Buoyant and gravity-driven transport on the Waipaoa shelf

J. M. Moriarty
Virginia Institute of Marine Science

C. K. Harris
Virginia Institute of Marine Science

C. T. Friedrichs
Virginia Institute of Marine Science

M. G. Hadfield

Follow this and additional works at: https://scholarworks.wm.edu/presentations

Part of the [Environmental Sciences Commons](https://scholarworks.wm.edu/presentations)

Recommended Citation

This Presentation is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Presentations by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
I. Motivation & Methods
Riverine deposits on continental shelves reflect terrestrial signatures, but are typically modified by the marine environment. Partitioning between various transport mechanisms (dilute suspension vs. gravity-driven) may influence the location and characteristics of these deposits.

We used two numerical models to analyze sediment fluxes and fate on the continental shelf from January 2010 – February 2011.

Buoyant fluxes were estimated with a 3D hydrodynamic-sediment transport model described in detail in Moriarty et al. (2014).

PROs: Includes water column processes, including river plume behavior, and wave resuspension
CONS: Insufficient vertical resolution for the wave-current boundary layer

Wave- and current-driven gravity fluxes were estimated with a 2D Chezy equation model that builds on erosion and gravity following Ma et al. (2010).

PROs: Accounts for near-bed turbidity layer; computationally efficient
CONS: Cannot account for water column processes

II. Deposition from Buoyant and Gravity-Driven Processes

Estimated Deposition: Jan 2010 – Feb 2011

- Transport within the river plume during energetic wave events distributed sediment along-shore, to either side of Poverty Bay.

- Gravity flows transported material to long-term shelf depocenters (50-70 m water depth) and the continental slope during energetic wave events.

III. Model Sensitivity

- Slow settling material was dispersed farther from the river mouth and to deeper depths.
- High erosion rate parameters affected the distribution of sediment within Poverty Bay and the shelf.

- More sediment input created thicker deposits, but shifted deposition closer to shore, implying that gravity flows on the Waipaoa shelf are transport-limited.
- Spatial distribution of modeled deposits also depended on the along-shore distribution of riverine sediment.

Conclusions
Buoyant fluxes within ROMS-CSTMS
- distributed sediment along-shore, to either side of Poverty Bay.
- did not extend to water deeper than 50 m.
- were especially sensitive to settling velocity.

Wave- and current-gravity flows
- exported sediment to long-term shelf depocenters (50 – 70 m water depth) and to the continental slope.
- were sensitive to parameterizations of sediment input.

Implications
- Both buoyant fluxes and gravity flows can be important for modeling shelf deposition.

Acknowledgements
Funding was provided by NSF MARGINS program, VIMS, and NIWA. Data, feedback, and technical assistance were provided by J.P. Walsh, R. Corbett, A. Ogston, A. Orpin, T. Kniskern, A. Bever, R. Hale, J. Kiker, S. Knebel, A. Kettner, S. Stephens, M. Uddstrom and the Meteorological and Water Science Staff at NIWA, G. Hall, D. Peacock, J. McIninch, NOAA, A. Miller, and D. Weiss.