
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 470: 41–54, 2012
doi: 10.3354/meps10006

Published December 6

  INTRODUCTION

There is increasing evidence that biodiversity, the
variety of life, supports ecosystem processes, proper-
ties, and functions that are ecologically and econom-
ically important, such as water and nutrient cycling
and fisheries production (Cardinale et al. 2012).
Higher diversity among and within trophic levels can
positively affect resource use and production, and
increase stability (Tilman 1996, Tilman et al. 1998,
Griffiths et al. 2000, Duffy et al. 2003, Allison 2004,
Caldeira et al. 2005, Balvanera et al. 2006, Blake &
Duffy 2010). Increased biomass within a functionally

diverse assemblage has the potential to enhance
important ecosystem processes, such as grazing, that
play critical roles in marine systems (Worm et al.
1999, Nyström et al. 2000, Duffy et al. 2003, Valen-
tine & Duffy 2006, Stachowicz et al. 2007). However,
biodiversity on both global and local scales is threat-
ened, largely by human activities that are rapidly
changing ecosystems. These changes in biodiversity
are of concern because they can result in losses
of important ecosystem functions (Tilman 1999).
Change in biodiversity also acts as a stressor in eco-
logical systems, and may interact with and be as
important as, or more important than, other stressors
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in marine systems (Stachowicz et al. 2007, Hooper et
al. 2012). The impacts of biodiversity change and
other stressors in marine systems are an increasing
concern because we know little about their interac-
tions, especially in the context of global climate
change.

Climate change is a primary threat affecting mar-
ine systems around the globe, and the impacts are
predicted to increase as more CO2 is dissolved in the
oceans, global temperatures continue to warm, and
ocean circulation patterns change (Doney et al.
2012). Climate warming, an important stressor, is
predicted to increase both extreme temperatures as
well as mean temperatures (Najjar et al. 2010, Doney
et al. 2012). Warming temperatures can lead to
changes in oceanic physical processes and chemical
properties such as ocean circulation, sea level, and
dissolved oxygen concentrations that can impact
other components of marine communities. Increased
water temperatures can alter ecosystem properties,
services, and functions indirectly through effects on
the diversity of organisms in a community, or directly
through effects on biomass and primary production.
Water temperatures in most shallow temperate estu-
aries along the US east coast closely follow changes
in air temperatures (Najjar et al. 2000). In one such
estuary, Chesapeake Bay, average temperatures are
predicted to increase by 2 to 6°C by the end of the
21st century (Najjar et al. 2010). Warmer waters may
influence biogeochemical cycling, life histories and
ranges of resident and transient organisms, fisheries
production, and important habitats such as salt
marshes, oyster reefs, and seagrass beds (Short &
Neckles 1999, Hoegh-Guldberg & Bruno 2010,
Doney et al. 2012).

Increasing pressure is also being put on coastal
habitats as human populations in the coastal zone
continue to rise (McGranahan et al. 2007). Anthro-
pogenic impacts along coasts include shoreline
 hardening and development in coastal zones for res-
idential, commercial, and recreational use. This
development leads to decreased filtration of runoff
through loss of vegetation buffers, and increased
direct inputs of sewage, fertilizer, and pollutant
runoff to coastal waters (Vitousek et al. 1997, Kemp
et al. 2005). These impacts have led to the eutrophi-
cation of estuaries, such as Chesapeake Bay, which
are now characterized by increased occurrence of
bloom forming micro- and macroalgae (Hauxwell et
al. 2001, Burkholder et al. 2007, Najjar et al. 2010).
The conditions that favor blooms of ephemeral algae
are, at the same time, detrimental to important habi-
tats such as seagrass meadows.

Seagrass systems are important habitats in Chesa-
peake Bay that provide shelter for juvenile fish and
crabs, stabilize sediments and coastlines, and se -
quester carbon (Duarte 2000, Heck et al. 2003,
Duarte et al. 2005, Polte et al. 2005, Canuel et al.
2007). Historically the dominant seagrass in Chesa-
peake Bay, eelgrass Zostera marina is declining at
an accelerated pace due largely to recent record
summer temperatures and continued eutrophication
(Orth & Moore 1983, 1988, Orth et al. 2002, 2006,
Moore & Jarvis 2008). Elevated temperatures, espe-
cially in the summer months, can lead to eelgrass die-
offs (Bintz et al. 2003, Oviatt 2004). These declines
are attributed to higher respiration than production,
internal carbon stress, and reduced growth rates in
eelgrass (hereafter referred to as Zostera) under
higher temperature conditions (Short & Neckles
1999, Touchette & Burkholder 2000, Bintz et al. 2003,
Touchette et al. 2003).

Eutrophication has negative consequences for
Zostera, both direct and indirect. Nutrient enrich-
ment impacts eelgrass physiology similarly through
carbon limitation and ammonium toxicity, both of
which lead to reduced shoot production and overall
growth (Touchette & Burkholder 2000, Touchette et
al. 2003). Indirect impacts of nutrients on Zostera
include overgrowth by micro- and macroalgae, and
associated light limitation (Hauxwell et al. 2001,
Burkholder et al. 2007). However, extensive previous
work shows that grazing by invertebrates such as
amphipods and isopods in temperate seagrass beds
can counteract algal overgrowth, thus fostering dom-
inance by seagrasses, and that grazing has effects of
similar or greater magnitude to water column nutri-
ent enrichment (Neckles et al. 1993, Hughes et al.
2004). While grazing has the potential to counter
the effects of water column nutrient enrichment
in some circumstances (Neckles et al. 1993, Hays
2005, Jaschinski & Sommer 2011), Zostera habitats in
Chesapeake Bay are increasingly faced with multi-
ple simultaneous stressors whose interactions are
poorly understood and difficult to predict (Orth et
al. 2006).

In the present study, we examined the effects of
crustacean grazer diversity, warming, and nutrient
enrichment on the ecosystem properties of experi-
mental seagrass communities. We wanted to investi-
gate indirect impacts of stressors on ecosystem func-
tion through changes in grazer diversity, as well as
direct impacts of stressors on ecosystem function. We
planted outdoor mesocosms with Zostera marina,
stocked the crustacean grazers species Elasmopus
levis, Erichsonella atten uata, and Gammarus mucro -
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natus alone and in mixture, and assessed their im -
pacts on abundance and biomass of primary produc-
ers, grazers, and fouling invertebrates. Specifically,
we tested whether (1) grazing effects were of similar
magnitude as stressor effects, (2) stressors affected
primary producer community composition and rela-
tive dominance, and (3) change in biodiversity inter-
acted with stressors to exacerbate or buffer against
stressor impacts. We show that stressors facilitate
microalgae at the expense of macrophytes, that graz-
ing effects are large and counteract these stressor
effects, but that there were no non-additive inter -
actions between loss of species richness and stressor
impacts.

MATERIALS AND METHODS

Experimental design

We manipulated crustacean grazer species rich-
ness, water temperature, and water column nutrients
in a factorial mesocosm experiment during the
 summer of 2007. Located outdoors at the Virginia
Institute of Marine Science, Gloucester Point, Vir-
ginia, USA (37.25° N, 76.50° W) in a flow-through tank
 system, experimental mesocosms (one hundred 19 l
buckets consisting of 5 replicates of 20 unique treat-
ments) were supplied with filtered estuarine water
from the adjacent York River. In order to exclude
crustacean grazer recruits but allow algal and sessile
invertebrate propagules to recruit to the mesocosms,
estuarine water was  filtered by a coarse sand filter
and then through 150 μm mesh. Mesocosms were
surrounded by a 25 cm deep water bath to buffer
diurnal temperature changes, and were covered by
shade screens to reduce downwelling insolation by
about 60% and to approximate light conditions found
in local seagrass beds. Each mesocosm contained a
substrate mixture of approximately 2.5 l of sand and
0.5 l of mud, and was planted with 30 shoots of de -
faunated Zostera marina to approximate field shoot
densities.

We used 2 amphipod species (Gammarus mucrona-
tus and Elasmopus levis) and 1 isopod species (Erich-
sonella attenuata) to establish 5 grazer treatments:
each species as a monoculture (1 species), a multi-
species assemblage (3 species), and a grazer-free
control. These grazer species (hereafter referenced
by genus) are among the 5 most abundant crustacean
grazers present in local eelgrass beds in the summer
season, and consume a variety of epiphytic macro-
and microalgae (Cruz-Rivera & Hay 2000, Duffy &

Hay 2000, Duffy & Harvilicz 2001, Douglass et al.
2010). Grazers were added to mesocosms in a re -
placement design, with monocultures receiving
30 individuals of 1 species and multi-species assem-
blages receiving 10 individuals of each species.
Mesocosms were either left at ambient water temper-
ature, or were heated approximately 3°C above
ambient water temperature using a 200 W aquarium
heater (warmed treatment). This warming simulated
a realistic climate warming scenario projected for
Chesapeake Bay (Najjar et al. 2010). Slow-release
pelletized fertilizer (Osmocote®, N:P:K = 3:1:2)
was used to enrich nutrient levels to approximately
5 times ambient levels in the nutrient-addition
 treatments. The fertilizer (15 to 20 g) was contained
in fine mesh inside a perforated PVC tube and sus-
pended in the nutrient-enriched mesocosms. Fertil-
izer was replaced every 4 days to maintain elevated
nutrient levels (Spivak et al. 2009). Water column
nutrients in each mesocosm were tested for the
amount of ammonium once during the experiment to
assess the enrichment treatment. Both the temp -
erature and nutrient treatments were applied contin-
uously, and grazers had sufficient time to reach
 carrying capacity, approximately 2 overlapping gen-
erations (Sainte-Marie 1991), during the 6 wk dura-
tion of the  ex periment.

During the experiment, epiphytic chlorophyll a
was sampled from standardized artificial seagrass
units (ASUs) placed in each mesocosm at the start of
the experiment (4 ASUs of 2 polypropylene ribbons
each), as a proxy for epiphytic algal biomass (Parsons
et al. 1984). One ASU was removed during Weeks 2,
4, and 6, and processed using standard procedures
 (Parsons et al. 1984). Grazer density was estimated
non-destructively at those same time points by catch-
ing grazers in 3 standardized dip-net sweeps. All cap -
tured grazers were counted, identified, and returned
to their respective original mesocosms.

At the conclusion of the experiment, all biomass
was harvested from each mesocosm and frozen
until samples could be processed. Thawed biomass
retained on a 500 μm sieve was sorted to the lowest
taxonomic level possible, dried in a 60°C oven until
the mass was stable, and then combusted at 450°C to
obtain ash-free dry mass (AFDM). Grazers were
sorted by size (using sieves with mesh sizes of 8.0,
5.6, 4.0, 2.8, 2.0, 1.4, 1.0, 0.71, and 0.05 mm), identi-
fied to species, and enumerated. Biomass of grazers
was calculated using the empirical equation, log B =
−1.01 + 2.64 × log S, where B is AFDM (mg), and S is
the sieve size (mm) on which the animal was retained
(Edgar 1990).
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Statistical analysis

We used 3-way factorial ANOVAs to test for main
and interactive effects of warming, nutrients, and
crustacean grazer species richness on Zostera shoot
biomass, epiphytic algal biomass, macroalgal bio-
mass, and sessile invertebrate biomass (SAS Enter-
prise Guide 4.3). All data were untransformed with
the exception of the epiphytic chlorophyll a data,
which were log transformed to improve normality.
We also used a priori orthogonal contrasts to test for
the effects of grazer presence (all treatments with
grazers vs. no-grazer controls) and grazer species
richness (grazer monocultures vs. 3-species assem-
blage treatments). To estimate the size of effects in
the ANOVA analyses, we calculated the ω2 values for
each main effect and interaction using the general-
ized equation of Olejnik & Algina (2003):

To examine whether crustacean grazer species
richness had a stabilizing effect on ecosystem prop-
erties in the face of environmental stressors, we used
the Brown-Forsythe test (Brown & Forsythe 1974,
Blake & Duffy 2010). This variation of Levene’s test
(Levene 1960) employs the median rather than the
mean in testing for equality of variance. We tested
both community resistance to stressors (variation
among stressor treatments), as well as stochastic
variation within communities (variation among repli-
cates within stressor treatments) (see Blake & Duffy
2010 for further details and equations).

We also used multivariate non-metric  multi-
dimensional scaling (NMDS) to examine which factors
most influenced the similarity and composition of
communities among all mesocosms in the experi ment.
We conducted the analysis in R 2.13.0 (R Development
Core Team 2011), using the metaMDS function in the
vegan package (Oksanen et al. 2011) and a  Bray-
Curtis dissimilarity matrix. Instead of using untrans-
formed data as suggested by the default settings in
metaMDS, we square-root transformed the data to
 reduce the influence of very abundant species. We
plotted the results in 2 dimensions, and used the
envfit procedure in vegan (Oksanen et al. 2011) to
overlay species vectors (determined by principal com-
ponents analysis) on the final NMDS plot. To statisti-
cally test the results of the NMDS ordination, we con-
ducted PERMANOVA using the adonis function in
the vegan package. This routine carries out an analy-
sis of variances test using a dissimilarity matrix, and a

permutation test to determine significance. It is an
 especially appropriate test for ecological data because
it uses a non-Euclidian distance matrix, is robust to
multivariate non-normality, and handles datasets with
more variables than degrees of freedom (McArdle &
Anderson 2001). We also examined the multivariate
homogeneity of the treatments using the function be-
tadisper in the vegan package, which is analogous to
Levene’s test for equality of variances (Levene 1960).

To examine the direct and indirect effects of warm-
ing, nutrients, and crustacean grazer species richness
on primary producer biomass and sessile inverte-
brate biomass, we used maximum-likelihood esti-
mated structural equation models created with Amos
18.0.0 (Arbuckle 2011). Structural equation modeling
(SEM) is a multivariate framework for graphical
modeling and analysis that draws from both path and
factor analysis techniques (Grace 2006). SEM allows
for the exploration of direct and indirect causal rela-
tionships between observed and hypothesized (latent
and composite) variables through paths relations,
and is well suited to studying systems with multiple
simultaneous processes (Grace et al. 2010).

Models were evaluated based on criteria described
in Grace (2006). It is important to note that we used
SEM in the ‘model generating’ mode. We first speci-
fied an initial model based on theory and previous
knowledge of our experimental system, after which
we modified and re-tested this model until the model
fit the data well from both statistical and ecological
points of view.

Grazer treatments in 4 mesocosms were contami-
nated, and thus removed from all statistical analysis.
All treatments retained a minimum of 4 replicates.

Background environmental conditions

Global surface temperatures in the summer of 2007
were the seventh warmest on record. In the conti-
nental USA, 2007 was the sixth warmest summer
since records began in 1895, and the average tem-
perature was 1°C above the 20th century mean
(NOAA 2007). In the York River, Virginia, water tem-
peratures averaged 26°C, and the average daily
maximum temperature was 27°C in the period from
June through July (VECOS 2012). Experimental
mesocosms at ambient temperature had an average
daily maximum of 29°C, while warmed mesocosms
averaged 31°C (Fig. 1).

Precipitation in the summer of 2007 was below
average both nation-wide and in Virginia. Much of
the Chesapeake Bay watershed experienced abnor-

ω2 = −[ ]
+ −

SS df MS

SS N
effect effect error

effect

× /

ddf MSeffect error( )[ ]×
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mally dry to moderate drought conditions during
these months (NOAA 2007). Salinity averaged 20 ppt
both in the York River and in the mesocosms during
this experiment.

Ambient nutrient levels in the York River, meas-
ured as concentration of NH4

+, averaged 2 μM during
this experiment. In nutrient enriched treatments,
NH4

+ averaged 10 μM, or 5 times ambient nutrient
levels. This level of nutrient enrichment is at or above
the levels found at sites that no longer support
Zostera, and is comparable to the levels used in pre-
vious studies simulating eutrophication in this system
(Moore & Wetzel 2000, Spivak et al. 2009).

RESULTS

Species richness and multiple stressors

Crustacean grazer treatments, including grazer
presence, had the largest effect of any experimental
treatment in this study (Table 1). Crustacean grazer
presence significantly reduced the biomass of epi-
phytic microalgae, macroalgae (Ceramium spp.,
Polysiphonia spp., Enteromorpha spp., and Clado -
phora spp.), and sessile invertebrates (Molgula man-
hattensis, Botryllus schlosseri, and Bala nus improvi-
sus) in experimental communities (p < 0.0001, p =
0.0052, and p = 0.0002 respectively; Fig. 2, Table 1).
Species-rich grazer treatments also reduced macro-
algal biomass more strongly than the average single
species treatment (p = 0.0255; Fig. 2c, Table 1).
Although all grazer treatments began with the same
abundance, final biomass of crustacean grazers was
significantly greater in species-rich grazer treat-
ments compared to the average single-species grazer
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treatment (p = 0.0014; Fig. 3a, Table 1), and the
 composition of the grazer community was dominated
by Gammarus (Fig. 3b). However, grazer diversity
did not decrease stochastic variation in grazer bio-
mass or increase grazer community resistance to stres-
sors (Table 2). Overall, grazer presence and species
richness had strong and significant effects in this
experiment.

Abiotic stressors also significantly influenced all
primary producers. Elevated temperatures signifi-
cantly decreased Zostera biomass (p = 0.013; Fig. 2a,
Table 1), but significantly increased epiphytic algal
biomass (p = 0.0116; Fig. 2b, Table 1). There was no
effect of warming on grazers, macroalgae, or sessile
invertebrates. Nutrient enrichment, which elevated
nutrients to approximately 5 times ambient levels,
had the strongest effect on Zostera and significantly
reduced its biomass in all enriched treatments (p <

0.0001; Fig. 2a, Table 1). Macroalgal biomass was
also lower in the nutrient enriched treatments (p =
0.0087; Fig. 2c, Table 1). Conversely, epiphytic algal
biomass was greater in the presence of nutrient
enrichment (p = 0.0011; Fig. 2b, Table 1). Thus, both
nutrient enrichment and warming increased micro -
algae but decreased macrophytes. Epiphytic algal
biomass was generally lower and more stable in the
face of stressors in treatments with multiple grazer
species relative to the average of treatments with a
single grazer species (p = 0.04519; Fig. 2b, Table 2).
This was not the case for macroalgal or Zostera bio-
mass, which showed no difference in either stochas-
tic or resistance stability with grazer species richness
(Table 2). In this experiment, warming and nutrient
enrichment had similarly strong effects on primary
producers, but the direction of the effect differed
among producers.
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Fig. 2. Final biomass (±1 SE) of (a) Zostera shoots (aboveground biomass), (b) epiphytic algae (as chlorophyll a), (c) macroalgae
(primarily Cladophora sp., Ulva sp., Ceramium sp., Polysiphonia sp.), (d) sessile invertebrates (Botryllus schlosseri, Molgula
manhattensis, and Balanus improvisus). None: no grazers; Erich: Erichsonella attenuata alone; Elas: Elasmopus levis alone;

Gam: Gammarus mucronatus alone; 3 sp.: 3-species assemblage. Statistical analysis in Table 1



Community structure

NMDS analysis showed that experimental commu-
nities were significantly structured by all 3 treatments
(grazer species, warming, nutrient enrichment). Crus-
tacean grazer species treatments structured the ex-
perimental  communities not only by their presence,
but also by their identity (p = 0.0009; Fig. 4c, Table 3).
Species-rich and Gammarus-only treatments were
similar (Fig. 4c), reflecting the dominance of this
 species in multi-species grazer assemblages, and
contained more red algae (Cera mium spp. and Polysi-
phonia spp.) but less green algae (Enteromorpha spp.
and Cladophora spp.) than other treatments (Fig. 4a).
Alternatively, no-grazer and Elasmopus-only treat-
ments were similar (Fig. 4c), and contained more
green algae and sessile invertebrates but less red

 algae than other treatments (Fig. 4a).
Erichsonella-only treatments were in -
termediate, and contained approxi-
mately equal amounts of red and
green algae, and moderate biomass
of sessile invertebrates (Fig. 4a,c).
However, variation among these com-
munities was minimal, with similar
variance within all grazer treatments
(p = 0.50, betadisper test).

Communities were also structured
by nutrient enrichment (p = 0.001;
Fig. 4b, Table 3), which reduced bio-
mass of Zostera (see Fig. 4a,b). But
variation among nutrient-enriched
communities was less than variation

among non-enriched communities, meaning nutrient
enrichment made communities more similar (p =
0.028, betadisper test). Warming also significantly
influenced experimental community structure (p =
0.004; Fig. 4d, Table 3), but to a slightly lesser degree
than nutrients or grazers, and did not change com-
munity similarity (p = 0.61, betadisper test). Warmed
communities generally had lower Zostera biomass, a
pattern similar to nutrient-enriched communities.

Stressors and species identity

The SEM model (Fig. 5a), used to explore complex
interactions at the species level, showed that final
grazer species abundances were in fluenced by both
initial grazer assemblage composition and by stres-
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Fig. 3. (a) Final crustacean grazer biomass (±1 SE) for all experimental treatments. Grazer treatment abbreviations as in Fig. 2.
Statistical analysis is in Table 1. (b) Final proportion of crustacean grazer species biomass (g AFDM) in the 3-species as -
semblage treatments. Warm & nutr: warming and nutrient enrichment; Warm: warming; Nutr: nutrient enrichment; No stress: 

no stressors

Response Stochastic stability Resistance stability
Ab. dev. Rel. dev. Ab. dev. Rel. dev.

Grazer biomass 0.3432 0.2964 0.9528 0.4565
Zostera shoot biomass 0.1394 0.7743 0.1062 0.0736

Epiphytic algal biomass 0.1862 0.4333 0.06579 0.04519
(log chl a)

Macroalgal biomass 0.9529 0.6675 0.8005 0.5598
Sessile invertebrate biomass0.0854 0.6297 0.4483 0.9227

Table 2. Results of 2-sample Welch t-tests examining the effects of species
richness on stochastic (within treatment) and resistance (among treatment)
stability. Tests were performed on deviations from the median (Brown-
Forsythe test), and were conducted using R. Values significant at 0.05 are in 

bold. Ab. dev.: absolute deviation; Rel. dev.: relative deviation



Mar Ecol Prog Ser 470: 41–54, 2012

sors. Presence of both Elasmopus and Gam marus
reduced Erichsonella ab undance in 3-species treat-
ments, and together with the negative impacts of
warming, explained 70% of the  variation in Erich-
sonella abundance (Fig. 5b, Table 4). Our model also
suggests that Gammarus and Elasmopus had direct
positive effects on each other and explained about
70% of the variation in abundance of each species
(Fig. 5b, Table 4), but this is likely an artifact of the
experimental design (see ‘Discussion’). Gammarus was

the only grazer species whose final abun-
dance had a direct, negative impact on pri-
mary producers, specifically macroalgal bio-
mass. As shown in the analysis of community
structure, warming and nutrient enrichment
increased epiphytic algal biomass (R2 = 0.21;
Fig. 5b), while nutrients reduced Zostera and
macroalgal biomass (R2 = 0.29 and R2 = 0.21
respectively; Fig. 5b).

DISCUSSION

The effects of multiple stressors are fre-
quently assumed to be additive (Crain et al.

2008). However, changes in biodiversity occurring
simultaneously with multiple stressors may have
additive or synergistic effects, because diversity is
important in providing temporal, resistance, and
resilience stability in ecosystems (Tilman 1996, 1999,
Griffin et al. 2009). Less diverse communities have
fewer ecological redundancies, leading to less stable
ecosystem properties in the face of stressors (Breit-
burg et al. 1998, Hooper et al. 2005). Our results dem -
onstrate additive effects among diversity change,
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Fig. 4. Non-metric multi-dimensional scaling (NMDS) ordination of all invertebrate and algal species (stress = 0.16); each point
represents the community in a single mesocosm. (a) Plot of all mesocosm communities (points), and species with the most influ-
ence (vectors), (b) same plot as (a) color-coded by nutrient addition treatment (c) same plot as (a) with shapes representing the

crustacean grazer treatments (see Fig. 2 for abbreviations) (d) same plot as (a) color-coded by warming treatment

Factor                               df     SS          MS         F            p

Grazer species (Sp.)        4      0.0034      0.0008      8.5577       0.001
Warming (Warm.)           1      0.0004      0.0004      4.5097       0.004
Nutrients (Nuts.)             1      0.0018      0.0018      18.0309     0.001
Sp. × Warm.                     4      0.0003      0.0001      0.8806       0.604
Sp. × Nuts.                       4      0.0003      0.0001      0.8722       0.588
Warm. × Nuts.                 1      0.0000      0.0000      0.1726       0.904
Sp. × Warm. × Nuts.        4      0.0002      0.0001      0.5363       0.901
Error                                 76    0.0075      0.0001

Table 3. Results from PERMANOVA analysis, testing for differences
in community structure with experimental treatment. This analysis
used square-root transformed data and a Bray-Curtis dissimilarity 

matrix, as used for the NMDS ordination in Fig. 4
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Fig. 5. (a) Full structural equation model (SEM) that was estimated for this experiment, with warming and nutrients as stres-
sors. (b) Graphical results from analysis of model shown in (a). Only paths significant at p = 0.05 are shown; all path coefficients
are standardized. Solid and dashed lines represent positive and negative relationships respectively; line thickness indicates 

the explanatory power of a path. Results in Table 4

Model path                                                                                               Stand. est.  Unstand. est.     SE           CR            p
                                                      
Final Elasmopus abundance       ←     Warming                                        –0.022        –24.45           71.07       –0.344     0.731
Final Gammarus abundance      ←     Warming                                        –0.032        –36.191         66.047     –0.548     0.584
Final Erichsonella abundance    ←     Warming                                        –0.124        –27.007         13.764     –1.962     0.05
Final Elasmopus abundance       ←     Initial Erichsonella abundance    –0.043          –4.008         21.306     –0.188     0.851
Final Gammarus abundance      ←     Initial Erichsonella abundance       0.116          10.796         19.8           0.545     0.586
Final Erichsonella abundance    ←     Initial Erichsonella abundance    –0.256          –4.63             3.536     –1.309     0.19
Final Elasmopus abundance       ←     Initial Gammarus abundance         0.797          73.965         21.282       3.476   <0.0001
Final Gammarus abundance      ←     Initial Gammarus abundance         0.11            10.101         19.777       0.511     0.61
Final Erichsonella abundance    ←     Initial Gammarus abundance       –1.096        –19.526           3.617     –5.399   <0.0001
Final Elasmopus abundance       ←     Initial Elasmopus abundance       –0.039          –3.607         21.259     –0.17       0.865
Final Gammarus abundance      ←     Initial Elasmopus abundance         0.969          87.523         19.757       4.43     <0.0001
Final Erichsonella abundance    ←     Initial Elasmopus abundance       –1.053        –18.527           3.615     –5.125   <0.0001
Epiphytic algal biomass              ←     Final Elasmopus abundance        –0.231            0                  0           –1.596     0.111
Macroalgal biomass                     ←     Final Elasmopus abundance          0.147            0                  0             1.02       0.308
Epiphytic algal biomass              ←     Final Gammarus abundance         0.067            0                  0             0.47       0.638
Macroalgal biomass                     ←     Final Gammarus abundance       –0.304            0                  0           –2.148     0.032
Epiphytic algal biomass              ←     Final Erichsonella abundance     –0.059            0                  0           –0.43       0.668
Macroalgal biomass                     ←     Final Erichsonella abundance       0.056            0                  0             0.407     0.684
Epiphytic algal biomass              ←     Nutrients                                          0.287            0.012           0.004       2.812     0.005
Macroalgal biomass                     ←     Nutrients                                        –0.223          –0.014           0.006     –2.186     0.029
Epiphytic algal biomass              ←     Warming                                          0.237            0.076           0.033       2.274     0.023
Macroalgal biomass                     ←     Warming                                        –0.016          –0.007           0.048     –0.152     0.879
Zostera biomass                           ←     Final Elasmopus abundance        –0.217            0                  0           –1.48       0.139
Zostera biomass                           ←     Final Gammarus abundance       –0.128            0                  0           –0.885     0.376
Zostera biomass                           ←     Final Erichsonella abundance       0.177            0.001           0.001       0.993     0.321
Zostera biomass                           ←     Macroalgal biomass                     –0.041          –0.082           0.188     –0.438     0.662
Zostera biomass                           ←     Epiphytic algal biomass               –0.155          –0.447           0.269     –1.661     0.097
Zostera biomass                           ←     Nutrients                                        –0.439          –0.054           0.011     –4.912   <0.0001
Zostera biomass                           ←     Warming                                        –0.112          –0.104           0.095     –1.088     0.277

Table 4. Results from SEM examining the experimental effects of warming, nutrients, and grazer species richness (see Fig. 5).
Each line indicates one path in the model, with the arrow showing the direction of the effect. Significant path coefficients (p =
0.05) are in bold. Whole-model chi-square = 22.404, df = 21, p = 0.377. Stand. est.: standardized estimate; unstand. est.: 

unstandardized estimate; CR: critical ratio
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warming, and nutrient enrichment stressors in this
mesocosm experiment because we did not observe
any interactions. The absence of non-additive inter-
actions among environmental stressors and changes
in diversity may indicate that these factors act inde-
pendently in this system. However, we did observe
increased resistance stability of epiphytic algae in
the face of stressors in higher diversity grazer assem-
blages, demonstrating that diversity can buffer cer-
tain ecosystem processes against stressor impacts. If
the additive effects we observed are general, ecolog-
ical consequences of these stressors will still need to
be evaluated for each ecosystem process of interest,
but interpretation and prediction of ecosystem changes
may be more straightforward.

Grazer presence and changing species richness
had larger overall effects than warming or nutrient
enrichment on all response variables except Zostera
biomass in these experimental mesocosm communi-
ties (Table 1), in which we attempted to use realistic
levels of variation in each stressor. Biomass of grazers
in the mesocosms, standardized to biomass of sea-
grass, was comparable (within 1 SD) to the biomass
of grazers in local field collections (Douglass et al.
2010). As found previously, grazers reduced biomass
not only of epiphytic microalgae and macroalgae, but
also of sessile invertebrates (Fig. 2, Table 1) (Bell
1991, Duffy & Hay 2000, Duffy & Harvilicz 2001,
Moksnes et al. 2008). This reduction in sessile inver-
tebrate biomass with grazing is likely due to non-
consumptive removal of newly-settled barnacles and
tunicates from the Zostera blades and tank surfaces
by grazing amphipods and isopods (Osman & Whit-
latch 1995, 2004).

Reductions in epiphytes via grazing are often
assumed to lead to increases in Zostera biomass due
to alleviation of light limitation. We did not observe
this, likely because light levels in the mesocosms
were high enough, despite shading screens, to effec-
tively eliminate the competitive impacts of epiphytes.
In addition, the length of this experiment (6 wk) may
not have been long enough to observe strong com-
petitive effects of epiphytes on Zostera. However,
recent field experiments in this same system show
that when grazers are removed, epiphytic algal over-
growth can greatly reduce Zostera biomass (Whalen
et al. in press). Reductions in epiphytes via grazing
are likely important for seagrasses over longer time
frames than this experiment encompassed, and under
lower light conditions when competition may play a
greater role.

We found that more diverse grazer assemblages
produced higher grazer biomass, as suggested by

ecological theory (Carlander 1955, Mulder et al. 2001,
Gamfeldt & Hillebrand 2008) and demonstrated by
prior research in this system (Duffy et al. 2003). Per-
haps this is because the experimental stressors did
not impact grazer biomass directly (Table 1), or in -
teract with species richness mechanisms (facilitation,
niche complementarity, sampling effect) (Mulder et
al. 2001).

Species-rich grazer assemblages also potentially
provide resistance stability by maintaining ecosys-
tem processes and properties in the face of stressors.
We found that increasing grazer species richness
buffered epiphytic algae against stressor impacts by
increasing the resistance stability of epiphytic algal
biomass (Fig. 2, Table 2) (Griffin et al. 2009), as
shown previously with warming and salinity stres-
sors in this system (Blake & Duffy 2010). We saw this
stabilizing effect of grazer species richness despite
strong stressor effects on primary producers. This
may be because interaction strengths between graz-
ers and epiphytic algae remain high in the 3-grazer-
species communities due to the dominance of the
strong consumer Gammarus (Zimmerman et al. 1979,
Duffy & Harvilicz 2001, Thébault & Loreau 2005,
Douglass et al. 2010). In the future, it will be impor-
tant to test diverse grazer assemblages of differing
compositions in order to isolate diversity and compo-
sition effects and determine the generality of these
results.

Finally, grazer identity and composition structured
the mesocosm communities through differing prefer-
ential consumption of macroalgal species (Fig. 4a,c).
Green algae were consumed by all grazers, but red
algae were not consumed by Gammarus (Duffy &
Harvilicz 2001). Overall, the dominant effect of
grazer presence and species richness confirm that
grazing is an important ecosystem process, and that
changes in mesograzer species composition and
diversity can have impacts on primary producers and
epifaunal and epiphytic community composition
comparable to or greater than those of environmental
stressors.

Warming and nutrient enrichment had larger effects
on Zostera biomass than variation in grazer assem-
blages (Fig. 2, Table 1). The experimental addition of
nutrients to the water column reduced Zostera bio-
mass by 22% on average (Table 1), as shown in many
previous studies (see review by Hughes et al. 2004).
This direct, negative, physiological effect of nutrients
is likely due to increased nitrogen uptake and result-
ing carbon limitation (Touchette & Burkholder 2000),
but may have co-occurred with shading from epi-
phytic algal over-growth in no-grazer treatments,
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exacerbating the negative effects of nutrient addi-
tion. Nutrient additions also had a smaller but sig -
nificantly negative effect on macroalgal biomass
(Figs. 2 & 5, Tables 1 & 4). This may be because graz-
ers consumed almost all standing algal biomass, pri-
marily palatable green algae, in nutrient addition
treatments (Burkepile & Hay 2006).

Warming treatments, which increased temperatures
approximately 2 to 3°C and doubled the number of
days with temperatures above 30°C (Fig. 1), signifi-
cantly increased epiphytic algal biomass but reduced
Zostera biomass (Table 1). This 30°C threshold ap-
pears to be near the physiological limit of Zostera, and
likely increases the compensating light requirements
above available light levels in Chesapeake Bay
(Moore et al. 1997), leading to summer-time Zostera
die-offs (Moore & Jarvis 2008). Overall, stressors pro-
duced conditions favoring higher standing biomass of
‘nuisance’ microalgae at the expense of macroalgae
or eelgrass. If this holds true at an ecosystem scale, the
impacts of climate warming in eutrophied systems
such as Chesapeake Bay may be especially large.

SEM corroborated many results from the other
analyses, but also provided additional insights into
the structure of, and effects within, these experimen-
tal communities. In this analysis, we modeled grazer
species individually in order to examine stressor
effects on each species. However, modeling grazer
species this way made detection of grazer presence
and richness effects unlikely. The positive effects of
warming and nutrient enrichment on epiphytic
algae, and the negative effects on Zostera and
macroalgae seen in ANOVA results were again evi-
dent. The isopod Erichsonella was significantly less
abundant under warmed conditions, which follows a
trend of reduced biomass in the warmest month
(August) in York River, Virginia, field collections over
several years (Douglass et al. 2010). The presence of
other grazer species also appeared to reduce the
abundance of Erichsonella, likely because Erich-
sonella is a poor competitor, especially when grazer
populations have had sufficient time to near carrying
capacity in the mesocosms and competition for algal
food resources is at a maximum. The apparent posi-
tive effects of the other 2 grazer species, Elasmopus
and Gammarus, on each other in this SEM are likely
an artifact of the substitutive design of this experi-
ment: since initial numbers of all species were lowest
in the 3-species treatments, similar final densities of
species across treatments would appear as higher
population growth rates in the 3-species treatment.
Finally, Gammarus had a strong negative effect on
macroalgal biomass through consumption. This is

also evident in Fig. 2, but not in the ANOVA results
(Table 1) because grazer species were analyzed
together. This consumptive effect is significant
despite Gammarus’ documented promotion of red
algae, which can lead to overall higher macroalgal
biomass (Duffy & Harvilicz 2001). However, Gam-
marus remains a strong consumer of most other
macro- and microalgae (Zimmerman et al. 1979).
Thus, SEM provides information complementary to
the ANOVA results that helps tease apart the effects
of individual species and interactions among factors.

The present study shows that grazer presence and
diversity can have comparable or larger effects on
community structure than warming and nutrient
enrichment stressors in an experimental temperate
seagrass system. Diversity is important for maintain-
ing critical ecosystem processes, such as grazing, in
the face of multiple stressors (Elmqvist et al. 2003,
Larsen et al. 2005, Valentine & Duffy 2006, Blake &
Duffy 2010), and grazing in seagrass systems has
effects similar in magnitude to water column nutrient
enrichment (Neckles et al. 1993, Hughes et al. 2004).
However, we see that nutrients and warming favor
ephemeral and epiphytic algae over eelgrass, poten-
tially leading to a shift in basal primary producer
composition as coastal nutrient enrichment remains
unabated and the climate continues to warm. These
results might suggest a bleak future for temperate
estuarine seagrass systems, but also emphasize that
these processes depend strongly on stressor identity
and the composition of the grazer assemblage.
Experimental grazer richness manipulations such as
ours are often logistically constrained and cannot
capture the range of species richness in the field, and
experimental manipulations of warming and nutrient
additions can only simulate actual conditions for a
short duration. However, recent experiments suggest
that grazer control of epiphytic algae is similarly
important in field settings (Cook et al. 2011, Whalen
et al. in press). Whether these patterns of diversity
and stressor effects hold true for other larger experi-
mental and natural systems remains a topic for fur-
ther investigation. This work highlights the impor-
tance of evaluating the impacts of climate warming
on individual species as well as the entire system,
and reexamining the effects of potential interactions
between environmental stressors and the structure of
consumer assemblages as climate change continues.
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