-dimensional numerical model for the James River was developed (Shen et al., 2016) using the Environmental Fluid Dynamics Code (EFDC), and it has a good spatial resolution to represent the local variation of complex geometry. The model was forced by hourly tide and salinity at the mouth and hourly wind and heat flux obtained at nearby airport stations, which account for both tidal and meteorological variation. The model was calibrated and verified from 1990–2013 for both hydrodynamics and water quality (Shen et al., 2016). There are a total of 3,066 grid cells in the horizontal and eight layers in the vertical. The model was also used to compute water age in the James River (Shen and Lin, 2006). As the cross-section of the Upper James is narrow and located in the freshwater region without salinity-induced stratification, the volume-controlled freshwater residence time was estimated as the difference of the lateral mean water age at the control section near Stations TF5.4 and TF5.5 along the main channel.

With the use of the numerical model, the transport rate \(F \) over the entire time series from 2006 to 2008 was computed based on Eq. (9) with specific boundary and initial conditions described above.

2.5. Compute rates for each timescale

Mean rates for timescales longer than the hourly timescale can be obtained by taking the average of the hourly rate \(r_{hr} \) over the given time interval of \(\Delta t \) through the following equation:

\[
\bar{r} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} r_{hr} dt = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \frac{\partial \ln B}{\partial t} dt = \frac{1}{\Delta t} \left[\ln(B_{t+\Delta t}) - \ln(B_t) \right] \tag{10}
\]
It can be seen that the mean rate only depends on the biomass at the beginning and ending time for the interval of Δt. Therefore, rates for timescales longer than the hourly timescale can be obtained by two equivalent methods, either using Eq. (7) with Δt equals the particular timescale, or using the average as Eq. (10). Here, the two methods Eq. (7) and Eq. (10) were applied to data at Station TF5.5 and RC, respectively. After we obtain both \bar{r} and \bar{F}, the effective growth rate $\bar{\mu}$ on that timescale was calculated using Eq. (6), $\bar{\mu} = \bar{r} + \bar{F}$. The overbar will be dropped hereafter when we present results with the understanding that the values are mean values.

2.6. Evaluate contributions of local and transport processes

Eq. (6) provides a way to evaluate the contributions of local processes and transport processes to phytoplankton variability in terms of effective growth rate μ and transport rate F. A statistical method is applied to evaluate the contributions of local and transport processes. Correlation coefficient values, R^2, between F and r and between μ and r, are calculated for each timescale to examine the proportions of the variance of r that could be explained by F and μ, respectively. Additionally, the overall relative importance of local and transport processes on each timescale can be quantified by comparing the root-mean-square (rms) of the entire time series of F and μ on that timescale:

$$Local: \frac{rms(\mu)}{rms(F)+rms(\mu)}; \quad Transport: \frac{rms(F)}{rms(F)+rms(\mu)}$$ \hspace{1cm} (11)$$

Note that, on each timescale, the relative importance of each process computed by Eq. (11) used the entire time series of data during the observational period (1990-2013
for Station TF5.5 and 2006-2008 for Station RC); and the analysis reflects their overall contribution during the entire observational period on this timescale, indicating the averaged relative importance or the contribution under normal conditions. The result of short timescale does not represent their contribution over a shorter period during abnormal conditions. For example, episodic events, such as storm surges and large discharge events, may dramatically increase contribution of transport processes in a few days at Station RC, and have greater impact on phytoplankton dynamics than local processes during those events; but these signals were filtered out when considering the entire observational period, and it will later be shown that the change of phytoplankton biomass on daily timescales was overall dominated by local processes (Section 3.7).

3. Results

3.1. Evaluation of contribution of transport processes

By comparing the transport rate to the relative growth rate, the contribution of transport process to phytoplankton biomass variability was evaluated over a sequence of timescales. Note that for long-term timescales (monthly, seasonal, and annual), we only presented results from long-term monitoring data at Station TF5.5, and summarized results from high-frequency data at Station RC at Table 1, and the results from two data sources are comparable.

3.2. Short-term timescales

The correlation of the relative growth rate \(r \) and the transport rate \(F \) for a 3-year period was analyzed using the high-frequency data for timescales shorter than daily
Overall, their correlations were quite low, suggesting that transport processes were not the dominant processes to phytoplankton variability for those timescales during the observation period.

The tide in this estuary shows a semidiurnal cycle. From a transport perspective, the net effect of transport on biomass is more important in tidal and daily timescales. However, for an intratidal scale, the tide can have a large influence on biomass during the flood and ebb periods, which will modulate the phytoplankton concentration in the water column. The contribution of tide, therefore, is expected to play an important role in the phytoplankton dynamics during food and ebb periods. An example from October 2008 is shown in Fig. 2. Rates r and F on the timescale of 6 h were significantly linearly correlated ($R^2 = 0.52$, $p < 0.001$). The correlation was even higher when only nighttime data were used (Fig. 2c, $R^2 = 0.54$, $p < 0.001$). A strong tidal signal was observed that indicated both rates were modulated by the semidiurnal tide.

The 6-h averaged time series data revealed that increases in phytoplankton biomass occurred during the night ($r > 0$) when no photosynthesis occurred (Fig. 2c), and the mass increase corresponded to a negative transport rate (note that figure plots use $-F$), which suggests that the increases in biomass at night were caused by a “transport in” process due to the transport induced by tides and freshwater discharge. Although the tide can modulate the intratidal transport processes, the large intratidal variability will be filtered for a tidal or daily period and the influence of net physical transport processes on biomass on tidal and daily timescales is not as important as local processes (Table 1).
3.3. **Monthly timescale**

The time series of *chl-a* and local residence time for the period of 2000-2013 at Station TF5.5 is plotted in Fig. 3a. This figure shows that *chl-a* and residence time had the same variations. On a monthly timescale, *chl-a* correlated with the residence time ($R^2 = 0.33, p < 0.001$, Fig. 3b). Lower *chl-a* was shown to correspond with shorter residence time, though the correlation was more diverse when residence time was long, which usually occurred in the summer, indicating that the contribution of local processes is more important during summer when the dynamic conditions become favorable for growth.

The transport rate F was correlated to the relative growth rate r at Station TF5.5 for the period from 2000 to 2013 ($R^2 = 0.25, p < 0.001$) as shown in Fig. 3c and 3d.

Variations of r and F were in phase, in general, which suggests that the monthly variability of phytoplankton biomass is modulated by hydrodynamics. Note that only 13-year result was presented in Fig. 3 for making the plot clear, and the correction between r and F during the entire years of long-term monitoring data (1990-2013) was shown in Table 1.

3.4. **Seasonal timescale**

For the seasonal timescale, analysis of the time-series data from the years 1990 to 2013 showed that transport rate F was correlated with relative growth rate r ($R^2 = 0.22, p < 0.001$, Fig. 4b). The transport rate F remained positive, and transport processes had a net “transport out” effect on phytoplankton biomass throughout the observation period (Fig. 4a). The relative growth rate r had either positive or negative values, but the
corresponding effective growth rate μ was always positive, suggesting that the
correlation of local processes leads to an increase in phytoplankton biomass.

All three rates (r, F, and μ) showed seasonal variations (Fig. 5). The transport rate, F
appeared to have smaller magnitudes during summer than during other seasons,
corresponding to the lowest freshwater discharge into the James River in the summer.
The effective growth rate, μ, seemed to be lower during summer and fall than during
spring and winter. This seasonal change can be attributed to a change in composition of
algal species and an increase in respiration, grazing, and nutrient limitation during the
summer (Marshall and Egerton, 2013). As a consequence, the relative growth rate
tended to be low during summer and fall, even though F was lower. It shows that μ was
much larger than r, after removal of the impact of transport processes (Fig. 5), indicating
the values of r would underestimate the effective growth rate of phytoplankton without
considering any effect of the physical transport.

3.5. Annual timescale

For the annual timescale, the correlation between F and r was significant ($R^2 = 0.48$, p
< 0.001, Fig. 4b) and it was higher than the correlation between μ and r ($R^2 = 0.24$, p <
0.001). Similar to the seasonal timescale, both F and μ remained positive, while the
magnitude of the relative growth rate r diminished (Fig. 4c), indicative of the balance
between local and transport processes. The contribution of transport processes showed
a net “transport out” effect on interannual phytoplankton biomass variability in the
Upper James River, i.e. more biomass was transported out of this region than was
transported in.
3.6. Rate variations

The daily effective growth rate, μ, may be of the same magnitude as the gross growth rate, G, if respiration and grazing pressure are very low. Theoretically, the daily gross growth rate represents photosynthetic production, and it has maximum values ranging from 1 to 5 d$^{-1}$ dependent on the temperature, nutrients, and phytoplankton species (Eppley, 1972; Brush et al., 2002). However, the estimated effective growth rate may be an order of magnitude smaller than the theoretical maximum values, due to suppression of photosynthesis by nutrient and light limitation, respiration, settling, and grazing. The variability of μ reflects a net response of phytoplankton to the change of local environment conditions.

We used median rates as representative of typical values for each timescale (Fig. 6a). Positive values of the rates r, μ and $-F$ corresponded to the increase of phytoplankton biomass whereas negative values indicated a decrease. Both medians of positive and negative rates, respectively, are listed in Table 1. In general, both the medians of positive and negative rates decreased as the timescale increased.

For seasonal or longer timescales, the medians of transport rates ($-F$) were negative at Station RC (Table 1). In fact, $-F$ was always negative on these long-term timescales, suggesting that the net contribution of transport processes flushed biomass downstream (“transport out”). μ was always positive, suggesting that the net contribution of local processes was to increase the phytoplankton biomass, i.e., phytoplankton primary production was larger than the loss from respiration, excretion, settling, and grazing. The competition between local and transport processes leads to
either an increase or a decrease of phytoplankton biomass, which was reflected by the existence of both positive and negative values of \(r \) when the timescale exceeded the monthly timescale.

3.7. Relative importance of local and transport processes

The increased correlation between rates \(F \) and \(r \) from a monthly timescale to an annual timescale, based on analysis of long-term monthly monitoring data at Station TF5.5, suggested that the relative importance of the transport processes to phytoplankton variability increases when evaluating it on a longer timescale. This result was consistent with the evaluation using high-frequency data at Station RC during 2006 to 2008 (Fig. 6c and 6d). The coefficient of determination, \(R^2 \), also showed that the proportions of \(r \) variance that could be explained by the transport rate \(F \) increased with the increase of timescale, whereas the proportions that could be explained by the effective growth rate, \(\mu \), decreased.

The relative importance of contributions of local and transport processes over continuously increasing timescales were compared for the period from 2006 to 2008 (Fig. 6d). The relative importance of transport processes had an increasing trend with increasing timescale whereas that of local processes had a decreasing trend, and they were equally important in the monthly timescale at Station RC. The relative importance of each contribution was more diverse in timescales shorter than daily; it shows that the contribution of local processes peaked on daily and tidal timescales, whereas the transport processes showed peaked relative importance on timescales around 6 and 18 h (Fig. 6d). These variations are caused by the intratidal variability and will be discussed.
in the next section. It can be seen that tide also modulates the local processes though the net tidal contribution is less.

4. Discussion

4.1. Factors affecting local and transport processes

Similar to the hydrodynamic conditions investigated for many other estuaries (Wang et al., 2004; Barcena et al., 2012; Lemagie and Lerczak, 2015), river inflow and tides are the two primary factors affecting the transport processes in the Upper James River and contribute to phytoplankton biomass dynamics, while other forcings such as wind play less important roles.

River inflow determines the overall net long-term advection characteristics of the Upper James River. The phytoplankton biomass transported from the upstream freshwater is generally found to be smaller than the biomass generated in the tidal freshwater region and estuary (e.g., Bukaveckas et al., 2011; Peierls et al., 2012; Paerl et al., 2014). As the residual current always flows downstream, the biomass is transported downstream, resulting in a net “transport out” effect on phytoplankton biomass when viewing it from a long-term perspective. Consistently, river inflow also had the net “transport out” effect in the Upper James River, reflected by only positive medians of transport rate F found on the annual timescale (Table 1).

Tides also have substantial effects on phytoplankton variability. The dominant constituent of tide in the Upper James River is the semi-diurnal M_2 tide with a 12.42-h tidal period. Both advective and diffusive transport are enhanced during either flood or
ebb tides, which increase the relative importance of transport processes on a timescale of about one-half of the tidal period (around 6 h); whereas the largest relative importance of local processes is around tidal and daily timescales, because the net impact on transport processes from tides is minimal by averaging over a complete tidal cycle, it is consistent with results in Fig. 6c and d.

The local processes are fundamental for phytoplankton variability, regardless of the transport processes. It is found that local processes always have an important contribution to the phytoplankton biomass dynamics in the Upper James River even on the timescales with a large physical contribution (Fig. 6d). For the monthly timescale, the results are more scattered with an increase of residence time (Fig. 3b), these large residence times usually occurred in summers when both riverine flows and transport rate were small (Fig. 5), and the contribution of local processes became relatively more important than that of transport processes. Local processes play critical roles on diurnal timescales, owing to the well-recognized diurnal variation that phytoplankton biomass increases during the day because of photosynthesis, but decreases at night.

The contribution of local processes also showed seasonal variations represented by the effective growth rate μ (Fig. 5). In general, a smaller value of μ appeared in summer and fall than during winter and spring. One possible reason for this seasonal change is the phytoplankton species succession. The “transport out” effect by freshwater has been found to be a determining factor on phytoplankton growth and composition in river-dominated estuaries as it tends to select fast-growing species in high-flow conditions (Ferreira et al., 2005; Paerl et al., 2006; Costa et al., 2009). The maximum
freshwater discharge occurs in the winter and spring in the James River. The enhanced
“transport out” processes along with abundant nutrients favors freshwater diatoms that
have relatively high intrinsic growth rates to become the dominant species in these two
seasons. In the summer and fall, when the “transport out” effect is reduced and
residence time increases, the percentage contribution of dinoflagellates and
cyanobacteria with lower intrinsic growth rates increases (Valdes-Weaver et al., 2006;
Marshall and Egerton, 2013). Temperature, nutrients, and grazing may be other factors
affecting the seasonal change of the contribution of local biological processes, as
respiration and grazing often peak in summer while nutrient limitation is severe though
with large benthic flux input of recycled nutrients (Kemp et al., 2005).

4.2. Long-term validation

Complex phytoplankton dynamics can be described by the balance between local and
transport processes under steady-state conditions (Lucas et al., 2009), and it is expected
that this balance is acceptable on long-term timescales but may be questionable on
shorter timescales. Therefore, it is interesting to examine on which timescales this
assumption is valid.

The steady-state assumption is equivalent to assuming that $r = 0$, or that the
magnitude of r is negligible compared to the magnitudes of μ and F. Direct comparisons
of r to μ and F show that the assumption is valid for seasonal to annual timescales in
the region as r is small. By using the root-mean-square (rms) of each rate to quantify
their magnitudes, it is found that the ratios of $rms(F)$ to $rms(r)$ and $rms(\mu)$ to $rms(r)$
increased as timescales increased (Fig. 6b). This suggests that contributions of local and
transport processes have the tendency to be balanced only when the timescale is longer than 10 days (Fig. 6a and b). Their difference becomes more significant for hourly to daily timescales.

4.3. Phytoplankton primary production

The open water method using high-frequency dissolved oxygen data has been widely applied to estimate gross primary production, ecosystem respiration, and net ecosystem metabolism (Staehr et al., 2012). Because of the influence of advection processes, high-frequency phytoplankton data have not often been used to estimate these metabolic rates. Here, we used high-frequency chl-a data to estimate phytoplankton gross primary productivity similar to open water oxygen method and to evaluate the influence of physical transport on estimation of the rate.

For each time interval (e.g. \(\Delta t = 15 \) minutes), the change of phytoplankton biomass \((\Delta B)\) is described by the equation below:

\[
\frac{\Delta B}{\Delta t} = GPP - RPP - FPP
\]

where \(GPP\) is the 15-minute phytoplankton gross primary productivity (g C m\(^{-2}\) 15 min\(^{-1}\)), \(RPP\) is the 15-minute rate of total phytoplankton respiration and consumption (including respiration, grazing, and settling, g C m\(^{-2}\) 15 min\(^{-1}\)), which represents total biological losses. \(FPP\) is the 15-minute rate of transport in or out of phytoplankton by transport processes (g C m\(^{-2}\) 15 min\(^{-1}\)); a positive \(FPP\) \((F < 0)\) means that the carbon produced by local biological processes is transported out of this location and benefits the food web in
adjacent areas (Cloern, 2007). We also use DPP to denote the difference between GPP and RPP,
\begin{equation}
DPP = GPP - RPP.
\end{equation}

FPP is estimated from the product of phytoplankton biomass and transport rate, and it was calculated using the transport rate F computed from the numerical model in this study ($FPP = F \cdot B$). The method for computing GPP and RPP is similar to the open water method, and DPP was first computed by summation of $\Delta B/\Delta t$ and FPP for each time interval. Daily RPP was estimated from the extrapolation of nighttime RPP (= the sum of nighttime 15-minute DPP) to one day; and daily GPP was estimated, according to Eq. (13), from daily DPP (= the sum of 15-minute DPP over one day) plus daily RPP. Both daily GPP and RPP are in units of g C m$^{-2}$ d$^{-1}$. Unrealistic negative values of daily GPP were found for some days (about 24%), and they were excluded from the calculations following the way of the open water method (Caffrey, 2003). Most of the negative daily GPP values appeared on rainy days when precipitation may enhance the flushing effect from runoff from adjacent watersheds. The results are representative of primary productivity and metabolic rates under normal weather conditions. Note that the transport rate F used was computed from the numerical model that only represents the physical transport as shown in Eq. (6), and the results are only used to quantify the influence of physical transport on the estimation of GPP.

For the Upper James River, the typical C: chl-a ratio equals 39 g C/g chl-a with small seasonal variability (Bukaveckas et al., 2011). Because we have no winter data, the
annual phytoplankton primary production cannot be correctly estimated. Nevertheless, we assumed that gross primary production in winter was lower than or equal to the minimum of seasonal production. The annual phytoplankton gross primary production were estimated to be about 255.90, 685.91, and 486.26 \(g \text{ C m}^{-2} \text{ yr}^{-1} \), respectively, for the years 2006, 2007, and 2008 (Table 2). These estimations were comparable to the 12-year averaged (1989-2001) annual phytoplankton gross primary production, around 230 \(g \text{ C m}^{-2} \text{ yr}^{-1} \), measured in the laboratory using \(^{14}\text{C}\) method at Station TF5.5 (Nesius et al., 2007). An example of the seasonal averages of \(\text{GPP}, \text{RPP}, \text{and DPP} \) in 2008 are also shown (Fig. 7), and the seasonal average of \(\text{GPP} \) during the summer 2008 was 2.31 \(g \text{ C m}^{-2} \text{ d}^{-1} \), close to the seasonal mean rate of 2.11 \(g \text{ C m}^{-2} \text{ d}^{-1} \) using the method of dissolved oxygen incubations for the nearby York River during the same time period (Lake et al., 2013).

The amount of primary production transported out ranges from 7\% to 13\% \((\text{FPP}/\text{GPP}) \). It suggests that the net physical transport processes have a minor impact on estimates of \(\text{GPP} \) and \(\text{RPP} \) on daily scale under normal weather conditions. This is consistent with the analysis of biomass variability on the daily timescale.

5. Conclusions

To evaluate the contribution of transport processes to phytoplankton biomass variability using high-frequency observational data, we introduced the transport rate method, which enables us to estimate each contribution exclusively as a first-order approximation. The Upper James River was selected as the study site, and the results
support the hypothesis that both local and transport processes contributed significantly to the local variability of phytoplankton biomass, but their relative importance changed on different timescales. On a short-term basis such as daily and weekly timescales, even though the transport processes could modulate phytoplankton biomass variability on an intratidal timescale due to flood and ebb variations, the intratidal variations will be removed over a tidal cycle. The local processes dominated the overall contributions during the observational period; however, the relative importance of transport processes tended to be equivalent to the local processes in the long-term timescales (e.g., seasonal and annual). Another analysis of this study shows that the local processes were almost balanced by the transport process on the seasonal and annual timescales, and approached a steady-state condition for phytoplankton dynamics, whereas the time derivative term became important for shorter timescales.

Examination of the transport rate revealed that transport processes exhibited a persistent “transport out” effect on long-term timescales to decrease in situ phytoplankton biomass in this region, but it was not the case for timescales shorter than seasonal that transport processes could either increase or decrease the biomass, corresponding to “transport in” and “transport out” processes, respectively.

Transport processes had a small impact on the estimation of daily gross phytoplankton productivity. By applying a method analogous to the open water oxygen method that calculates phytoplankton gross primary production using 15-minute observational data, the percentage of production flushed out was around 7-13% under normal weather conditions.
The use of the transport rate is a first-order approximation for quantifying transport processes. Zero concentrations were applied at the boundaries for this study, and the computed transport rate F did not account for the possible effects of inputs from boundaries (though these are very low), and therefore the contribution of the transport processes considered was the redistribution of biomass produced within the study area due to the change of dynamics and geometry. The additional bias of the transport rate on the hourly timescale could come from the numerical method and model grid resolution that may not be able to simulate the microscale variability of physical processes, which causes the patchiness of phytoplankton distribution that makes the observed chl-a data fluctuate highly with a change of dynamic conditions. Besides the use of the numerical calculation, the transport rate can also be estimated based on field observations of current, salinity and water depth. In addition, the pattern of the relative importance of local and transport processes on different timescales demonstrated in the Upper James River may vary at other locations of the estuary, which would warrant further study.

Acknowledgments

The funding of this study was supported by the Virginia Institute of Marine Science and the Virginia Department of Environmental Quality. We are thankful to Mark J. Brush for his critical review of the manuscript and invaluable suggestions. We also thank Marjy A.M. Friedrichs, and Kyeong Park for their comments and suggestions. We are grateful to Mac Sisson for help editing the manuscript. We thank two anonymous reviewers for their constructive comments that helped us to improve the manuscript. This is
Contribution No. 3645 of the Virginia Institute of Marine Science, College of William and Mary.

References

Lucas, L.V., Thompson, J.K. and Brown, L.R., 2009. Why are diverse relationships observed between phytoplankton biomass and transport time. Limnology and Oceanography, 54(1), 381-390.

Marshall, H.G. and Egerton, T.A., 2013. Assessing seasonal relationships between chlorophyll a concentrations to phytoplankton composition, biomass, and abundance, emphasizing the bloom producing algae (HAB and others) within the James, Elizabeth, and Lafayette Rivers in Virginia.

Table 1. Estimated values for each parameter for different timescales based on analysis of three years of high-frequency continuous monitoring data at Station JMS073.37 (RC) and 24 years of long-term monitoring data at Station TF5.5 (1990–2013). Results of transport rate F are computed from the 3D numerical model.

<table>
<thead>
<tr>
<th>Statistical parameters for each timescales</th>
<th>Hourly (1 h)</th>
<th>Tidal (12.5 h)</th>
<th>Daily (1 d)</th>
<th>Spring-neap (14.5 d)</th>
<th>Monthly (30 d)</th>
<th>Seasonal (90 d)</th>
<th>Annual (365 d)</th>
<th>Monthly</th>
<th>Seasonal</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medians of (d^{-1})</td>
<td></td>
</tr>
<tr>
<td>positive r</td>
<td>1.3795</td>
<td>0.2437</td>
<td>0.1059</td>
<td>0.0217</td>
<td>0.0106</td>
<td>0.0047</td>
<td>0.0014</td>
<td>0.0246</td>
<td>0.0148</td>
<td>0.0042</td>
</tr>
<tr>
<td>negative r</td>
<td>-1.2740</td>
<td>-0.2443</td>
<td>-0.1112</td>
<td>-0.0245</td>
<td>-0.0128</td>
<td>-0.0073</td>
<td>-0.0042</td>
<td>-0.0213</td>
<td>-0.0112</td>
<td>-0.0027</td>
</tr>
<tr>
<td>positive $-F$</td>
<td>1.3174</td>
<td>0.1359</td>
<td>0.0564</td>
<td>0.0106</td>
<td>0.0210</td>
<td>/</td>
<td>/</td>
<td>0.0184</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>negative $-F$</td>
<td>-1.1343</td>
<td>-0.1481</td>
<td>-0.0740</td>
<td>-0.0328</td>
<td>-0.0319</td>
<td>-0.0391</td>
<td>-0.0406</td>
<td>-0.0421</td>
<td>-0.0469</td>
<td>-0.0479</td>
</tr>
<tr>
<td>positive μ</td>
<td>1.3555</td>
<td>0.2987</td>
<td>0.1402</td>
<td>0.0461</td>
<td>0.0379</td>
<td>0.0379</td>
<td>0.0369</td>
<td>0.0472</td>
<td>0.0482</td>
<td>0.0496</td>
</tr>
<tr>
<td>negative μ</td>
<td>-1.3179</td>
<td>-0.2779</td>
<td>-0.1293</td>
<td>-0.0185</td>
<td>-0.0107</td>
<td>/</td>
<td>/</td>
<td>-0.0161</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Correlation of determination R^2</td>
<td></td>
</tr>
<tr>
<td>$F \sim r$</td>
<td>0.0138</td>
<td>0.0011</td>
<td>0.0071</td>
<td>0.1082</td>
<td>0.1503</td>
<td>0.4612</td>
<td>0.6106</td>
<td>0.1687</td>
<td>0.2172</td>
<td>0.4755</td>
</tr>
<tr>
<td>$\mu \sim r$</td>
<td>0.9226</td>
<td>0.7921</td>
<td>0.7184</td>
<td>0.2843</td>
<td>0.2148</td>
<td>0.0768</td>
<td>0.0211</td>
<td>0.5750</td>
<td>0.5137</td>
<td>0.0275</td>
</tr>
<tr>
<td>Relatively Importance</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>0.2189</td>
<td>0.3148</td>
<td>0.3509</td>
<td>0.4947</td>
<td>0.5067</td>
<td>0.5207</td>
<td>0.5172</td>
<td>0.5258</td>
<td>0.5081</td>
<td>0.4910</td>
</tr>
<tr>
<td>Local</td>
<td>0.7811</td>
<td>0.6852</td>
<td>0.6491</td>
<td>0.5053</td>
<td>0.4933</td>
<td>0.4793</td>
<td>0.4828</td>
<td>0.5485</td>
<td>0.5159</td>
<td>0.5103</td>
</tr>
</tbody>
</table>
Table 2. Estimates of annual phytoplankton gross primary production (GPP), total biological losses (RPP, including respiration, grazing and settling), DPP (GPP - RPP), the amount of production flushed out (FPP) at Station RC for the three years 2006 to 2008. FPP/GPP representing the fraction of production flushed out are also presented.

<table>
<thead>
<tr>
<th>Annual phytoplankton metabolic rates</th>
<th>GPP(^1)</th>
<th>RPP(^1)</th>
<th>DPP(^1)</th>
<th>FPP(^2)</th>
<th>FPP/GPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>255.90</td>
<td>274.29</td>
<td>-18.39</td>
<td>32.65</td>
<td>12.76%</td>
</tr>
<tr>
<td>2007</td>
<td>685.91</td>
<td>688.50</td>
<td>-2.59</td>
<td>47.76</td>
<td>6.96%</td>
</tr>
<tr>
<td>2008</td>
<td>486.26</td>
<td>512.42</td>
<td>-26.16</td>
<td>31.87</td>
<td>6.55%</td>
</tr>
</tbody>
</table>

\(^1\)estimated using 15-minute observational data
\(^2\)estimated using numerical model
Figure Captions

Fig. 1. Map of the Chesapeake Bay and James River. Locations for the Continuous Monitoring Stations RC, and the Long-term Monitoring Stations TF5.4 and TF5.5 are shown, respectively, by the green triangle and the blue squares. The domain of the James River 3D model is also presented.

Fig. 2. Comparison of the 6-h moving averages of r and F at Station RC in October 2008.

a) time series of relative growth rate r (red line), transport rate F (blue line, here plotted as $-F$), and irradiance (black line); b) the relation between $-F$ and r using all data during the month (daytime + nighttime); c) the relation between $-F$ and r only at nighttime.

Fig. 3. Contributions of transport processes on monthly timescales at Station TF5.5. a) time series of chl-a (black line, $\mu g \, L^{-1}$) and residence time (blue line); b) the relationship between chl-a and residence time; c) time series of relative growth rate r (black line) and transport rate F (blue line, $-F$); d) the relationship between $-F$ and r. The data used are from the years 2000 to 2013.

Fig. 4. Rates r, $-F$, and μ on seasonal and annual timescales during the years 1990 to 2013 at Station TF5.5.

Fig. 5. Box plot for rates r, $-F$, and μ on seasonal timescale during the years 1990 to 2013 at Station TF5.5. Horizontal lines in the boxes indicate medians, boxes indicate interquartile ranges, whiskers indicate the extremes that are set to be 1.5 times the range from the boxes, notches in boxes indicate the 95% confidence intervals of medians, and circles indicate outliers.
Fig. 6. a) Medians over different timescales for positive and negative rates, respectively. Transport rate ($-F$, blue lines), relative growth rate r (red lines), and growth rate μ (green lines); b) Ratios of root-mean-square of rates. Blue line denotes $rms(F)$ to $rms(r)$, green line denotes $rms(\mu)$ to $rms(r)$; c) coefficient of determination R^2 between F and r (blue line) and between μ and r (green line); and d) estimates of the relative importance of transport processes (blue line) and local processes (green line).

Fig. 7. Phytoplankton primary production in each season of 2008 at Station RC, by assuming $FPP = F \cdot B$ (winter data are not available). Phytoplankton gross primary productivity (GPP), phytoplankton total biological losses (RPP, including respiration, grazing and settling), phytoplankton DPP ($GPP - RPP$), error bars represent the 95% confidence intervals.
Fig. 1. Map of the Chesapeake Bay and James River. Locations for the Continuous Monitoring Stations RC, and the Long-term Monitoring Stations TF5.4 and TF5.5 are shown, respectively, by the green triangle and the blue squares. The domain of the James River 3D model is also presented.
Fig. 2. Comparison of the 6-h moving averages of r and F at Station RC in October 2008.

a) time series of relative growth rate r (red line), transport rate F (blue line, here plotted as $-F$), and irradiance (black line); b) the relation between $-F$ and r using all data during the month (daytime + nighttime); c) the relation between $-F$ and r only at nighttime.
Fig. 3. Contributions of transport processes on monthly timescales at Station TF5.5. a) time series of chl-a (black line, $\mu g \ L^{-1}$) and residence time (blue line); b) the relationship between chl-a and residence time; c) time series of relative growth rate r (black line) and transport rate F (blue line, $-F$); d) the relationship between $-F$ and r. The data used are from the years 2000 to 2013.
Fig. 4. Rates r, $-F$, and μ on seasonal and annual timescales during the years 1990 to 2013 at Station TF5.5.
Fig. 5. Box plot for rates r, $-F$, and μ on seasonal timescale during the years 1990 to 2013 at Station TF5.5. Horizontal lines in the boxes indicate medians, boxes indicate interquartile ranges, whiskers indicate the extremes that are set to be 1.5 times the range from the boxes, notches in boxes indicate the 95% confidence intervals of medians, and circles indicate outliers.
Fig. 6. a) Medians over different timescales for positive and negative rates, respectively. Transport rate \((-F, \text{ blue lines}), \) relative growth rate \(r \text{ (red lines), and growth rate } \mu \text{ (green lines); b) Ratios of root-mean-square of rates. Blue line denotes } \text{ rms}(F) \text{ to } \text{ rms}(r), \text{ green line denotes } \text{ rms}(\mu) \text{ to } \text{ rms}(r); \) c) coefficient of determination \(R^2\) between \(F\) and \(r\) (blue line) and between \(\mu\) and \(r\) (green line); and d) estimates of the relative importance of transport processes (blue line) and local processes (green line).
Fig. 7. Phytoplankton primary production in each season of 2008 at Station RC, by assuming $F_{PP} = F \cdot B$ (winter data are not available). Phytoplankton gross primary productivity (GPP), phytoplankton total biological losses (RPP, including respiration, grazing and settling), phytoplankton DPP ($GPP - RPP$), error bars represent the 95% confidence intervals.