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ARTICLE

A glimpse of gluons through deeply virtual
compton scattering on the proton
M. Defurne et al.#

The internal structure of nucleons (protons and neutrons) remains one of the greatest

outstanding problems in modern nuclear physics. By scattering high-energy electrons off a

proton we are able to resolve its fundamental constituents and probe their momenta and

positions. Here we investigate the dynamics of quarks and gluons inside nucleons using

deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton,

which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process,

where the photon is emitted by the electron rather than the proton. We report herein the full

determination of the BH-DVCS interference by exploiting the distinct energy dependences of

the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a

single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong

interaction.
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The dynamics of quarks and gluons inside the nucleon are
governed by the strong interaction, described by the theory
of quantum chromodynamics. At a distance scale of the

nucleon radius, perturbative computations cannot be performed
because of the large value of the strong coupling constant αS. To
unravel the internal dynamics of the nucleon and answer fun-
damental questions from the origin of its spin to the mechanism
of confinement, lepton-scattering experiments have proven to be
a powerful tool. Indeed, elastic scattering allows to access the
transverse spatial distribution of charge and current in the
nucleon through measurements of its electric and magnetic form
factors, whereas parton distribution functions measured in deep
inelastic experiments provide information on the longitudinal
momentum carried by the confined quarks and gluons. Devel-
oped in the mid-90s, the generalized parton distributions (GPDs)
1–3 provide a higher level of information and encode correlations
between the transverse position and the longitudinal momentum
of quarks and gluons inside the nucleon4. Being a 1

2-spin particle,
the nucleon is described by four chiral-even GPDs H; E; ~H; ~E

� �
and their chiral-odd counterparts more commonly called trans-
versity GPDs, for each quark flavor and for gluons5.

GPDs are accessible through deep virtual photoproduction
processes: a high-energy virtual photon scatters off the proton
and all the subsequent particles in the final state are identified6–15.

The high-energy scale introduced by the virtual photon (or
equivalently its short distance resolution scale) ensures that the
reaction is governed by perturbative dynamics of quarks and
gluons αS � 1ð Þ. In this work we focus on the process in which a
single high-energy photon is emitted by the scattered proton, the
so-called deeply virtual Compton scattering (DVCS). Similarly to
holography, measuring not only the magnitude but also the phase
of the DVCS amplitude allows to perform three-dimensional
(3D) images of the proton internal structure. The phase is
accessible through the quantum-mechanical interference of
DVCS with the Bethe-Heitler (BH) process, where the photon is
emitted by the electron rather than the proton.

We report accurate measurements of the photon electro-
production cross section. Our results show an unexpected sen-
sitivity to the gluon content of the proton. In addition, by using
different incident beam energies, we were able to isolate the
contribution of the BH-DVCS interference term from the pure
DVCS2 amplitude.

Results
The DVCS amplitude. Collinear factorization theorems16,17

demonstrate that at sufficiently high energy, the DVCS amplitude
is a convolution of a perturbative kernel with the GPDs of the
nucleon—which describe the nucleon’s non-perturbative struc-
ture (Fig. 1). These convolutions, called Compton form factors
(CFFs), can be classified according to photon-helicity states. With
λ and λ′ the helicity state of the virtual photon and outgoing real
photon, respectively, we distinguish three kinds of photon-
helicity-dependent CFFs F λλ′ 2 Hλλ′; Eλλ′; ~Hλλ′; ~Eλλ′

� �
18: the

helicity-conserved CFFs Fþþð Þ, which describe diagrams for
which the virtual and the outgoing photons have the same helicity
state, the transverse-to-transverse helicity-flip CFFs F�þð Þ for
which the virtual and the outgoing photons have opposite heli-
cities, and the longitudinal-to-transverse helicity-flip CFFs F 0þð Þ
describing the contribution of a longitudinally polarized virtual
photon. The CFFs are also classified according to the inverse
power of Q �

ffiffiffiffiffiffi
Q2

p
with which they enter the DVCS amplitude.

This power is called the twist, and is equal to the dimension
minus the spin of the corresponding operator. The leading-twist
(LT) CFFs are Fþþ and F�þ, which are twist-2. CFFs F 0þ are
twist-3, i.e., 1

Q-suppressed with respect to the LT CFFs. Note that
the gluon contribution (Fig. 1 top right) while twist-2, is sup-
pressed by a factor of αS (next-to-leading-order; NLO).

To experimentally study DVCS, the virtual photon in the initial
state is produced via the scattering of a multi-GeV electron off a
proton. Consequently, DVCS events have an electron and a
proton (ep) in the initial state, with a final state composed of the
scattered electron, the recoil proton and the high-energy photon
(epγ). However, the final photon of the reaction ep→ epγ can also
be emitted by either the incoming or scattered electron instead of
the proton, a competing channel called BH. Therefore, the
exclusive photon electroproduction ep→ epγ cross section of a
polarized electron beam of energy k off an unpolarized target of
mass M (Fig. 2) can be written as19:

d4σðhÞ
dQ2dxBdtdϕ

¼ d2σ0
dQ2dxB

´ T BH
�� ��2þ T DVCSðhÞ

�� ��2�IðhÞ
h i

ð1Þ

where ϕ is the angle between the leptonic and hadronic planes
defined by the Trento convention20, h the lepton helicity, and I is
the interference of the virtual Compton T DVCS and BH T BH

amplitudes.
The interference between BH and DVCS provides a way to

independently access the real and imaginary parts of CFFs. At
leading order (LO), the imaginary part of Fþþ is directly related
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Fig. 1 A few examples of DVCS diagrams. At leading-order in perturbative
quantum chromodynamics (QCD) (a), the virtual photon with four-
momentum q interacts with a single quark (single straight line) from the
proton p, in the limit Q2= −q2 much larger than the proton mass squared.
Subsequently, the active quark emits a real photon with four-momentum q′.
The recoil proton has four-momentum p′. Perturbation theory can be used
to calculate the part of the amplitude above the (dashed) factorization line,
whereas GPDs encode the non-perturbative structure of the nucleon. At
next-to-leading order in perturbative QCD (b), a gluon (curly line) from the
proton splits into a quark-antiquark pair and the quark absorbs the virtual
photon. c An example of deeply virtual Compton scattering (DVCS)
diagram at next-to-leading twist illustrating a quark-gluon correlation. The
average longitudinal momentum fraction carried by the active parton
(quark/gluon) is x and −2ξ is the longitudinal momentum transfer. The
helicity of the photons contributing to the leading-twist amplitudes are
specified in parenthesis
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to the corresponding GPD at x= ξ:

ReFþþ ¼ P
R 1
�1dx

1
x�ξ � κ 1

xþξ

h i
Fðx; ξ; tÞ;

ImFþþ ¼ �π Fðξ; ξ; tÞ þ κFð�ξ; ξ; tÞ½ �;
ð2Þ

where κ= −1 if F ∈ {H, E} and 1 if F 2 ~H; ~E
� �

. Recent
phenomenology uses the LT and LO approximation in order to
extract or parametrize GPDs, which translates into neglecting
F 0þ and F�þ and using the relations of Eq. (2)21–23.

The experiment. We report herein measurements of helicity-
dependent and helicity-independent photon electroproduction
cross sections with high statistical accuracy in Hall A of Jefferson
Lab. The H ~e; e′γð Þp cross section was measured at xB= 0.36 for
three Q2-settings. Data for each Q2-value were taken with two
incident beam energies and binned in −t. Kinematics are sum-
marized in Table 1. The present experimental study was initiated
to separate the DVCS-BH interference and DVCS2 contributions
to the ep→ epγ cross section, by exploiting the different energy
dependences of the BH and DVCS amplitudes. Until now, only
the asymmetry between incident electron and positron beams
could be used to constrain the real part of this interference9,24.

In experiment E07–007 a longitudinally polarized electron
beam impinged on a 15-cm-long liquid H2 target. Beam
polarization was continuously measured by the Hall A Compton
polarimeter and found to be 72± 2%sys on average. Scattered
electrons were detected in the left high-resolution spectrometer
(HRS)25. Events were triggered by the coincidence of a scintillator
plane (S2m) and a signal in a gas C

^

erenkov counter. The HRS
δp=p � 10�4 momentum resolution and δθ � 0:6 mr horizontal
angular resolution provide a precise measurement of the electron
kinematics and interaction vertex. Tracking efficiency was known
to 0.5%. The final state photon was detected in an electromagnetic
calorimeter consisting on an 16 × 13 array of PbF2 crystals. Its
energy resolution was measured to be 2.4% at 4.2 GeV, with
~3mm spatial resolution.

The exclusivity of the reaction is ensured by a cut on the ep→
eγX missing mass squared M2

X ¼ kþ p� k′� q′ð Þ2 (Fig. 3). The
number of events NC below the missing mass cut M2

C is the sum
of four contributions:

NC ¼ Nep!epγ þ Nπ0�1γ þ Nacc þ NSIDIS; ð3Þ

with Nep→epγ the number of exclusive photon events, Nπ0�1γ the
contamination from π0 decays that yield only one photon in the
calorimeter, Nacc the number of electron-photon accidental
coincidences, and NSIDIS the contamination from semi-inclusive
events ep→ epγX. The contamination caused by asymmetric π0

decays with respect to the pion momentum was estimated by
simulating thousands of decays for each π0 identified in the data
and computing the likelihood for each to yield only one photon in
the experimental acceptance. The subtraction of Nacc was
performed by analyzing events where the scattered electron and
the detected photon were not in coincidence. In addition, we
applied a 800MeV energy cut on the photon to remove most of
the accidental background and required a value of M2

X > 0:5 GeV2

to increase the signal/background ratio (Fig. 3). We also applied a
M2

X<1 GeV
2 cut so that NSIDIS is < 1% of exclusive Nep→epγ events.

The significant fraction of exclusive photon events with a missing
mass squared higher than M2

C is corrected by applying the same
cut to the Monte-Carlo simulation used to compute the
experimental acceptance. This fraction of events removed varies
from bin to bin since the width and position of the exclusive
signal may slightly change from one bin to another. The compact
experimental setup provides a very flat geometrical acceptance,
except at the edges of the detectors, where it drops to 75–30%
depending on the kinematic setting. The energy resolution of the
calorimeter was smeared locally in order to match the missing
mass resolution observed in the experimental data, and the point-
to-point systematic uncertainty associated to the exclusivity cut
estimated to be 2%.

The Monte-Carlo simulation is based on the GEANT4 toolkit
and includes real and virtual radiative corrections following the
procedure described in ref. 12 and based on calculations by
Vanderhaeghen et al.26. A 2% point-to-point systematic uncer-
tainty has been attributed to the radiative corrections and a 1%
correlated uncertainty to the HRS acceptance model27. The
simulation is used to account for bin migration effects in t and ϕ
(around 10% in average) due to detector resolution and
Bremsstrahlung radiation12, with 1% point-to-point systematic
uncertainty. An additional bin in t is used to correct for bin
migration in and out of the largest |t| − bin. We also include 2%
correlated uncertainty for the integrated luminosity and data
acquisition dead-time correction and 0.5% for trigger efficiency,
which yields a total systematic uncertainty of 3.9% for the
unpolarized cross sections and 4.4% for the helicity-dependent
cross sections. The total systematic uncertainties are comparable
to the typical values of the statistical uncertainties on the
unpolarized cross sections.

Photon electroproduction cross sections. The scattering ampli-
tude is a Lorentz invariant quantity, but the deeply virtual scat-
tering process nonetheless defines a preferred axis (light-cone
axis) for describing the scattering process. At finite Q2 and non-
zero t, there is an ambiguity in defining this axis, though all
definitions converge as Q2→∞ at fixed t. Belitsky et al.18

decompose the DVCS amplitude in terms of photon-helicity
states where the light-cone axis is defined in the plane of the four-
vectors q and P. This leads to the CFFs defined previously.
Recently, Braun et al.28 proposed an alternative decomposition,
which defines the light-cone axis in the plane formed by q and q′,
resulting in a new set of CFFs Fλλ′ parameterizing the DVCS

k k ′

q ′
p ′

p

e p

Electron

Proton

VCS Bethe-Heitler

= + +

e p γ

Fig. 2 Lowest-order diagrams for ep→ epγ. The momentum four-vectors of
external particles are labeled on the left. The net four-momentum transfer
to the proton is Δμ= (q − q′)μ= (p′ − p)μ. In the virtual Compton scattering
(VCS) amplitude, the (spacelike) virtuality of the incident photon is Q2=
−q2= −(k − k′)2. The Bjorken variable xB is defined as xB=Q2/(2q ⋅ P). In
the Bethe-Heitler amplitude, the virtuality of the incident photon is −Δ2= −t

Table 1 Kinematic settings experiment E07–007

Q2 (GeV2) xB Ebeam (GeV) −t (GeV2)

1.50 0.36 3.355 0.18, 0.24, 0.30
5.55

1.75 0.36 4.455 0.18, 0.24, 0.30, 0.36
5.55

2.00 0.36 4.455 0.18, 0.24, 0.30, 0.36
5.55

Three Q2 settings were measured at constant value of xB and at two different incident beam
energy Ebeam. The values of −t at which cross sections were determined are reported in the last
column of the table
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amplitude, and argue that this is more convenient to account for
kinematical power corrections of Oðt=Q2Þ and OðM2=Q2Þ. The
bulk of these corrections can be included by rewriting the CFFs
F λλ′ in terms of Fλλ′ using the following map28:

Fþþ ¼ Fþþ þ χ

2
Fþþ þ F�þ½ � � χ0F0þ; ð4Þ

F�þ ¼ F�þ þ χ

2
Fþþ þ F�þ½ � � χ0F0þ; ð5Þ

F 0þ ¼ �ð1þ χÞF0þ þ χ0 Fþþ þ F�þ½ �; ð6Þ

where kinematic parameters χ0 and χ are defined as follows

(Eq. 48 of ref. 28):

χ0 ¼
ffiffiffi
2

p
Q~Kffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ2
p

ðQ2 þ tÞ
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmin � t

p

Q
; ð7Þ

χ ¼ Q2 � t þ 2xBtffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
ðQ2 þ tÞ

� 1 / tmin � t
Q2

: ð8Þ

Within the Fμν-parameterization, the LT and LO approxima-
tion consists in keeping Fþþ and neglecting both F0þ and F�þ.
Nevertheless, as a consequence of Eqs. (5) and (6), F 0þ and F�þ
are no longer equal to zero since proportional to Fþþ. The
functions that can be extracted from data to describe the 3D

MX
2 (GeV2)
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Data - MC simulation

Fig. 3 Missing mass squared distribution. The black histogram presents the raw data. Accidental and π0 backgrounds are shown in green and orange,
respectively. The subtraction of the accidental and π0 contributions from the raw data is displayed in blue. The Monte-Carlo simulation is represented by
the open crosses, whereas the triangles show the estimated inclusive yield obtained by subtracting the simulation from the background-subtracted data.
The vertical dotted lines illustrate the two cuts applied onM2

X in the analysis. This figure corresponds to the kinematic setting Ebeam= 4.455 GeV and Q2=
1.75 GeV2, integrated over t
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Fig. 4 Beam helicity-dependent and helicity-independent cross sections. Unpolarized cross sections are represented with black circles and polarized cross
sections with black triangles. The kinematic setting shown corresponds to Q2= 1.75 GeV2, xB= 0.36, and t= −0.30 GeV2. The beam energies are Ebeam=
4.455 GeV (a) and Ebeam= 5.55 GeV (b). Bars show s.d. statistical uncertainties, calculated as the squared root of the number of detected events and
propagated to the measured cross sections. Dashed lines represent the result of the LT/LO fit with Hþþ, Eþþ, ~Hþþ, and ~Eþþ. Solid lines show the result of
the HT fit with Hþþ, ~Hþþ, H0þ, and ~H0þ . Curves for the NLO fit (Hþþ, ~Hþþ, H�þ, and ~H�þ) overlap with the HT fit and are not shown. Results of the
KM1529 fit to previously published DVCS data are also presented
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structure of the nucleon become:

Fþþ ¼ 1þ χ

2

� �
Fþþ;F 0þ ¼ χ0Fþþ;F�þ ¼ χ

2
Fþþ: ð9Þ

A numerical application gives χ0= 0.25 and χ= 0.06 for Q2 =
2 GeV2, xB= 0.36, and t= −0.24 GeV2. Considering the large size
of the parameters χ0 and χ, these kinematical power corrections
cannot be neglected in precision DVCS phenomenology, in
particular in order to separate the DVCS-BH interference and
DVCS2 contributions. Indeed, when the beam energy changes,
not only do the contributions of the DVCS-BH interference and
DVCS2 terms change but also the polarization of the virtual
photon changes, thereby modifying the weight of the different
helicity amplitudes.

Figure 4 presents the beam helicity-dependent and helicity-
independent cross sections measured in one kinematic bin, at two
different values of the incident beam energy. The KM1529 line
shows a LT and LO global fit without kinematically suppressed

power corrections, which was able to reproduce all currently
available DVCS data, from collider to fixed-target experiments.

Discussion
Neglecting the (logarithmic) Q2-evolution of the CFFs between
1.5 and 2 GeV2, we have performed a combined fit of all our data
at constant xB and t. For each −t bin, this fit includes the helicity-
dependent and helicity-independent cross sections at two values
of beam energy and all three values of Q2. Point-to-point sys-
tematic uncertainties (3.2% total) were added to statistical
uncertainties quadratically when performing the fit. The effect of
correlated systematic uncertainties was found negligeable.

The LO/LT fit is shown in Fig. 4 for t= −0.30 GeV2, in which
the free parameters are the real and imaginary parts of Hþþ,
~Hþþ, Eþþ, and ~Eþþ. This fit reproduces very poorly the angular
distribution of the data yielding a value of χ2/ndf= 415/208.
Indeed, the strong enhancement of the cosϕ-harmonics in the
DVCS2 amplitude originated by the large size of χ0 translates into
the bump in the dashed line around ϕ= 180° for Ebeam=
5.550 GeV. Two additional fits were performed including either
H0þ; ~H0þ

� �
to include genuine twist-3 contributions or

H�þ; ~H�þ
� �

to include gluon-transversity GPD contributions
arising at NLO . In both of these latter fits Eþþ and ~Eþþ, expected
to have the smallest contributions, were set to zero, thus keeping
constant the number of free parameters. Including Eþþ and ~Eþþ
yields similarly good fits, though. The fit to the data is much
better (χ2/ndf= 190/208) for both the higher-twist (HT) or the
NLO scenarios than for the LO/LT case. This conclusion also
holds for the lower −t bins, as summarized in Table 2. We observe
the crucial role of gluons in the description of the process, either
through the quark-gluon correlations involved in HT diagrams or

Table 2 Results of the cross-section fits

Fit description LO/LT Higher twist NLO

Helicity states ++ ++/0+ ++/−+

t= −0.18 GeV2 250 204 206
t= −0.24 GeV2 367 206 208
t= −0.30 GeV2 415 189 190

Values of χ2 (ndf= 208) obtained in the leading-order, leading-twist (++); higher-twist (++/0
+); and next-to-leading-order (++/−+) scenarios. The fit is not performed at the highest value of
−t because of the lack of full acceptance in ϕ, resulting in a large statistical uncertainty. The fits
include statistical and point-to-point systematic uncertainties
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Fig. 5 A generalized Rosenbluth separation. DVCS2 and DVCS-BH interference contributions are shown at Q2= 1.75 GeV2, xB= 0.36, t= −0.30 GeV2, and
Ebeam= 5.55 GeV for the helicity-independent (a) and helicity-dependent (b) cross sections. Solid and dotted lines represent these contributions for the
twist-3 (HT) scenario; dashed and dashed-dotted lines correspond to the NLO scenario. Bands show s.d. statistical uncertainties. A DVCS2 contribution
appears in the helicity-dependent cross section only if there is a contribution from the longitudinal polarization of the virtual photon (HT scenario)
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through next-to-leading effects implying gluon-transversity
GPDs. This pioneer analysis including the kinematical power
corrections recently calculated for DVCS demonstrate that the LT
approximation is no longer sufficient to describe the accuracy of
these new data.

Within both successful fit scenarios, the DVCS2 and the BH-
DVCS interference terms are well separated, as presented in
Fig. 5: we denote this procedure a generalized Rosenbluth
separation. In particular, we note a significant DVCS2 contribu-
tion in the HT scenario to the helicity-dependent cross section,
assumed to be a purely interference term in DVCS phenomen-
ology up to now. In addition, the real part of the BH-DVCS
interference (helicity-independent cross section) is extracted in
these kinematics.

In conclusion, we measured beam helicity-dependent and
helicity-independent photon electroproduction cross sections off
a proton target for three Q2-values ranging from 1.5 to 2 GeV2 at
xB= 0.36. Each kinematic setting was measured at two incident
beam energies. Using this data set, we demonstrated the sensi-
tivity of high-precision DVCS data to twist-3 and/or higher-order
contributions through a phenomenological study including
kinematical power corrections. Within either a pure HT or a pure
NLO scenario, both legitimate at our moderate values of Q2, a
statistically significant experimental separation of the DVCS2 and
DVCS-BH interference terms is achieved. While HT effects in
GPD models30,31 are of the order of magnitude observed, no
numerical estimate of NLO contributions due to gluon-
transversity GPDs are available. Advances in global analyses
can include these next-order contributions, rich with information
about parton correlations inside the nucleon32,33. Finally, a new
program has started at Jefferson Lab to measure deep virtual
exclusive scattering with electron beams up to 11 GeV. For a
given xB, the reach in Q2 will span at least a factor of two. This
broader reach provides the potential to discriminate between the
two scenarios (HT or NLO), as the cross sections in the two
scenarios (for the same GPDs) have different energy and Q2

dependencies at fixed xB.

Data availability. Data that support the findings of this study are
available in HEPData with the identifier http://dx.doi.org/
10.17182/hepdata.78261.

Received: 24 April 2017 Accepted: 18 October 2017
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