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INTRODUCTION

Dispersal is widely recognized as a critical process
in the life history of nearly all plant species (Levin et
al. 2003, Nathan et al. 2008). Its benefits have pro-
found impacts on plant populations by establishing
new populations away from the parent plant, thereby
increasing chances of survival for the dispersing
propagule (Howe & Smallwood 1982). Dispersal
mechanisms can be abiotic or biotic. Each plant spe-
cies may rely on one specific dispersal mechanism
based on life-history characteristics (e.g. wind- or
current-dispersed seeds), although, it is more likely
that seeds of many species are dispersed by multiple
mechanisms, both abiotic and biotic (e.g. wind and
animal dispersers; Howe & Smallwood 1982, Herrera
2002), prior to entering the seed bank (Chambers
& MacMahon 1994, Wilkinson 1997, 1999, Higgins
et al. 2003). Recent evidence suggests long-distance
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ABSTRACT: Dispersal is a critical process in the life
history of nearly all plant species and can be facili -
tated by both abiotic and biotic mechanisms. Despite
an abundance of vertebrate fauna utilizing seagrass
meadows as a feeding area and thus capable of
 consuming and excreting seeds, little work has been
conducted on biotic seed dispersal mechanisms. The
objectives of this study were to (1) determine whether
seeds of the seagrass Zostera marina could pass
through the digestive systems of resident and tran -
sient vertebrates of a seagrass bed and remain viable
and (2) determine seed retention times in the guts of
each species to estimate dispersal distances of Z. ma-
rina seeds by vertebrate dispersers. Excretion and
germination rates of consumed seeds for 3 fish species
(Fundulus heteroclitus,Sphoeroides maculatus,Lagodon
rhomboides), 1 turtle species (Malaclemys terrapin)
and 1 waterfowl species (Aythya affinis) showed
Z. marina seeds could survive passage through spe-
cies’ digestive systems and successfully germinate.
Excretion rates were generally highest for F. hetero-
clitus, S. maculatus, and M. terrapin, lowest for A. affi-
nis, and moderate for L. rhomboides. Analyses sug -
gest seeds were significantly affected by species’
digestive tracts. Maximum dispersal distances are es-
timated to be 200, 60, 1500, and 19 500 m for F. hetero-
clitus, L. rhomboides, M. terrapin, and A. affinis, re-
spectively. Data here provide strong evidence that
biotic dispersal can occur in Z. marina, and biotically
transported seeds can be dispersed to isolated areas
unlikely to  receive seeds via abiotic mechanisms. Bio -
tic dispersal may rival or exceed abiotic mechanisms.
Future seagrass dispersal models should incorporate
biotic dispersal as a seed transport mechanism.

KEY WORDS:  Seeds · Dispersal · Vertebrates ·
Zostera marina

Resale or republication not permitted without 
written consent of the publisher

Fundulus heteroclitus were fed Zostera marina seeds in a
squid gelatin matrix. 

Image: Scott Marion

OPENPEN
 ACCESSCCESS



Mar Ecol Prog Ser 471: 1–10, 2012

dispersal events may be more common than previ-
ously considered, regardless of the life-history traits
of plants (Clark et al. 1998, Nathan et al. 2008).

In terrestrial systems, biotic dispersal of propagules
occurs through ingestion and excretion of viable
seeds or via seeds externally attached to the body of
the dispersing agent (Chambers & MacMahon 1994,
Debussche & Isenmann 1994, Figuerola et al. 2002,
Figuerola & Green 2004). Biotic dispersal distances
can range from meters to kilometers, depending on
the dispersal agent (e.g. ants and deer, respectively;
Myers et al. 2004). Despite knowledge of terrestrial
biotic dispersal processes, little is known about them
in marine angiosperms, the seagrasses, and whether
seeds can actually survive passage through the gut of
different species.

Seagrasses are found in most shallow coastal
waters around the world (Green & Short 2003) and
can reproduce both asexually (rhizome elongation)
and sexually (seeds). Currently, mechanisms of dis-
persal in seagrasses have been described as prima-
rily abiotic, via winds and currents acting on floating
propagules (Churchill et al. 1985, Orth et al. 2006,
Kendrick et al. 2012). Few studies have highlighted
biotic dispersal mechanisms, e.g. waterfowl (Agami
& Waisel 1986, 1988, Charalambidou et al. 2003). A
number of vertebrate species, including sireniens,
turtles, waterfowl, and fishes (Cottam et al. 1944,
Adams 1976, Kendrick et al. 2012), are known to con-
sume seagrass through either direct feeding on
shoots which may contain seeds or indirect feeding
on the associated epiphytes and epifauna (Thayer et
al. 1984). Several feeding studies of fauna that
inhabit seagrass beds have found either seed frag-
ments or entire seeds in their guts (Adams 1976,
Figuerola et al. 2003, Sumoski & Tulipani pers. obs.),
providing evidence that seeds are ingested in the for-
aging process. Observations indicate that much of
the ingested material, including seeds if present, may
be excreted with minimal damage (Thayer et al.
1984).

This study investigates biotic dispersal mecha-
nisms in the seagrass Zostera marina (eelgrass). Z.
marina is widely distributed in the North Atlantic and
Pacific Oceans and in the Mediterranean Sea (Green
& Short 2003). It is abundant in the Chesapeake Bay
region, USA, where it produces seeds in flowering
shoots from late May to early June. Currently, re -
ported dispersal mechanisms for Z. marina are abi-
otic and include floating seeds, floating reproductive
shoots with mature seeds, and seeds moving across
the sediment from currents (Churchill et al. 1985,
Orth et al. 1994, Harwell & Orth 2002). However, Z.

marina supports dense populations of animals, in -
cluding fishes and waterfowl, acting as both habitat
and a food source for these occupants (Adams 1976,
Thayer et al. 1984, Moore & Short 2006, authors’
pers. obs.).

While some studies have examined the consump-
tion of seeds of several different seagrass species by
fauna (Agami & Waisel 1986, 1988, Charalambidou
et al. 2003), none have examined biotic dispersal of
Zostera marina nor estimated the dispersal distances
of resident and non-resident species that may con-
sume seeds. Our objectives in this study were to (1)
determine whether Z. marina seeds can pass through
the guts of different resident and transient verte-
brates and remain viable and (2) determine seed
retention times in the guts of each species to estimate
dispersal distances of Z. marina seeds by vertebrate
dispersers.

MATERIALS AND METHODS

Zostera marina seeds for the feeding experiments
were obtained from mature flowering shoots present
in Z. marina meadows in late May to early June, 2009
to 2011, in South Bay on the seaside of the Delmarva
Peninsula, Virginia, USA (37° 16’ 20’’ N, 75° 48’ 51’’ W).
Seeds were separated from reproductive shoots and
stored using methods described by Marion & Orth
(2010). Prior to feeding trials, seeds were assessed for
viability by gently squeezing them and checking
individual fall velocities (Marion & Orth 2010).

Feeding trials

Five possible biotic dispersal species representing
a range of vertebrate types found in Zostera marina
beds within Chesapeake Bay were chosen for feed-
ing trials based on literature reports of the presence
of Z. marina seeds in guts, abundance in seagrass
beds, foraging strategy that would allow for the in -
gestion of seeds, or personal observations (Table 1).
Three species were assumed to have a short disper-
sal potential of <1 km: Fundulus heteroclitus (mum-
michog), Sphoeroides maculatus (northern puffer),
and Lagodon rhomboides (pinfish); and 2 species
showed the potential to disperse seeds at distances
>1 km: Malaclemys terrapin (diamondback terrapin)
and Aythya affinis (lesser scaup) (Adams 1976, Orth
& Heck 1980, D. Tulipani unpubl. data). These spe-
cies can ingest seeds either by feeding directly on Z.
marina (L. rhomboides TL: >80 mm, A. affinis), or by
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indirectly consuming seeds by feeding on epiphytes
and epifauna (L. rhomboides <80 mm, F. heteroclitus,
S. maculatus, M. terrapin). Feeding trials were con-
ducted from July to November in 2009, 2010, and
2011, based on the availability of species each year
(Table 1).

Fishes and terrapins were collected from nearby
Zostera marina meadows by trawling, seining, or
using a minnow trap. Fishes were selected for length
to ensure seed consumption, particularly Lagodon
rhomboides which had been found to have Z. marina
seeds present in their guts (Table 2 in Adams 1976).
L. rhomboides undergoes an ontogenetic shift in
feeding strategy from omnivory to herbivory be -
tween 80 and 120 mm (Stoner & Livingston 1984). We
used specimens that would be considered herbivo-
rous (Table 2). Specimens were transported to the
laboratory in aerated holding tanks. Individuals were
kept in separate aerated aquaria. Test specimens
were offered seeds placed in a feeding matrix (Fun-
dulus heteroclitus: squid gelatin; L. rhomboides,
Sphoeroides maculatus: shrimp; Malacemys terrapin:

blue crab claw). Prior to each experiment, test speci-
mens were placed in individual aquaria and starved
for 12 to 48 h. At the initiation of each feeding trial,
viable Z. marina seeds were placed in feeding matri-
ces and subsequently fed to the test specimens. M.
terrapin, S. maculatus, and L. rhomboides were fed 3
to 5 seeds for each feeding trial, while F. heteroclitus
were fed seeds until satiated. Total number of seeds
used for each species each year is given in Table 1.
Non-consumed seeds were enumerated by either
counting and removing fallen seeds at the bottom of
the tank or by siphoning the bottom of the tank for
seeds. In the 2010 and 2011 feeding trials, a mesh
screen separated fish specimens from the bottom of
each tank to prevent re-consumption of seeds. This
behavior was noted during the 2009 F. heteroclitus
feeding trials. Fishes were left undisturbed for 24 to
48 h after feeding, at which time all excreted seeds,
in cluding damaged seeds or seed coats, were re -
moved from tank bottoms, in order to determine
excretion rates. Terrapin cages were cleaned daily,
and water was sieved to extract excreted seeds, both
whole, as well as damaged. Intact seeds were stored
in 25 ml vials containing each specimen’s appropri-
ate aquarium water. Lengths of feeding trials varied
for all species, but generally were conducted until all
seeds were excreted, or in a few individual cases, an
additional 24 h beyond the species observed seed
retention time (S. Sumoski pers. obs.).

Specific retention time of seeds in the guts of fishes
was estimated by feeding either a single seed or
glass bead mimic (~1 mm2) to ensure no digestion
occurred. We noted no difference in excretion
times between seeds and beads when incorporated
into the test. Fishes were then monitored hourly for
seed or bead excretion. Retention time of seeds in
the guts of Malacemys terrapin was estimated by
monitoring excretion of seeds at frequent intervals
during feeding trials.

Aythya affinis were held at the
United States Geological Survey—
Patuxent Wildlife Research Center,
Maryland, USA. Individuals were
fed seeds in a food slurry using
Lafeber’s Emeraid Exotic Carnivore
Diet (Lafeber Company) to ensure
their stomachs were full during
the feeding trial (R. Therrien pers.
comm.). Specimens were then placed
in individual 50 gallon (ca. 190 l)
tubs with ambient seawater filled
halfway, a mesh screen separating
them from the bottom, and an
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Taxon Trial No. of No. of seeds 
year individuals consumed

Fundulus heteroclitus 2009 14 207
2010 17 176

Malaclemys terrapin 2009 12 32
2010 5 36

Sphoeroides maculatus 2009 1 3
2010 2 28
2011 9 84

Lagodon rhomboides 2010 14 66
2011 10 106

Aythya affinis 2011 4 969

Table 1. Number of individuals for each species used in the
feeding trials and total number of seeds consumed for each 

trial year

Taxon Years No. of Mean fork Mean 
specimens length ± SD weight ± SD 

(mm) (g)

Fundulus heteroclitus 2009−2010 31 84.23 ± 8.66 nd
Sphoeroides maculatus 2010−2011 4 143.75 ± 26.57 nd
Lagodon rhomboides 2010−2011 14 123.36 ± 13.57 nd
Malaclemys terrapin 2009−2010 14 nd 263.78 ± 75.30
Aythya affinis 2011 4 nd 681.25 ± 15.48

Table 2. Number of specimens, mean fork length (mm), and mean weight (g) of
specimens used in the experiments for each species during the experimental 

period. nd = no data
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opaque cover to minimize stress to the animal. Indi-
viduals were allowed to swim undisturbed for 6 to
7 h (observed seed retention time: 2 to 5 h) after
which the individuals were removed and the tubs
were drained, with all water siphoned into a 1.0 mm
sieve to retain excreted seeds—both damaged and
intact. Retention time of seeds in the guts of A. affi-
nis was determined by  mixing a dye marker in the
carnivore diet and monitoring for excretion of the
marker.

Control experiments included 3 to 5 seeds being
placed in each feeding matrix and salt water during
each feeding trial for at least 2 h before being
removed and placed in a vial for storage. A second
control (‘seawater control’) consisted of seeds held in
plain seawater. Controls for Aythya affinis consisted
of seeds placed in the food slurry and seeds placed in
the food slurry and dye combination.

Germination tests

Excreted seeds were stored in 25 ml vials
with seawater until November of each trial year,
which immediately preceded the natural germina-
tion time of Zostera marina in Virginia (Moore et
al. 1993). Seeds were planted in 1.0 mm sieved
sediment collected from the York River, Virginia,
USA. Seed planting depth was approximately 5 to
10 mm. The location of each seed was recorded by
specimen to ensure proper identification of each
emergent seedling. Sediment containers with seeds
were placed in an outdoor tank with standing
water and covered with a shade cloth. Temperature
and sal inity were monitored and kept at ambient
conditions matching those of the neighboring York
River. Ice was removed as necessary. Seedling
emergence was monitored weekly until March,
at which time the sediment was sieved through a
1.0 mm sieve and all seedlings and ungerminated
seeds were removed and counted. Seedlings were
identified based on the presence of a cotyledon or
green shoot. Seeds which had not germinated
were stripped of their seed coat and soaked in a
1.0% Tetrazolium staining solution for 24 h to
determine the presence of living tissue, an indica-
tion of seed viability (Conacher et al. 1994).

Dispersal distances of each species were estimated
using reported movement rates based on literature
values and observed seed retention times in the
guts of individual species. These estimates were
then compared to distances reported for abiotic dis-
persers.

Analysis

Germination rates were compared among the 5
species by conducting survival analysis using the
Lifetest procedure in SAS (independent variable:
specimens used, dependent variable: seed excretion
rate; SAS Institute). This test estimates the survival
distributions and equality of the given variables,
while making no assumptions about the given distri-
butions (Dixon & Newman 1991).

Relationships between specimen length (Fundulus
heteroclitus, Sphoeroides maculatus, Lagodon rhom-
boides) or weight (Malaclemys terrapin, Aythya affi-
nis) (Table 2) and seed evacuation rates were investi-
gated using logistic regressions in R statistical
software. The binary response variables allowed con-
sumed seeds to be placed in either an ‘excreted’ or
‘non-excreted’ category.

In order to determine the combined effects of seed
loss during gut passage and subsequent mortality
prior to germination, excretion and germination rates
were multiplied for each species. This proportion
analysis was compared to germination rates of each
control for the respective species to assess the overall
germination among controls or biotic dispersers.
A survivorship analysis was applied using the Cox
 proportional hazards model (Newman & Dixon
1996, Proc PHREG) to each species germination rate
through time while in the sediment and at the end of
the experiment. This test typically assesses the proba-
bility of death throughout a given interval of time. It is
used here to compare the germination of seeds that
have passed through the gut of a specimen versus
control seeds, thus resulting in hazard ratios where a
value of 1 = a specimen-consumed seed and control
seed are equally likely to germinate by the next point
in time, <1 = a control seed is more likely to germinate
than a consumed seed by the next point in time, and
>1 = a specimen-consumed seed is more likely to ger-
minate than a control seed by the next point in time.

RESULTS

Excretion and germination rates of viable Zostera
marina seeds varied by species and trial year and
were generally highest for Fundulus heteroclitus,
Sphoeroides maculatus, and Malaclemys terrapin,
lowest for Aythya affinis, and moderate for Lagodon
rhomboides. Excretion rates for F. heteroclitus were
higher in 2010 (99%) than in 2009 (76%), while they
decreased for S. maculatus between 2010 and 2011.
M. terrapin had relatively high excretion rates, yet
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low germination success. Overall, germination rates
were highest among fish species and lowest in A.
affinis (Fig. 1).

Observed seed retention times for passage of sin-
gle seeds or beads were 15 to 20, 7 to 10+, 7 to 10+,
and 2 to 5 h in Fundulus heteroclitus, Sphoeroides
maculatus, Lagodon rhomboides, and Aythya affinis,
respectively. Retention times were estimated to be
between 24 and 144 h for Malaclemys terrapin.

Germination success of Zostera marina seeds was
assessed across all 5 species and including all trial
years for each species. Post-gut passage success of
seeds varied significantly by species (χ2 = 20.926, df =
4, p = 0.0003). Malaclemys terrapin had the lowest
success rate among the 5 species; Fundulus hetero-
clitus and Sphoeroides maculatus had among the
highest germination success (Table 3).

Germination rates of consumed seeds compared to
control seeds indicated the feeding matrix had an
effect on seed survival in Malaclemys terrapin (in
2010) and Lagodon rhomboides and Sphoeroides
maculatus (both in 2011) (Fig. 2). Controls suggest
gut passage has little effect on survival in S. macula-
tus (in 2010) and Fundulus heteroclitus (in 2010), yet
increases the chance of seed mortality when passing
through guts of Aythya affinis (Fig. 2).

In 5 instances hazard ratios had significant values,
indicating the seed survivorship is likely being af -
fected by the gut of the animal: Malaclemys terrapin
(in 2010), Lagodon rhomboides (in 2010, 2011), and
Sphoeroides maculatus (in 2011) when comparing
the feeding trial against the seawater control, and

Aythya affinis when comparing the feeding trial
against the control with food and dye (Table 4). Haz-
ard ratios indicated better germination via the con-
sumed seed when feeding trials were compared to
both controls in S. maculatus (in 2010). Values were
closest to being equal for all feeding trials against
all controls and all years in Fundulus heteroclitus
(Table 4).

Specimen size had little effect on seed survival
 during gut passage: Fundulus heteroclitus (in 2010)
(Z = 0.1430.101,175, p = 0.886), Lagodon rhomboides
(Z = 1.5490.025,61, p = 0.121) and Sphoeroides macula-
tus (Z = 1.8580.016,56, p = 0.063). Fish length did have a
significant effect on seed emergence post-consump-
tion in F. heteroclitus trials in 2009 when seeds were
possibly re-ingested (Z = 3.8890.03,201, p = 0.0001;
Table 4). Seed passage time was not correlated with
the weight of Malaclemys terrapin (Z = 0.2490.005,60,
p = 0.803), while weights of Aythya affinis did have
a significant effect on seeds (Z = 5.0640.008,969, p =
4.11 × 10–7).
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Taxon Trial years No. of Proportion 
individuals germinated

Fundulus heteroclitus 2009−2010 31 0.39
Malaclemys terrapin 2009−2010 17 0.14
Sphoeroides maculatus 2009−2011 12 0.37
Lagodon rhomboides 2010−2011 24 0.32
Aythya affinis 2011 4 0.30

Table 3. Total proportion of seeds germinated for all species and 
individuals used throughout the trial years
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In the 2010 feeding trials, 204 seeds did not germi-
nate, but 30 still had intact and rigid seed coats. None
of these 30 seeds stained with tetrazolium, suggesting
these seeds were also non-viable. In the 2011 germi-
nation trials, 131 seeds did not germinate, but 35 had
intact and rigid seed coats. Only 3 stained positively
with tetrazolium, suggesting these seeds were viable.

Maximum dispersal distances were calculated as
the product of literature reported values of species

movements and estimates of observed seed retention
times in guts (Table 5) for Fundulus heteroclitus,
Lagodon rhomboides, Malaclemys terrapin, and
Aythya affinis and were determined to be 200, 60,
1500, and 19 500 m, respectively (Fig. 3). No move-
ment data were available for Sphoeroides maculatus,
but a dispersal distance may be expected in the
range of F. heteroclitus and L. rhomboides (Able &
Fahay 2010).

6

Taxon Year Consumed seeds versus feeding Consumed seeds versus seawater control
matrix control

PE SE χ2 p H PE SE χ2 p H

Fundulus heteroclitus 2009 −0.017 0.351 0.002 0.961 0.983 −0.196 0.351 0.311 0.577  0.822
2010 −0.161 0.346 0.218 0.64  0.876 −0.132 0.321 0.169 0.681  0.851

Malaclemys terrapin 2010 −0.519 1.414 0.135 0.713 0.595 −2.788 1.054 6.99  0.008* 0.062

Lagodon rhomboides 2010 −0.519 0.367 2.0015 0.157 0.595 −0.788 0.337 5.452 0.019* 0.455
2011 −0.587 0.476 1.523 0.217 0.556 −1.286 0.453 8.042 0.004* 0.276

Sphoeroides maculatus 2010 0.378 0.378 1.001 0.317 1.46  0.119 0.349 0.116 0.734  1.126
2011 −0.137 0.387 0.125 0.723 0.872 −0.8173 0.359 5.167 0.023* 0.442

Aythya affinis 2011 −0.868+ 0.305+ 8.11+ 0.004+* 0.42+ −0.427++ 0.364++ 1.378++ 0.24++ 0.652++

Table 4. Cox proportional hazard model survivorship analysis for each species and year of feeding trial compared to controls with and
without feeding matrices. Hazard models are used here to determine germination of consumed versus control seeds. PE: parameter esti-
mate; SE: standard error; H: hazard ratio; +: control seeds with feeding matrix and dye marker; ++: control seeds with feeding matrix; 

*p ≤ 0.05

Species Observed Daily Maximum Dispersal Sources
gut retention movement distance estimate 

time (h) (m) traveled (m) (m)

Fundulus heteroclitus 15−20 200 600−3600 200 Skinner et al. (2005)
Sphoeroides maculatus 7−10+ nd nd nd Present study
Lagodon rhomboides 7−10+ nd 60 0−60 Potthoff & Allen (2003)
Malaclemys terrapin 24−144 1430 8000 1500 Ernst & Lovich (2009), 

D. Tulipani (pers. comm.)
Aythya affinis 2−5 2000−37500 93500 d−1 2000−19500 Herring & Collazo (2005), Afton (2009)

Table 5. Seed retention times estimated from single seeds or beads, recorded daily movement and maximum distances 
traveled for each species, are combined to estimate seed dispersal distances for each species. nd = no data
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DISCUSSION

Three years of feeding experiments indicated that
Zostera marina seeds could survive passage through
the guts of species in very different functional groups
(fishes, turtles, birds) and successfully germinate.
This is the first study to date to demonstrate survival
of Z. marina seeds after ingestion by an animal, and
provides evidence that biotic dispersal of Z. marina
seeds is possible and needs to be considered in the
dispersal dynamics of this species.

Seed excretion and germination

Excretion and germination rates varied among the
5 species both within and between years and may be
a function of both foraging ecology and gut morpho -
logy of the individual species. Excretion rates of
Lagodon rhomboides were lowest of the fish species
used, and survivorship analyses yielded hazard ratios
suggesting loss of seeds due to gut morphology in
both 2010 and 2011. Other species showing signifi-
cant effects from digestive tracts on seeds included
Malaclemys terrapin (in 2010), Sphoeroides macula-
tus and Aythya affinis (both in 2011), suggesting
mechanical or chemical weakening of the seed coat
while in the gut of these species (Baskin & Baskin
1998). Similar effects were apparent when compar-
ing germination rates of experimental treatments to
controls. Results of each test suggest either gut mor-
phology or feeding behavior is damaging some of the
seeds in the species used in these experiments. L.
rhomboides are primarily herbivorous at the size
range used here, with dentition to crush seeds prior
to entering the digestive tract and an extended intes-
tine for further breakdown of plant material (Stoner
& Livingston 1984, Luczkovich et al. 1995). A. affinis
also feeds directly on seagrass and contains a gizzard
comprised of grit to grind and break down plant cell
walls (Cottam et al. 1944). M. terrapin selectively
chooses epifauna, such as barnacles (D. Tulipani
pers. comm.), which are broken down in the buccal
cavity before entering the digestive tract. Secondar-
ily consumed seeds are subject to this process (Bels et
al. 1998). S. maculatus have beak-like jaws used to
feed on and crush shelled invertebrates (Targett
1979). In addition, it is possible that our use of feed-
ing matrices influenced overall seed mortality; it is
likely that fewer seeds are destroyed when offered in
combination with other food. However, despite our
observations that all species used here have the
capacity to damage seeds during the feeding and

digestive processes and that the added feeding
matrices may have influenced overall mortality, our
data show that a number of seeds can successfully
pass through their guts and germinate.

Lengths and weights of species generally had little
effect on seed survival. Specimen length had a signif-
icant effect on seed excretion rate for Fundulus hete-
roclitus in the 2009 experiments, but not in 2010,
when re-consumption of seeds within the 24 to 48 h
feeding was eliminated, suggesting that fish length
may not be a factor here. Weights of Aythya affinis
also had a significant effect on excretion rates. It is
more likely that the small sample size contributed to
this value.

Seed-dispersal distances

A critical component of dispersal is the distance a
seed moves from its parent to a location suitable for
germination, growth, and survival (Harper 1977,
Nathan & Muller-Landau 2000). In biotic dispersal
that distance is a function of how long a seed remains
in the gut and how far the individual moves during
that time period (Figuerola et al. 2010). Estimated
dispersal distances assume linear movement, which
could overestimate a dispersal calculation if a species
changes directions during movements (Table 5). Our
estimates compare favorably with several mechanisms
of abiotic dispersal for Zostera marina and other sea-
grass species (Fig. 3) (Kendrick et al. 2012), with the
possible exception of Aythya affinis and Malaclemys
terrapin where dispersal may ex ceed abiotic dis-
tances. We think dispersal distances of waterfowl
may exceed what we have noted here. The seed
retention times we observed for A. affinis were rela-
tively short compared to published literature values
which exceed 24 h in some species (Charalambidou
et al. 2003, Figuerola et al. 2010), suggesting that
waterfowl that ingest Z. marina seeds may disperse
seeds much further than the reported distances for
A. affinis.

While the majority of biotic consumers will likely
transport seeds shorter distances than abiotic mecha-
nisms (Fig. 3), we suggest there may be distinct
advantages for seeds dispersed by biotic mecha-
nisms. Biotic dispersers are typically either perma-
nent or transient residents of seagrass beds and are
free to move within or between beds (Orth & Heck
1980). In dense seagrass areas, much of the habitat
range of a biotic disperser may also be suitable for
seagrass growth. Species foraging either directly or
indirectly on the grass will likely reside within suit-
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able growth areas to remain close to food sources,
thus increasing their effectiveness as a dispersal
agent. In contrast, abiotic dispersal is limited in
movement by wind and currents (Kendrick et al.
2012), and, once exported from the seagrass bed,
seeds could arrive in areas not suitable for seagrass
growth, e.g. intertidal areas or regions of low salinity.
Occasionally, biotic dispersers may aid in seagrass
survival when scarification due to acidification or
chemical weathering in the gut prompts early germi-
nation (Baskin & Baskin 1998, Herrera 2002). In
many cases successful biotic dispersal adds to the
genetic diversity of existing seagrass beds or may
establish new seagrass populations in areas distant
from established beds (Howe & Smallwood 1982,
Olivieri et al. 1995, Herrera 2002).

Biotic dispersal of seagrass seeds may be more
common than previously considered (Kendrick et al.
2012). Most seagrass beds support dense assem-
blages of small and large consumers (Thayer et al.
1984, Valentine & Heck 1999), a number of which are
seasonally transient (Adams 1976, Orth & Heck 1980)
and are potential consumers of seeds. A number of
field studies have reported terrestrial and macro-
phyte seeds in waterfowl feces and digestive tracts
that are either directly consumed or indirectly when
foraging for benthic invertebrates (Guppy 1906,
Baldwin & Lovvorn 1994, Ntiamoa Baidu et al. 1998,
Mueller 1999, Green et al. 2002, Figuerola et al.
2010). In addition, tropical seagrass beds support
omnivorous fishes and megafauna, such as mana-
tees, dugongs, and green turtles, capable of applying
intense grazing pressure and possibly consuming
large quantities of seeds in the process (Thayer et al.
1984, Preen 1995, Valentine & Heck 1999, McDermid
et al. 2007, Kendrick et al. 2012). These megafauna
forage within ranges of 0 to 15 km2 and 0 to 50 km2

for manatees and dugongs, respectively, or travel 0.6
to 3.3 km h−1 for green turtles (Godley et al. 2002,
Deutsch et al. 2003, Sheppard et al. 2006). Seeds sur-
viving gut passage of these vertebrates are capable
of being dispersed distances greatly exceeding those
of abiotic mechanisms (Fig. 3).

CONCLUSIONS

Our first-order experiments conducted here in a
laboratory setting conclusively prove that Zostera
marina seeds can be ingested, excreted whole, and
germinate successfully, by a variety of vertebrate
species. Given that several studies have found sea-
grass seeds in guts of fishes and birds, we suggest

that successful dispersal via biotic mechanisms may
be more common than previously considered (Ken -
drick et al. 2012). As it is highly likely that many
seeds are ingested indirectly during foraging activi-
ties of a particular species, subsequent studies should
begin to focus on seed ingestion rates under field
conditions when species have a diversity of food
choices. The density of grass consumers also influ-
ences the likelihood and frequency of indirect seed
dispersal. Seed ingestion rates may be high in tropi-
cal areas where grazing is more intense, particularly
by large herbivores, such as dugongs and turtles.
More importantly, the ability of seeds to successfully
pass through the gut of a waterfowl species offers
support for a mechanism of long-distance dispersal,
as this group of vertebrates is numerically important
in many areas of the world (Clausen et al. 2002,
Green et al. 2002). While seeds will suffer mortality
during the ingestion and digestive processes, some
proportion of seeds can be expected to survive,
 germinate, and grow to adult plants, leading to the
colonization of new habitats (Nathan et al. 2008).
Finally, our data suggest that future seagrass dis -
persal models should incorporate biotic dispersal
mechanisms.
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