Skill assessment of multiple hypoxia models in Chesapeake Bay and implications for management decisions

I. D. Irby
Virginia Institute of Marine Science

M. A.M. Friedrichs
Virginia Institute of Marine Science

C. T. Friedrichs
Virginia Institute of Marine Science

R. Hood

Follow this and additional works at: https://scholarworks.wm.edu/presentations
Part of the [Environmental Sciences Commons](https://scholarworks.wm.edu/presentations)

Recommended Citation
Irby, I. D.; Friedrichs, M. A.M.; Friedrichs, C. T.; and Hood, R.. 'Skill assessment of multiple hypoxia models in Chesapeake Bay and implications for management decisions'. 6-30-2014. Advances in Marine Ecosystem Modelling Research Symposium, Plymouth, UK.

This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
INTRODUCTION

Chesapeake Bay and its surrounding watershed play host to an extensive suite of commercial, agriculture, shipping, and tourism industries that have a value upwards of one trillion dollars and home to 16 million people. Ensuring the health of the Bay has become a priority for the six states that make up the watershed. Together they have committed to reducing nutrient input to the Bay to improve water quality. A multiple community model implementation approach can be used to gauge uncertainty and elevate confidence in regulatory model projections.

OBJECTIVE

Statistically compare a set of estuarine models of varying biological complexity to the regulatory model in terms of reproducing the mean and seasonal variability of hypoxia related variables in the Chesapeake Bay (Fig. 1).

METHODS

- Simulations from the regulatory model (R) and three community-based models (A, B, C) based on the Regional Ocean Modeling System (ROMS) were analyzed (Table 1).

RESULTS

- All models consistently underestimate both the mean and standard deviation of stratification but perform well in terms of surface and bottom temperature, salinity, and DO (Fig. 4, Table 2).
- All models consistently perform better in the southern portion of the Bay (Fig. 4).
- The skill of all four models are similar to each other in terms of temperature, salinity, stratification, and DO (Fig. 5, Table 2).
- Model skill for Chi-a and nitrate is inconsistent between the models (Fig. 5).
- All models reproduce bottom DO better than the variables generally thought to have the greatest influence on DO: stratification, Chi-a, and nitrate (Table 2).

CONCLUSIONS

- Overall, models with lower biological complexity and lower resolution achieve similar skill scores as the regulatory model in terms of seasonal variability along the main stem of the Chesapeake Bay.
- All four models do substantially better at resolving bottom DO than they do at resolving its stratification, Chi-a, and nitrate due to DO's sensitivity to temperature as a result of the solubility effect.
- Modeled DO simulations may be very sensitive to any future increases in Bay temperature. In terms of nutrient reduction regulations, these findings offer a greater confidence in regulatory model predictions of DO seasonal variability since a model does not necessarily need to perform well in terms of stratification, chlorophyll, or nitrate in order to resolve the mean and seasonal variation of DO.

FUTURE WORK

- Examine the skill of these models in terms of interannual variability for a 25 year period.
- Generate a multiple model ensemble from model B.
- In cooperation with the US Environmental Protection Agency, evaluate regulatory nutrient reduction scenarios in parallel with the model R.
- Utilize the suite of projected water quality simulations to define the uncertainty in regulatory estimates of estuarine response to reduced nutrient loads.

Table 1. Characteristics of the individual models.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model</th>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Surface</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Salinity</td>
<td>Surface</td>
<td>0.23</td>
<td>0.36</td>
<td>0.31</td>
<td>0.43</td>
</tr>
<tr>
<td>Bottom</td>
<td>0.46</td>
<td>0.48</td>
<td>0.52</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>Bottom</td>
<td>0.06</td>
<td>0.54</td>
<td>0.51</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Figure 1. Map of the Chesapeake Bay and its watershed. (Najjar et al., 2010. GCES, doi:10.1016/j.marinegeo.2009.09.026)

Figure 2. Location of the 10 Chesapeake Bay Program monitoring stations utilized in the study.

Figure 3. Target Diagram analysis: the total root mean square difference (RMSD) between the observations and the model results, normalized by the standard deviation of the observations. (Wilson et al., 2009. JMS, doi:10.1016/j.jms.2008.05.014)

Figure 4. Normalized target diagrams showing how well the models reproduce the observed mean and seasonal variability at 10 main stem stations. Colors represent latitude. Stratification is defined as the maximum value of chi-square in the water column.