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Abstract 

We report on data collected at three time points during a four-day intervention designed to 

explore the value added of technology-rich activities within an inquiry mathematics curriculum. 

Two of the activities were computer-based, whereas the third involved a professionally created 

movie.  Using latent profile analysis we explored (a) the profiles of experiences (indicated by 

self-reports of immersion, interest, usefulness, and relatedness of the technology activity) that 

students in Grades 5-8 (n=7,774) reported regarding their participation in one of three different 

activities; (b) the motivational and achievement outcomes in mathematics that were evident by 

being a member of one of these latent profiles; and (c) the factors that predicted students’ 

membership into one of these profiles of technology experience.  Results showed that: (1) three 

latent profiles emerged from the data; (2) the profiles predicted mathematics learning and 

motivation; and (3) grade level, prior mathematics achievement, prior mathematics interest, and 

students’ feelings of how autonomy supportive their teachers are predicted membership into 

these profiles. Results support and refine the literature in educational psychology regarding 

models of motivation and engagement, as well as the literature in educational technology 

concerning the motivational affordances of technology. 

Keywords: Motivation; Engagement; Science Education; Intervention; Technology
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Technology-Rich Activities: One Type Does Not Motivate All 

 Researchers and practitioners often point to the use of technology-enabled instructional 

activities that employ constructivist pedagogical strategies as a key to engaging and motivating 

students in school (Blumenfeld, Kempler, & Krajcik, 2006).  However, this assumption should 

not be taken as a given for a number of reasons, including factors such as how the activities are 

implemented by teachers (e.g., Wu & Huang, 2007) and whether the design and use of the 

technology-enabled activities might interfere with their willingness to engage with the content 

(Blumenfeld, Kempler, & Krajcik, 2006).  The specific type of technology that teachers use in 

classrooms will not necessarily determine the level of motivation and engagement that students 

experience—teachers can use a low-tech, low-cost, movie just as successfully as they can use 

high-tech, high-cost, games and simulations (Authors, 2014). Thus, it becomes important to 

consider more nuanced questions about the specific affective experiences of students as they 

participate in activities rather than the medium (e.g., computer games versus movies).  In fact, in 

our previous analyses of the same dataset using a variable-centered approach (Authors, 2014) 

and only investigating changes from pre-intervention to post-intervention, we found that there 

was little to no effect of the technology activity that students participated in on outcomes such as 

self-efficacy and implicit theory of ability.  There were very modest pre- to post-intervention 

changes on mathematics learning and value beliefs.  These findings led us to consider the 

possibility that perhaps it is not the technology activity that makes a difference.  Rather, it may 

be how students experience the technology that matters. 

Unfortunately, evidence related to these issues is limited and contradictory  

(Moos & Marroquin, 2010).  Like any pedagogical tool, technology can be designed and used in 

ways that facilitate or thwart students’ engagement and motivation.  Also, motivation and 
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engagement are broad multi-dimensional constructs, such that technology-enabled activities may 

be successful in affecting some aspects of motivation and engagement but not others. These 

issues drive the present research, where we explore the variety of ways that technology-rich 

activities can engage and motivate students, and how students’ experiences with the activity 

relate to their subject matter learning and motivation.   

 For the sake of clarity, we broadly define technology-enabled activities as those that 

involve some use of digital media.  For our study in particular, we wanted to include digital 

media that spanned the spectrum from low interactivity and relatively low barriers for 

implementing (e.g., movies) to very high interactivity and relatively high barriers for 

implementing (e.g., immersive computer games).  Also, because the terms engagement and 

motivation are often used interchangeably, we clarify how these constructs are defined and 

operationalized in the present study. Consistent with prior work on engagement (e.g., Furrer & 

Skinner, 2003; Skinner, Furrer, Marchand, & Kindermann, 2008), we broadly define engagement 

with technology as the degree to which students feel immersed in an activity and find the activity 

to be interesting/enjoyable.  Drawing from the motivational literature (e.g., Eccles, 2009; 

Wigfield & Eccles, 2000), we define motivation as beliefs about competence, which answer 

questions like, “can I succeed?” and beliefs about value, which answer questions like, “why 

would I want to do this activity?”  

The present research makes three unique contributions to the literature on engagement, 

motivation, and technology.  First, as mentioned, scholars have noted the poor quality of 

empirical evidence investigating the affordances of technology-rich scholastic activities (Moos & 

Marroquin, 2010; Wouters, van Nimwegen, van Oosterndorp, & van der Spek, 2013).  By using 

constructs drawn from rigorous theories of motivation and engagement, we investigated what 
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affordances (if any) are provided by three different technology-rich activities that were tightly 

integrated into teacher-led, inquiry-based, mathematics instruction.  Therefore, any differences in 

students’ observed outcomes could be attributable to how students experienced the technology 

activity because everything else that students experienced was constant.  Second, we drew from 

diverse literature bases to conceptualize salient aspects of motivation and engagement within 

technology-enabled environments.  Although scholars have conceptualized the construct of 

engagement fairly broadly to encompass the dynamics that take place within a typical classroom 

(for a review see Fredricks, Blumenfeld, & Paris, 2004), we sought to explore engagement in a 

manner that was consistent with the nature of technology-enabled activities.  Third, our interest 

here is in individual differences regarding students’ motivation and engagement with 

technology-enabled activities.  Rather than documenting whether computer games versus movies 

are associated with larger or smaller gains in motivation and engagement on average (e.g., 

Authors, 2014; Annetta, Minogue, Holmes, & Cheng, 2009; Bai, Pan, Hirumi, & Kebritchi, 

2012; Kebritchi, Hirumi, & Bai, 2010), we instead examined the patterns of motivation and 

engagement evinced by students, which represented their individual affective experiences with 

the technology activity, regardless of which one they participated in. 

 We asked three main questions.  First, what patterns (i.e., profiles) of motivation and 

engagement emerge regarding students’ experiences with technology?  In particular, we focused 

on profiles regarding how immersive, interesting, and useful the technology activity was.  We 

also focused on how relatable the characters were to students.  Second, because the technology 

activities we used were integrated within a classroom-based mathematics lesson, we wondered 

what motivational and achievement outcomes in mathematics do students’ technology 

engagement profiles predict, even as all students (regardless of technology activity) received the 
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same teacher-guided, inquiry-oriented, mathematics instruction?  Exploring this question would 

allow us to provide evidence for predictive validity regarding the profiles of technology 

motivation and engagement.  Finally, because technology is not a one-size-fits-all solution for all 

students, we wondered which factors predict students’ motivation and engagement with 

technology-enabled activities?   

Engagement, Motivation, and Technology 

Framing this study requires that we explore two literatures that are conceptually related. 

First, educational technology researchers have a long history of building technology activities 

that are designed to motivate and engage students.  Second, there is a rich literature from 

educational psychology on how to motivate and engage students in school generally. The 

theories and empirical studies from this literature make predictions about how to design and use 

technology in classrooms to motivate and engage students.   

Immersion and interest.  Educational psychologists distinguish between fleeting 

moments of interest (referred to as situational interest) and more robust personal interests, which 

can be defined as a long-term and relatively enduring enjoyment in an activity such that 

individuals are likely to re-engage with this activity on their own accord (Hidi & Renninger, 

2006). Hidi and Renninger describe interest development as a four-phase model that begins with 

a “hook” or triggered situational interest.  This “hook” can then proceed to a maintained 

situational interest in which students maintain their initial interests and stay engaged with the 

activity, which can then lead to the development of personal interests.  

Immersion could be framed within the interest development literature (Hidi & Renninger, 

2006).  It may be that immersive environments use immersion as a “hook” to spark students’ 

initial interest in academic content (i.e., emotionally engage students).  Immersion alone, 
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however, cannot develop more robust personal interests, especially in a subject area.  Rather, 

once students’ interests are sparked, the content has to be interesting enough that students 

continually re-engage with it.  This continual re-engagement with rich, high-quality, content, 

allowing for students to choose what they learn, and providing individualized feedback is one 

major affordance that technology-enabled activities can do easily. 

When considering the educational technology literature, scholars in this field generally 

suggest that two features of technology-enabled activities play especially powerful roles in 

motivation and engagement.  These features are immersion and interest (Goh, Ang, & Tan, 2008; 

Hainey, Connolly, Stansfield, & Boyle, 2011; Marsh, 2011; Squire, 2008). Immersion is defined 

within this literature as the subjective impression that one is participating in a comprehensive, 

realistic experience, such that individuals willingly suspend disbelief (see Hale & Stanney, 

2015).  Interest, on the other hand, is commonly conceptualized as enjoyment or fun.  

Scholars in educational technology typically find that immersion facilitates positive 

academic outcomes (see Dede, 2009), and support the transfer of knowledge learned within a 

virtual context to a real-world context (Weinstein et al., 2009; Winn, Windschitl, Fruland, & Lee, 

2002).  The results linking immersion to learning outcomes notwithstanding, little research has 

been conducted concerning the motivational affordances regarding immersion despite the 

assumption that technology-enabled activities such as immersive virtual environments (IVEs) 

have motivational appeal due to their ability to create a physical and affective experience of 

“being there” (Dede, 2009).  Some research has suggested that IVEs are effective when they 

incorporate a cohesive and compelling narrative, which facilitates learners’ engagement (Barab, 

Sadler, Heiselt, Hickey, & Zuiker, 2007; Girard et al., 2013; Rowe, Shores, Mott, & Lester, 

2010). Overall, the few studies investigating immersion (whether perceptual or narrative 
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immersion) and motivation or engagement suggest that IVEs engage students by “suspending 

their disbelief” and thereby compelling them to participate in instructional activities.   

With respect to interest, the literature also suggests that educational technologies that are 

perceived to be interesting and fun also facilitate positive student outcomes such as completing 

academic tasks (Allen, Crossley, Snow, & McNamara, 2014; Habgood & Ainsworth, 2011).  

Taken as a whole, the focus on interest and immersion points to a larger picture that scholars in 

educational technology mostly see computers as a tool to engage students in academic work—

the more “time on task” in a learning environment, the more educational benefits students can 

gain.  But a more important question (for educators) that has been addressed to a lesser extent is 

whether engaging in technology-enabled activities leads to increased engagement and motivation 

for the subject matter. Authors (2016) showed that, students who experienced both a “spark” of 

interest at the beginning of the IVE and a gradual (rather than sharp) drop in interest for the IVE 

reported higher science interest, whereas their peers who only experienced a spark of interest but 

then lost interest more dramatically evinced lower science interest.  On the other hand, other 

researchers have reported less impressive results regarding the motivational affordances of 

technology-enabled activities (e.g., Adams, Mayer, MacNamara, Koenig, & Wainess, 2012; 

Girard, Ecalle, & Magnan, 2013).   

Utility.  Another factor that may promote a more robust motivation to pursue an 

academic subject is allowing students to discover the usefulness of an activity to their own 

personal lives.  We chose to focus on utility for our present study because the technology-

enabled activities used were designed to be useful to students in different ways, from the 

practical applications of mathematics to the utility of believing that mathematical ability is 

augmentable.  Empirical research regarding utility value has shown that when students perceive a 



7 

task to be valuable for their future development, they are more likely to engage in the activity 

(Greene, Miller, Crowson, Duke, & Akey, 2004; Johnson & Sinatra, 2013; Miller, DeBacker, & 

Greene, 1999), and achieve at higher levels (Cole, Bergin, & Whittaker, 2008; Greene et al., 

2004). Technology-enabled activities can allow students the opportunity to discover on their own 

the utility of an activity or a subject area. 

Beliefs about competence.  The National Academy of Sciences (2011) agreed that there 

are particular beliefs that are necessary for those who want to pursue careers in mathematics and 

science.  Primary among these is a firm sense of confidence in one’s capabilities to succeed in 

mathematics, and a strong belief that one’s own capabilities can be augmented.  Educational 

psychologists refer to individuals’ confidence to succeed as self-efficacy, and individuals’ beliefs 

about the augmentable nature of one’s intellectual capacity as incremental views of ability.  

Building and supporting students’ competence beliefs is especially important in mathematics 

because success in subjects like algebra in the middle grades is recognized as an important 

gatekeeper that either constrains or augments students’ post-secondary career and educational 

decisions (Adelman, 2006). 

Educators are increasingly relying on computers to aid in building students’ competence 

beliefs because computers are able to provide individualized and real-time feedback about 

students’ progress through learning activities.  As a result, students are able to build their 

knowledge and skills, and just as important, the belief that they can indeed succeed.  In addition, 

a new way of using computers to target students’ competence beliefs has been the use of 

motivational interventions that target this belief. 

Relatedness. One question that scholars have been exploring is how instructional 

activities can be designed to foster a more robust and enduring level of interest for an academic 
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subject.  A number of scholars have shown that one way to facilitate this interest development is 

to design instructional environments and activities that allow students to interact with others and 

develop a sense of connection to others.  A sense of relatedness, which is defined as the need to 

feel connected with others, is “centrally important for internalization” (Ryan & Deci, 2000, p. 

73).  Drawing from self-determination theory (SDT), teachers’ approachability and ability to 

make meaningful social connections to their students can support the development of students’ 

interest in a subject, as theory would suggest (Bergin, 1999; Krapp, 2005; Ryan & Deci, 2000).  

Although research investigating relatedness usually concerns feelings of relatedness to teachers 

or researchers (e.g., Sheldon & Filak, 2008; Walker & Greene, 2009; Wentzel, 1997) or peers in 

a classroom or virtual group (Furrer & Skinner, 2003; Przybylski et al., 2010), little to no 

research has investigated this phenomenon with digital characters in a virtual world, which is 

becoming increasingly important in a technology-rich world.  

Autonomy.  Scholars have also shown that teachers who provide their students with 

meaningful choices create a classroom climate that positively affects students’ sense of 

autonomy (Greene, Miller, Crowson, Duke, & Akey, 2004; Jang, 2008; Patall, Cooper, & Wynn, 

2010; Reeve, Jang, Carrell, Jeon, & Barch, 2004; for a review see Katz & Assor, 2006).  This 

literature, which also emanates from Ryan and Deci’s (2000) work in SDT, is quite clear in 

showing that an adequate sense of autonomy is essential in supporting the intrinsic motivation of 

students (Ciani, Ferguson, Bergin, & Hilpert, 2010; Patall et al., 2010; Reeve et al., 2004; Tsai, 

Kunter, Lüdtke, Trautwein, & Ryan, 2008).  Despite this literature base showing the importance 

of an autonomy supportive classroom climate, what remains less clear is whether students’ 

perception of the classroom climate has an effect on their level of engagement and motivation in 
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a technology-rich setting that requires little teacher involvement, which is common among many 

technology-based curricular packages.  

Demographic variables.  Many scholars have argued that race/ethnicity, gender, and 

socioeconomic status (SES) are important predictors of how students experience technology-rich 

academic content because of how students are socialized based on these socio-cultural factors 

(e.g., Meelissen & Drent, 2008; Vekiri, 2010; Vekiri & Chronaki, 2008).  Results from these and 

other studies show that girls tend to have lower competence beliefs and value beliefs concerning 

computer usage, with girls being less interested in and less confident using computers and 

developing more sophisticated computer skills such as programming.  Also, although both 

parents and students from low SES families value computer skills, students from low SES 

families have fewer opportunities to develop their computer competencies and are less self-

efficacious in their computer skills than their wealthier peers (Vekiri, 2010).  Finally, grade level 

is especially salient in studies of motivation and engagement because there is a consistent and 

long-standing finding that students, on average, become more and more disengaged from 

academics as they progress through school (see Wigfield & Eccles, 2002).  This downward trend 

in motivation is especially evident in the transition from elementary school to middle (or junior 

high) school, which in the United States is typically from Grade 5 to Grade 6. 

Overview of the Present Study 

What constitutes effective technology-enabled activities?  In this study, we propose that 

there is a need to model how beliefs interact in patterns.  This person-centered approach, rooted 

in rigorous theories of motivation and engagement, has the potential to refine how educational 

technologists and educational psychologists understand the complex dynamics involved when 

students participate in technology-enabled activities.   
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Although past research has investigated such questions as the relationship between 

immersion and learning outcomes, or how autonomy in a game relates to motivational and 

achievement outcomes in a subject area, more nuanced questions regarding how these various 

beliefs interact with each other are needed.  We know little about whether there are patterns that 

reveal how students experience technology activities, and whether those patterns can be 

generalized across different types of technology-rich activities. If there are patterns, we also 

know little about whether these patterns are predictive of academic outcomes.  If we assume that 

not all students are engaged and motivated by the same types of technological experiences, we 

need to understand what factors predict how engaged and motivated students might be and to 

what end. Perhaps one reason for this gap in the literature is because the variable-centered 

approaches to answering such questions (e.g., path analysis) cannot be used when using variables 

that are highly collinear.  In our case, immersion, interest, utility, and relatedness are likely 

collinear, which prevents us from being able to explore the multiple interactions among these 

four important aspects of a rich technology experience.  A person-centered approach can aid in 

this respect.  It allows us to describe the overall quality of students’ experiences with the 

technology without the problem of multicollinearity.  We can then examine how different 

experiences with the technology (e.g., low immersion and low relatedness, but high interest and 

utility) serve as an intermediary between students’ individual and classroom contexts on the one 

hand (e.g., feelings of how much autonomy their teachers give them), and learning and 

motivational outcomes on the other (e.g., interest in mathematics).   

In this study we explored the different ways that students could be engaged and 

motivated in a technology-enabled activity that was set within a larger mathematics instructional 

unit.  Although we did not hypothesize a specific number of profiles, as this was an exploratory 
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study, we expected that at least four technology profiles would emerge.  This hypothesis is based 

on prior person-centered empirical studies (e.g., Chen, 2012; Conley, 2012) that show that 

individuals often self-report all-high, all-moderate, and all-low levels on motivation variables.  In 

addition, there is often a profile evincing a mixture of high, moderate, and low levels.  We 

hypothesized that three profiles pertaining to high, moderate, and low levels of immersion, 

interest, utility, and relatedness in the technology would emerge.  Consistent with the 

aforementioned work, we also hypothesized that at least one profile displaying a mixture of these 

four variables would emerge.  For example, there could be students who report high levels of 

interest and utility, but low levels of immersion and relatedness.   

Based on previous research and models of motivation and engagement (e.g., Skinner et 

al., 2008; Wigfield & Eccles, 2000), and because the technology activities were set within a 

larger four-day mathematics instructional unit, we hypothesized that a number of factors external 

to the technology activities would predict students’ motivation and engagement with the 

technology.  These factors included grade level of students because the technology activities 

were likely more appropriate for some grade levels than for others (see Authors, 2014).  Another 

factor was the gender of the student, as girls are typically less drawn toward computer games, but 

do not show differences in their interests for movies.   We also tested whether demographic 

variables such as race/ethnicity, social class, and previous achievement were significant 

predictors of students’ membership into the technology profiles.  We investigated these 

demographic and background variables because previous evidence suggested that these factors 

might be related to students’ engagement and motivation with instructional activities (Marks, 

2000).  The last predictor variable we tested was autonomy-supportive classroom climate 
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because Skinner et al. (2008) has shown that autonomy support should predict academic 

engagement.   

Finally, if engagement is a proximal process, as Skinner et al. (2008) argued, then it is 

important to specify the ways that the activities in our study facilitated motivation and 

engagement for the technology, and the extent to which the different ways of experiencing the 

technology related to differential outcomes for motivation and achievement in mathematics.  

Thus, before we outline the specific procedures of our study, we describe each of the technology 

activities that students experienced.  

An Immersive Virtual Environment 

The first technology activity that we used was a game-like Immersive Virtual 

Environment (IVE), which was designed to introduce students to the mathematical concepts that 

were to follow in Days 2 and 3.  It was professionally produced to have the look and feel of the 

video games that many students play.  The purpose of the IVE was to develop students’ self-

efficacy in mathematics by attuning to Bandura’s (1997) hypothesized sources of self-efficacy. 

First, by presenting students with incrementally more difficult challenges and providing scaffolds 

that broke down complex concepts into smaller and easily achievable steps, we were targeting 

students’ mastery experiences—giving students opportunities to succeed at increasingly more 

difficult problems.  Bandura hypothesized that mastery experiences are the most powerful source 

of self-efficacy.  Second, students watched a 5-minute video of real STEM professionals 

describe their job and the types of obstacles they faced regarding their struggles with 

mathematics in school, and how they overcame them.  These vicarious experiences gave students 

a chance to see themselves in another person who was able to overcome difficulties to achieve a 

career using mathematics.  Bandura argued that these vicarious experiences, especially ones in 
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which observers are able to witness fallible models make mistakes but learn from them, are 

especially instrumental when students have had very few mastery experiences.  Finally, we 

attuned to students’ physiological/affective states to target their self-efficacy by making sure that 

the game was fun and enjoyable and reduced anxiety, which is a common experience in 

mathematics. 

A “Growth Mindset” Learning Module   

The second technology activity that we designed was an abridged version of the 

Brainology® program created by Dweck and her colleagues.  Regarding motivation, 

Brainology® is a series of web-based modules explicitly designed to target students’ implicit 

theories of ability.  According to Dweck and her colleagues (Dweck & Leggett, 1988; Blackwell, 

Trzesniewski, & Dweck, 2007), students possess particular “mindsets” that can influence their 

motivational and developmental trajectories through school.  The abridged version of 

Brainology® that our participants experienced was created by Dweck and her colleagues for this 

study, and taught students that the brain “grows” (gets smarter) with effort and when students 

learn new strategies to overcome difficulties.  The modules are designed specifically for students 

in Grades 5-9 because of the documented declines in motivation and engagement that a great 

majority of students experience in these grades—especially in the transition from elementary 

school to middle school.  Although the modules do not focus specifically on mathematics (like 

the other two technology activities do), they are designed to affect students’ conceptions about 

their capacity to succeed, regardless of the subject.  By convincing students that the secret to 

success is in finding appropriate strategies and not in towering intellectual capacity (a common 

belief in mathematics), students learn to focus on effective strategies rather than prematurely 

giving up because of the faulty belief that they are “not smart enough” to do well in mathematics. 
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An Educational Movie   

Movies have a long history of use in educational settings to motivate and engage students 

in academic content (see Orgeron, Orgeron, & Streible, 2011; Snelson & Perkins, 2009).  For 

this reason, we chose an educational movie produced by Public Broadcasting Service’s (PBS’s) 

NOVA program, which was entitled Fractals: Hunting the Hidden Dimension (2009).  This 1-

hour movie showed students the discovery of a naturally-occurring mathematical pattern 

(fractals), presenting visually appealing animations and personal interviews with people who use 

fractals in their everyday lives (e.g., fractals in Computer Generated Imagery for movies).  

Although this movie was not designed with a particular framework of motivation or engagement 

in mind, we selected this particular movie because we believed that the visually appealing 

animations and storytelling made for an interesting and enjoyable film, and the personal 

interviews of how fractals can be used in everyday life showed the relevance and utility of 

mathematical patterns.  The visually appealing nature of the movie along with the interesting 

storyline seemed to be designed to facilitate immersion in the movie.  Finally, the characters in 

the movie appeared to be cast in such a way as to be relatable, fallible, individuals whose 

curiosity allowed them to find some interesting applications to life (e.g., making movies, 

building mobile phone antennae, and creating tie-dye shirts).   

Methods 

Participants and Context 

Data were collected from all students in Grades 5-8, along with their teachers, in a large 

school district in Virginia.  A total of 18,628 students and 476 teachers participated in the study.  

Students and teachers came from 38 elementary schools and 12 middle schools.  We removed 

137 teachers and their associated students from our analyses because these teachers were 
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teaching assistants, ELL teachers, or special education teachers who did not have their own 

classroom. We also removed from analyses all students who did not provide consent to have 

their data used.  Ultimately, 7,774 students provided complete data for Day 0, Day1, and Day 4 

surveys.  Girls comprised 49.7% of the sample.  The breakdown of completed surveys by 

Induction was as follows: Computer game (Induction #1; 35.5%), Brainology modules 

(Induction #2; 27.6%), and PBS movie (Induction #3; 36.9%).  Grade level distribution of the 

sample was as follows: Grade 5 (23.4%), Grade 6 (23.9%), Grade 7 (26.8%), and Grade 8 

(25.9%).  Race and ethnicity of the sample were as follows: White (53.9%), African American 

(24.9%), Hispanic (7.7%), Asian (3.8%), and 9.7% reported another racial/ethnic background.  

English language learners (ELL) constituted 6.4% of the sample, and 10.9% were identified as 

special education students.  Finally, 34% of students were eligible for free or reduced lunch (a 

measure of socioeconomic level).  At the school level, schools ranged from 2% to 85% of their 

school population being eligible for free or reduced lunch.   

Design of the Study 

 Table 1 shows the day-to-day activities involved in the study and the data that were 

collected on each day.  Before the intervention, teachers were randomly assigned to one of the 

three technology conditions, and students were administered a pre-survey.  The actual 

intervention took place over the course of four consecutive days.  On Day 1 of the intervention, 

students participated in their respective technology-enabled activity, where Activity 1 was the 

computer game, Activity 2 was the abridged Brainology® web module, and Activity 3 was the 

PBS movie on fractals.  Table 2 provides more information about these technology-enabled 

activities, including the conceptual framework on which each was based and the content of each.  

On Days 2-3 of the intervention teachers taught a two-day mathematics lesson, which we 
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designed, about identifying and using mathematical patterns.  We ensured that all students 

(regardless of technology condition) received the same teacher-led mathematics instruction, with 

small differences based on grade level so that the material was appropriately challenging for the 

age of the students.   

We designed the lessons around a combinatorics task often referred to as a “trains” 

problem, because it involves the creation of integer-length “trains” using different numbers and 

lengths of integer-length “cars.”  For example, students would determine the number of possible 

trains of length 4 that can be created.  In this case, there are eight ways to do this (1-1-1-1; 1-1-2; 

1-2-1; 2-1-1; 1-3; 3-1; 2-2; and 4).  Many interesting variations and extensions of this trains 

problem can be made such as asking how many trains of length n can be made using only cars of 

length 1 and 2.  Grade 5 students focus on questions involving the powers of 2, whereas Grades 

6-8 focus on patterns such as the Fibonacci sequence and Pascal’s triangle.  All students in all 

grade levels represent and generalize their data, but in different ways.  For example, Grade 5 

students are asked to create a graph to describe the relationship between train length and total 

number of trains of that length that can be made.  Grades 6-8 students, though, are asked to 

create a table to represent the total number of trains that can be made for different train lengths 

and numbers of cars used.  Students in Grades 6-8 are then asked to extrapolate these findings to 

larger train lengths (lengths that would be far too unwieldy to solve simply by physically 

constructing the trains).  Finally, beyond just grade-level differences, from self-reported fidelity 

responses from all teachers, we found that 75% of teachers either “exactly followed” or “very 

closely followed” the list of activities that we had suggested, but only 24% to 34% of teachers 

(depending on which sub-component of the lesson) followed the recommended timing/ordering 

of activities.  From audio/video data collected from a small sample of teachers, we found that 
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these teachers did include most of the recommended elements of the curriculum.  However, the 

timing and ordering by which the lesson unfolded varied widely.   

Students finished the intervention on the fourth day by returning back to the technology-

enabled activity.  Our goal was to generate empirical evidence about the motivational 

affordances of using three different technology-enabled activities that are integrated within 

teacher-led, inquiry-oriented, mathematics instruction. All teachers taught the same content 

using the same pedagogical approach that we developed.  Furthermore, we have a large sample 

size, which is representative of an entire school district because we were able to draw from all 

students from Grades 5-8 in an entire district.  For these reasons, although we do not explicitly 

model Days 2-3 in our statistical analyses, we can assume that any observed differences in 

outcome variables can be attributable to differences in how students experienced each of the 

technology-enabled activities because everything else was kept constant, including all aspects of 

Days 2-3.   

Activity 1 was designed to be difficult enough that students would not be able to finish 

the entire game on Day 1.  Therefore, after having learned the necessary mathematical 

knowledge on the second and third days of the intervention, students would be able to apply their 

knowledge to the game and finish it on the fourth day.  For Activity 2, students completed a 

module about how to manage anxiety when approaching stressful testing situations.  Then, on 

Day 4, students finished with the module teaching students about the incremental view of ability, 

and that the brain can grow and become more capable with effort.  For Activity 3, students 

watched the first half-hour of the video on Day 1 and then finished the movie on Day 4.   

 Because we wanted to create an authentic context in which teachers typically use 

technology activities, the overall intervention also incorporated a two-day mathematics 
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instructional component in which all teachers taught the same concepts, and used the same 

curricular materials.  Although three different grade levels were involved, we did allow for 

grade-level variations so that the learning outcomes were developmentally appropriate.  The 

authenticity of this study allowed us to explore whether a two-day experience with technology-

rich content had an effect on student outcomes even if it was embedded within a classroom-

based mathematics unit taught by the teacher.  All teachers (including ESL teachers and 

teachers’ aids) were provided with one full day (6.5 hours) of professional development.  This 

professional development workshop was administered one week before the actual intervention 

and was designed and implemented by our project staff.  Coordination of the logistics of the 

professional development workshops was done in close collaboration with district administrators 

and school principals.   

 Four hours of professional development centered on implementing the actual classroom 

mathematics lessons.  We provided teachers with detailed lesson plans, visual aids, handouts, 

and manipulatives.  The workshops were designed to provide teachers the opportunity to do the 

activities that their students would do, and to reason through the mathematical principles being 

addressed in the lessons.  One hour of the workshop was dedicated to providing teachers with an 

overview of the project’s goals, procedures, and logistics.  Finally, the last 1.5 hours were 

dedicated to giving teachers an opportunity to interact with the technology-enabled activities that 

their students would experience.  Because teachers were assigned to one type of technology, this 

part of the workshop was specific to the technology activity that the teacher was assigned to.  

Activity 1 teachers played the computer game, Activity 2 teachers interacted with the abridged 

version of Brainology®, and Activity 3 teachers watched the PBS movie.  Overall, our goal was 
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to ensure that teachers were prepared well enough to teach the curriculum with a high amount of 

fidelity. 

Instruments 

 Surveys were administered using an online survey (Qualtrics).  See Table 1 for timing of 

the surveys.  Students took the surveys on computers in school during their mathematics class.  

The pre-survey comprised of 79 questions, and was designed to assess students’ knowledge of 

the specific pre-algebra skills that our intervention targeted (i.e., mathematical patterns), beliefs 

about competence (e.g., self-efficacy) and value (e.g., interest value) related to mathematics 

class.  Other variables not pertinent to this particular study were also included on this survey, 

which included sources of self-efficacy, grit, science identity, and achievement goal orientations.  

Finally, we included demographic information on the survey also (e.g., gender and 

race/ethnicity).  The post-survey included the same items, but also included students’ beliefs 

about the level of autonomy their teachers provided them in class in general. 

The post-technology survey was designed to assess students’ experiences with the 

technology activity in which they participated.  It comprised of 30 questions that targeted 

students’ beliefs regarding their interest/enjoyment, utility, and immersion while participating in 

the technology activity.  We also included items that assessed their feelings of relatedness to the 

characters involved in the technology activity.  Other items that were included on the survey but 

were not pertinent to this particular study included feelings of autonomy in the technology 

activity, beliefs regarding how well they performed in the technology activity, and how much 

effort they were willing to dedicate toward participating in the activity (we did not include these 

in our study because these questions were only pertinent to the game and the growth mindset 

module).   
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Immersion, enjoyment, usefulness, and relatedness.  This instrument was worded 

specifically for the technology activity that the student participated in.  Therefore, students 

participating in the computer game answered questions that were worded as such.  Students’ 

feelings of being present or immersed in the technology activity (e.g., “when moving through the 

TESLA game I felt like I was actually there”), their enjoyment in participating in the technology 

activity (e.g., “I enjoyed participating in the Brainology activity”), their perceptions about the 

usefulness of participating in the technology activity (e.g., “I believe that watching the math 

movie could be valuable to me”), and their feelings of relatedness to the characters in the 

technology activity (e.g., “I felt like I could relate to the people in the math movie”) were 

assessed immediately after their participation in the technology activity.  Immersion was 

assessed with three items (α=.91); enjoyment was assessed with four items (α=.94); usefulness 

was assessed with three items (α=.89); and relatedness was assessed with three items (α=.85).  

The items for interest, usefulness, and relatedness came directly from Ryan and Deci’s Intrinsic 

Motivation Inventory (IMI; Deci, Eghrari, Patrick, & Leone, 1994; Ryan, 1982; Ryan, Mims, & 

Koestner, 1983), which has been demonstrated to be psychometrically sound (Koka & Hein, 

2003; McAuley, Duncan, & Tammen, 1989).  The items for immersion came directly from the 

Player Experience of Need Satisfaction (PENS) scale, which has been used in other studies of 

video and computer game use and has been shown to have good psychometric properties 

(Przybylski, Ryan, & Rigby, 2009; Przybylski, Weinstein, Murayama, Lynch, & Ryan, 2012; 

Ryan, Rigby, & Przybylski, 2006).   

Mathematics self-efficacy.  Students’ confidence in being able to manipulate the 

mathematical patterns involved in the intervention were assessed pre- and post-intervention 

using a four-item instrument [α=.88(pre), .89(post)].  The tasks centered on identifying 
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mathematical patterns and then using that pattern to predict subsequent numbers in that 

sequence.  We chose these tasks because they were a central focus of the intervention 

curriculum.   

Mathematics value beliefs.  Students’ interest value in the subject of mathematics (e.g., 

“How much do you like math?”) and beliefs about the utility value of mathematics in their lives 

(e.g., “In general, how useful is what you learn in math?”) were assessed at pre- and post-

intervention.  Interest value was assessed using three items [α=.73(pre), .78(post)].  Utility value 

was assessed using two items[α=.81(pre), .75(post)].  Both scales were drawn from the Michigan 

Study of Adolescent and Adult Life Transitions (n.d.).   

Mathematics learning.  This was a short, five-question, assessment on mathematics 

learning and dealt with the kind of algebraic reasoning that was related to the two-day 

mathematics lesson.  All participants received the same questions.  The questions covered data 

organization, pattern identification, and the ability to make generalizations (e.g., “identify the 

next number in the following number pattern: 3, 7, 11, 15”).  Items on the pre- and post-tests 

were non-identical but isomorphic—they had the same problem structure, but involved different 

contexts and numbers.  The reliability of the assessment was low (α=.30[pre], .40[post)]).  

However, this measure was used as an outcome variable rather than a predictor variable.  

Reduced reliability in an outcome variable is equivalent to increased residual variance, which 

downwardly biases detected effect sizes and reduces statistical power, which results in a lower 

probability of correctly detecting a statistically significant relationship between mathematics 

learning and our predictor variable, which in our case is latent profile membership (Cohen, 1992; 

Kanyongo, Brooks, Kyei-Blankson, & Gocmen, 2007).   

Analysis 
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Description of Person-Centered Approach 

A person-centered analysis (Magnusson & Stattin, 2006) was used for this study because 

the theoretical framework we employed assumes that a group of beliefs operates together within 

an individual while participating in technology-enabled activities. Our assumption in this study is 

that because the technology activities were designed around different frameworks of engagement 

and motivation, and because students have individual preferences for technology, students would 

experience these activities in very different ways. Our current analytical framework was latent 

profile analysis (LPA), which is a statistical technique in which researchers can uncover latent 

groups of individuals (i.e., typologies) based on patterns of observed responses (Masyn, 2013). 

LPA was conducted using Mplus 7 (Muthén & Muthén, 1998-2013).  LPA models are typically 

fitted using a series of steps starting with a one-class model and increasing the number of classes 

until there is no apparent improvement in the model.  After analyzing the design effects of 

clustering of students by teacher and school, we used robust clustered standard errors, clustering 

at the school level, to account for the hierarchical nature of the data.  We used full information 

maximum likelihood estimation in accounting for missing data.   

 For our first research question, we wanted to examine how many profiles would surface 

regarding students’ experience of immersion, interest, utility, and relatedness with the 

technology activity that they participated in.  These data came from student surveys, which were 

completed immediately following their participation in the technology activity on Day 1. To 

uncover the number of latent profiles that emerged from the data, we started by testing a model 

with one latent class (k = 1), and then increased the number of profiles until there were no further 

improvements to the model.  These analyses were done separately for each technology condition. 
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 We compared the fit of each model using standard indices of fit, including the Bayesian 

information criterion (BIC), for which lower values indicate better fit.  We also used the Lo-

Mendell-Rubin (LMR; Lo, Mendell, & Rubin, 2001) likelihood ratio test, which produces a 

statistic comparing the fit of a model with k classes to a model with one fewer class (k-1).  A p-

value less than .05 indicates that the k-1 model should be rejected in favor of the model with k 

classes.   

 For our second research question, we explored whether students’ membership in one of 

these technology profiles, which were formed based on surveys administered on Day 1 of the 

intervention, predicted post-intervention (i.e., Day 4) mathematics motivation and achievement.  

We included the following four outcomes: mathematics self-efficacy, interest in mathematics, 

utility of mathematics, and mathematics achievement.  To do this, we employed the BCH 

approach, as outlined in detail by Asparouhov and Muthén (2014), which is a way to 

independently evaluate the relationship between the latent profiles formed and the distal outcome 

variables.   

Finally, for our third research question, we explored the extent to which students’ 

background factors, factors related to the design of the technology, and classroom-level factors 

predict membership into the technology profiles generated in the first research question.  To do 

this, we regressed the latent classes surfaced in the BCH method outlined above on our vector of 

student background factors, which were self-reported from students’ Day 1 surveys.  

Determining the Number of Profiles 

Tables 3-5 show the fit statistics for tests of models for each of the three technology 

activities.  As is evident in Tables 3-5, the BIC values for all three technology conditions 

declined going from a two-class model to a seven-class model, and LMR p-values remained 
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statistically significant (p<.0001) until the four-class solution, suggesting that a three-class model 

was the best fit.  To test the reproducibility of these results, for each technology condition, we 

split the sample into two random halves and performed two identical analyses on each sample.  

This split-halves procedure yielded the same results, suggesting that these three profiles are 

reproducible (see Figures 1-3).     

Results 

Research Question 1: Description of the Student Technology Profiles  

 For the first research question, we wanted to uncover the variety of ways that students 

could experience the technology activities in terms of how immersive, interesting, and useful the 

experience was, as well as how relatable the characters in the technology experience were.  A 

three-class model was the best fit for all three technology conditions.   

The computer game.  The largest profile for the computer game condition was the “All 

High” group, which comprised 52.6% of the student sample in this condition (see Figure 1).  The 

“All High” students reported the highest levels of Immersion (M=4.86), Interest in the activity 

(M=5.39), perceived Utility of the activity (M=4.94), and Relatedness with the characters in the 

activity (M=4.64).   

Over a quarter (25.5%) of the computer game students could be classified in the “Low 

Immersion” group.  Students in this profile reported low levels of Immersion (M=2.11), but 

relatively high levels of Interest (M=4.71), moderate levels of Utility (M=3.91), and moderate 

levels of Relatedness (M=3.65).  Finally, the smallest profile, called the “All Low” profile, 

comprised 21.9% of the computer game students.  These students reported that the game was not 

Immersive (M=1.71), was not very Interesting (M=2.15) or Useful (M=2.08), and felt minimal 

Relatedness to the characters (M=2.59).   
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The growth mindset modules.  The largest of the three profiles that emerged from the 

growth mindset condition was the “All High” profile, which comprised 42.6% of students in this 

condition (see Figure 2).  These “All High” students reported feeling somewhat Immersed in the 

technology (M=4.56).  They found the growth mindset modules to be mostly Interesting 

(M=4.99) and Useful to their lives (M=4.87), and the characters to be somewhat Relatable 

(M=4.35).   

The next largest group of students in the growth mindset condition was the 

“Interesting/Useful” profile, comprising 29.7% of students in this condition.  These students did 

not find the growth mindset modules to be Immersive (M=1.99) and did not consider the 

characters to be especially Relatable (M=2.77).  However, these students did find the growth 

mindset modules to be somwhat Interesting (M=4.33) and Useful to their lives (M=4.05).  

Finally, the smallest group in this condition was the “All Low” profile, comprising 27.6% of 

students.  Students in this profile did not find the growth mindset modules to be Immersive 

(M=1.59), Interesting (M=2.04), Useful (M=2.32), or Relatable (M=1.93).   

The PBS movie.  Whereas in the other technology conditions where the “All Low” 

profile was the smallest profile, for the PBS movie, this “All Low” profile was the largest of all 

three profiles, comprising 39.7% of the students in the PBS movie condition (see Figure 3).  

These “All Low” students found the movie not to be Immersive (M=1.85), minimally Interesting 

(M=2.12) and Useful (M=2.66), and the characters to be minimally Relatable (M=2.04).   

Similar to the other two technology conditions, the “All High” profile emerged.  

Although not the largest group, which was the case in the other technology conditions, in the 

PBS movie condition this profile was still quite large, comprising 38.7% of the students.  These 

students found the PBS movie to be somewhat immersive (M=4.28).  They also found it to be 
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mostly Interesting (M=5.06) and Useful (M=4.84).  They also found the characters in the movie 

to be somewhat Relatable (M=4.30).   

  Research Question 2: Predicting Mathematics Outcomes From Profile Membership  

 Engaging students in the technology activity is one thing but directing students’ 

motivational resources toward mathematics is an entirely different feat altogether.  Because we 

wanted to provide empirical evidence for the predictive validity of the latent profiles regarding 

mathematics motivation and learning, even within the context of a teacher-led, inquiry-oriented, 

mathematics lesson, we explored the post-intervention mathematics achievement and motivation 

outcomes that were evident from being a member of one technology profile versus another.  

Overall, students’ appraisal of the technology activities on Day 1 (i.e., immersion, interest, 

utility, and relatedness) was related to students’ post-intervention beliefs about mathematics and 

their achievement in mathematics, which were assessed on Day 4 or Day 5 of the 4-day 

intervention.   

 Figures 4-6 show the results of our analysis exploring differences in outcomes between 

students in the different profiles, split into the three technology activities.  Across all technology 

activities, students in the All High profile reported the highest levels of mathematics utility value, 

interest value, and self-efficacy, even while controlling for previous year’s standardized 

mathematics test scores, demographic variables, and pre-intervention mathematics motivation.  

On the other hand, students in the All Low profile reported the lowest ratings of mathematics 

utility, interest, and self-efficacy across all technology conditions.  Noteworthy in our findings is 

the fact that students in the Low Immersion profile for the computer game condition, and students 

in the Interesting/Useful profile for the growth mindset condition and the PBS movie condition, 

evinced the highest scores for their mathematics test.     
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Research Question 3: Which Factors Predicted Membership in the Technology Profiles?

 In the previous research question we found that there were differential outcomes for 

being in the various technology profiles.  If there are different outcomes for being in a profile, 

we wanted to explore which student background factors, and which classroom-level factors 

might predict membership into the technology profiles.  To answer this, we tested demographic 

variables such as gender, race/ethnicity, grade level, English Language Learner status, Free and 

Reduced Lunch status (a measure of socioeconomic level), Special Education status, and 

previous mathematics achievement (using standardized mathematics scores from the previous 

year).  We also included other student-level factors such as pre-intervention mathematics self-

efficacy, and pre-intervention mathematics interest, which we assessed before students 

participated in the intervention.  Second, we included as a classroom-level factor students’ 

perceptions of their teachers’ level of autonomy support (i.e., classroom climate).  Results 

showed that race/ethnicity, English Language Learner (ELL) status, special education status, and 

free or reduced price lunch status did not predict membership into a latent class.     

Grade level predicted profile membership.  Figure 7 shows the results of our analyses 

regarding the extent to which grade level predicted profile membership.  Grade 5 students across 

all technology conditions were between 1.7 to 2.0 times more likely to be in the All High profile 

compared to their Grade 8 peers.  For example, the probability that Grade 5 students who 

participated in computer games were in the All High profile was 0.64, whereas the probability for 

their Grade 8 peers was only 0.37.  In contrast, Grade 8 students were more than twice as likely 

to be in the All Low profile compared to their Grade 5 peers.  For example, the probability that 

Grade 5 students in the PBS movie condition were in the All Low profile was 0.22, whereas the 

probability for their Grade 8 peers was 0.54.  Although the overall pattern of these results was 
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consistent across all three inductions, there were subtle differences.  For example, for students 

participating in the computer game, there were still relatively few Grade 8 students in the All 

Low profile.  However, for those who participated in the PBS movie, Grade 8 students were 

highly represented in the All Low profile.   

Previous mathematics achievement predicted membership.  Figure 8 shows the results 

of our analyses regarding the extent to which previous mathematics achievement (scores on the 

prior year’s standardized state test in mathematics) predicted students’ profile membership.  

These results show that, for students with lower previous mathematics achievement who 

participated in the computer game and in the growth mindset module, they were more likely to 

be in the All High profile compared to their peers with higher previous achievement.  This 

pattern was especially noticeable with students in the growth mindset module, where students 

with the lowest previous achievement were 2.6 times as likely to be in the All High profile 

(probability=0.74) compared to their peers with the highest previous achievement 

(probability=0.29).  On the other hand, students in Induction 3 (PBS movie) evinced a pattern in 

which lower achieving students were more likely to be in the All Low profile compared to their 

higher achieving peers.     

Initial mathematics interest predicted membership.  Figure 9 shows the estimated 

probabilities that students were members of a particular technology profile as a function of how 

interested they were in mathematics before participating in our intervention.  As predicted, 

students with higher pre-intervention mathematics interest had a greater probability of being in 

the more adaptive profiles than did those who entered the intervention with low mathematics 

interest.   
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 Classroom climate predicted membership.  Figure 10 shows the estimated probabilities 

that students were members of a particular technology profile as a function of how much they 

felt their teacher supported or thwarted their autonomy in class in general.  Across all three 

inductions, students who reported a classroom that was very supportive of their autonomy were 

much more likely to be members of the All High technology profile compared to their peers who 

reported a classroom that thwarted their autonomy.  Students who reported that their classrooms 

thwarted their autonomy were much more likely to be members of the All Low technology 

profile compared to their peers who reported a more autonomy-supportive classroom 

environment.  This was especially apparent in the Growth Mindset modules, in which those who 

self-reported the lowest levels of autonomy support were close to five times more likely to be in 

the All Low profile (probability=0.62) compared to their peers who self-reported the highest 

levels of autonomy support (probability=0.13).  Recall that in the classroom climate self-reports 

we asked students about how autonomy-supportive their teachers were in general rather than 

how autonomy-supportive teachers were with regard to the technology-enabled activity.  

Discussion 

  We started with the premise that the mere presence of technology in classroom learning is 

not enough to motivate and engage students.  Instead, more nuanced questions are needed in 

exploring the variety of ways students experience technologies, and how these experiences rather 

than the actual technologies themselves are related to differential outcomes.  The reason we 

conceptualized this study in terms of the variety of ways in which students experience motivation 

and engagement in technology-rich activities is because we cannot assume that, for example, 

newer, more interactive, technologies like computer games are better at motivating and engaging 

students compared to older, less interactive, technologies such as movies.  Rather, we need to 
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understand the experiences that students have with various technologies, and explore how 

different experiences relate to outcomes.  This assumption is further reinforced specifically for 

our present study because in prior work we found that when student motivation and achievement 

outcomes were compared across the three different conditions results were inconclusive and 

mixed (Authors, 2014).  This prior work suggests that the type of technology itself does not 

necessarily relate to the motivational or achievement outcomes of students.  Rather, it might be 

the way in which students experienced the technology that mattered.  

Types Rather Than Levels of Technology Engagement and Motivation 

 Engaging students in technology-enabled activities is one matter, but it is an entirely 

different matter to direct students’ motivation for the technology toward motivation for 

mathematics.  As noted earlier, the educational technology and educational psychology 

literatures both tend to emphasize immersion, interest, utility, and relatedness as important 

features to include in the design of learning environments.  One may be tempted to assume that 

making learning environments “all high” for all of these factors should lead to better outcomes 

for everyone.  However, we assumed that there may well be subpopulations (i.e., profiles) of 

individuals who share similar patterns of engagement in the technology activity, and that there 

may be more than one subpopulation that evinces positive outcomes.  Our analyses provide 

interesting insights regarding the experience patterns that students evince while participating in 

the technology activities and how these patterns relate to achievement and motivation in 

mathematics.    

This person-centered approach showed that, contrary to much of the educational 

technology literature, immersion did not seem to be an essential ingredient for motivation and 

engagement within a technology activity, nor did it seem to be a necessary component for 
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motivation and achievement outcomes in the mathematical learning addressed in our study.  This 

complements and extends the work of Mayer and colleagues (e.g., Moreno & Mayer, 2002).  

Moreno and Mayer (2002) concluded that students in a highly immersive environment do not 

learn better or more deeply compared to their peers in low-immersion conditions.  They 

hypothesized that immersion may be important for learning only if the immersion actually helps 

students understand the topic better.  In a similar vein, immersion in our study may not have 

been a necessary component for engagement and motivation or for high achievement because the 

immersion was not necessary for students to become engaged and motivated or to do well.  If 

usefulness is a motivational “gold mine,” as evidenced by its presence in the most adaptive 

profiles, then it stands to reason that for immersion to be motivating and engaging, there needs to 

be a specific purpose for using immersion that must be aligned to the motivational goals of the 

activity.  Instructional designers would do well to leverage immersion not as a kneejerk response 

to engage students, but rather to think specifically about the motivational and instructional goals 

that would be met in leveraging immersion.   

Optimizing the Experience Rather Than Upgrading the Technology 

In essence, the first part of the study suggests that, contrary to prevailing thought, the 

malleable factor to concentrate on may not necessarily be the type of technology activity used 

(i.e., a computer game instead of a movie), but rather the type of experience that students get 

while participating in the activity.  For teachers and instructional designers, this complicates the 

design task because instead of thinking about whether to use a movie or a computer game, a 

different set of questions needs to be asked.  Our study sheds light on this issue by pointing to 

four variables that educators can focus on when designing and choosing technology-enabled 

learning environments—grade level, prior mathematics achievement, previous interest in 
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mathematics, and an autonomy-supportive classroom climate.  For example, the growth mindset 

and the computer game were especially effective for people with lower previous achievement.  

Why might that be?  Perhaps with the growth mindset modules, the message of learning to 

control anxiety and the malleability of one’s intelligence had a higher utility value for lower-

achieving students compared to their higher-achieving peers.   

Teachers matter: The role of autonomy support.  It may be tempting to think that, in a 

context in which students are engaging in technology-rich activities during school hours, 

teachers play a diminishing role in engaging their students.  Our results clearly show that this is 

not the case. For our study, the results show that the degree to which teachers provide 

meaningful choices in their classrooms in general can have an effect on the quality of students’ 

motivation and engagement with specific technology-rich activities—even activities that require 

little to no teacher involvement.  This suggests that there might be a residual effect of students’ 

general classroom autonomy-support beliefs on their more task-specific autonomy-support 

beliefs.  These results imply that the appeal and motivational effect of technology-rich activities 

could certainly be limited or enhanced depending on teachers’ ability to and willingness to 

provide their students with meaningful choices in all classroom activities.  

Background and demographic factors.  We tested numerous background and 

demographic factors as predictors of profile membership, including sex, race/ethnicity, free and 

reduced price lunch status, English Language Learner status, special education status, grade 

level, previous mathematics interest, and previous mathematics achievement (last year’s state 

standardized test score in mathematics).  Of these variables, only grade level, previous 

mathematics interest, and previous mathematics achievement predicted membership in profile.   
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First, developmental level of students was important—students in Grade 8 were less 

likely to be in highly adaptive profiles such as the All High group and more likely to be in the All 

Low group (see Figure 7).  This was the case across all three technology conditions.  This finding 

mirrors the trend that older students tend to become less motivated and engaged in academic 

work in general (Archambault, Eccles, & Vida, 2010; Durik, Vida, & Eccles, 2006; Jacobs, 

Lanza, Osgood, & Eccles, 2002).  

To test whether this developmental trend was a function of older students being more 

academically capable to tackle algebraic concepts, we explored the degree to which previous 

achievement on mathematics standardized tests predicted membership into profile.  We were 

surprised to find that lower scoring students who participated in the growth mindset modules 

were more likely to be members of the All High profile, whereas higher scoring students were 

more likely to be in the All Low profile.  This suggests that, although it is important to design 

activities that are developmentally appropriate for students, even for students who came into the 

intervention with lower mathematical proficiency, the growth mindset modules were especially 

effective in providing an engaging and motivating experience.  Given that the growth mindset 

modules were designed to address students’ implicit theories of ability and their strategies for 

dealing with anxiety and stress in the face of tough academic challenges, this message may have 

resonated with those who had a history of lower achievement.  We infer that, for students who 

have struggled in the past with mathematics, one possible way to effectively engage students in 

mathematics is by making salient their beliefs that with appropriate strategies students can 

become more capable in learning mathematics. 

We saw a similar pattern in relating previous achievement to profile membership for 

students in the computer game, although the pattern was not as pronounced as the growth 
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mindset modules.  Although the probability of being in the All High profile decreased for 

students as prior achievement increased, the All High profile was still the most common even at 

the highest level of prior achievement.  This suggests that for students at all levels of prior 

mathematical achievement the computer game provided a compelling context for them to engage 

with the mathematical concepts.  This is especially encouraging given that the computer game 

was designed specifically to fit in exactly with the types of activities that the teachers were 

addressing during Days 2 and 3 of the intervention.  

We saw an opposite pattern for students participating in the PBS movie—as previous 

achievement rose, students were more likely to be in the All High profile but less likely to be in 

the All Low profile.  This suggests that the movie was more compelling for students who had 

higher prior achievement.  Perhaps because the mathematical concepts (e.g., fractals) were fairly 

complex, students who struggled in the past with mathematics may not have had the 

mathematical fluency to engage effectively with the content of the movie.   

Finally, regarding previous mathematics interest, we were not surprised to find that 

students who entered the intervention with high previous interests in mathematics were more 

likely to be in the more adaptive profiles compared to their peers who were less interested in 

mathematics from the outset.  This supports the four-phase model of interest development (Hidi 

& Renninger, 2006), which argues that long-term individual interest in a subject can predict 

triggered and maintained situational interest in a task.   

Limitations 

 We acknowledge that there were limitations to our study.  First, although we were able to 

capture students’ mathematics achievement using a short knowledge instrument designed to 

assess the mathematical concepts mastered in our four-day intervention, this instrument had low 
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reliability making it difficult to generalize our findings.  However, we modeled mathematics 

achievement as an outcome variable rather than as a predictor variable.  Measurement errors in 

the outcome variable do not increase our chances of introducing Type I errors, as noted earlier in 

the methods section.  Rather, reduced reliability in the outcome is equivalent to increased 

residual variance, which reduces effect size and power, thereby increasing our chances of getting 

Type II errors (Cohen, 1992; Kanyongo, Brook, Kyei—Blankson, & Gocmen, 2007).  In our 

case, this means that we are increasing our chances of incorrectly concluding that mathematics 

achievement is not related to membership in a latent profile.  But because our analyses show that 

achievement does in fact vary as a function of latent profile membership, this is a favorable 

finding given that even with an increased chance of Type II errors, we were still able to find 

statistically significant differences.  One caveat to note, though, is that our certainty regarding 

the effect size is relatively small, so although we have some preliminary evidence for the 

predictive validity of profile membership to mathematics achievement, more research is needed 

to more reliably estimate the magnitude of this relationship.   

One obvious source for the low reliability of our measure is the fact that our measure was 

short—containing only five items.  To explore other possible reasons for why the reliability of 

this instrument was low, we found that none of the items was highly correlated—ranging from 

0.024 to 0.221.  However, one item in particular was the least correlated to all the other questions 

in the set, producing correlations between 0.024 to 0.104.  We also observed that this item had a 

low loading on the hypothesized underlying factor—the measure is not tau-equivalent, thereby 

making reliability more difficult to interpret.  Correcting for non tau-equivalence resulted in a 

slightly higher reliability estimate (omega=0.42), but was still relatively low.  This one item 

asked students to predict the value of the next number in a sequence.  However, unlike the types 
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of patterns we focused on with our lessons, this particular question required students to recognize 

that the two previous numbers in the sequence had to be multiplied together to derive the next 

number in the sequence—a pattern that was not discussed in our lessons. Furthermore, the 

lessons were taught with manipulatives (i.e., “trains”) such that students could physically interact 

with tools that would help them solve problems.  However, the mathematics learning measure 

presented students with tables and strings of numbers, presented without much context to solve 

the problems.  Therefore, making the leap from manipulatives involving “trains” to context-less 

strings and tables of numbers may have been a difficult transition for students to make.  It is 

quite possible, therefore, that students simply guessed on many of the items that required 

significant cognitive effort.  Researchers who want to replicate and further this research would 

do well to ensure that the activities that students engage in are aligned more closely with the 

mathematics assessment.   

The low reliability of the post-test mathematics test also negatively affects the validity of 

inferences that can be made from the test.  The relationship between a given instrument and the 

criterion score it is measuring (i.e., its validity) is bounded by (must be less than or equal to) the 

square root of the reliability (Revelle & Condon, 2018).  In our case, the square root of the post-

test reliability (omega = 0.42) is approximately 0.65.  Given the scale of 0 to 1, we can state that 

there is only moderate evidence that the assessment we used actually measures a unidimensional 

construct of mathematics ability.  

That is not to say that inferences from the post-intervention mathematics test used here 

lack any validity.  As Cronbach and Gleser (1959) observed, even tests with low reliability and 

therefore diminished psychometric evidence of validity can be used to make valid decisions 

about the people who took them. We note, for example, that the post-intervention mathematics 
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test is statistically significantly related to students’ prior mathematics achievement 

(rdisattenuated=0.59, p<.001).  On average, students who scored higher on a comprehensive end-of-

year mathematics assessment the previous year tended to have higher total scores on the post-

intervention mathematics test. This lends support to the use of the test as a general measure of 

mathematics achievement. However, as is often the case when assessments meant to clinically 

sort or spot-check are used to determine individual differences, the post-intervention 

mathematics assessment lacks the rigorous psychometric properties required for ideal use in 

correlational analyses such as those employed in this study (Hedge, Powell, & Sumner, 2017). 

We therefore interpret our findings regarding latent class membership and post-intervention 

mathematics as preliminary evidence of a relationship, and strongly suggest further research into 

this connection using instruments that demonstrate the necessary psychometric properties. 

A second limitation that we note is the fact that our intervention was relatively short with 

respect to the professional development (6.5 hours), the technology-enabled activities (two out of 

four days), and the mathematics instructional component (two out of four days).  For this reason, 

the effects of this intervention were modest.  In future work, researchers could investigate the 

effects of technology-enabled activities that were more robustly integrated into the curriculum 

and for longer durations.  Nevertheless, given our short intervention, it is still quite remarkable 

that we were able to capture differential effects of the intervention—not based on the specific 

technology that students used per se, but rather on the affective experience that students had 

while participating. 

Third, although we did administer a delayed post-survey (three months after the end of 

the intervention), results were not interpretable, and the amount of missing data was high.  For 
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this reason we cannot report on the intervention’s long-term effects on students.  In future work, 

researchers should explore the long-term impacts of technology-rich curricula on students.   

Finally, we started out with 18,628 total students, but were only able to analyze complete 

data from 7,774 students.  This is 41.7% of the original sample.  The loss of cases had to do with 

the fact that we had to: (1) exclude a number of teachers from the study (as detailed earlier in the 

methods section); and (2) exclude students who did not have complete data for Days, 0, 1, and 4.  

There was also a miscommunication between the research team and the district regarding how 

students should enter in their ID numbers for the pre-intervention survey, which likely resulted in 

some missingness.   

Conclusion 

 Despite these limitations, we were able to show using a large sample of students from 

Grades 5-8 the value that technology can add to a short mathematics intervention that involved 

high quality mathematics instruction.  Our results point to the value of exploring these patterns 

not by creating a priori manifest categories such as the type of technology activity that students 

participated in, but rather by exploring latent categories describing the ways in which students 

experienced the technology activity to be immersive, interesting, useful, and the degree to which 

the characters were relatable.  Our findings highlight the need for instructional designers, 

researchers, and educators to go beyond asking the question, “which technology activity would 

be most motivating and engaging?” to instead, start asking questions such as, “how do I provide 

the most optimally motivating and engaging technology experience for my students regardless of 

the type of technology activity I use?”  Further research is needed to understand the elements of 

technological learning environments that can effectively trigger utility beliefs, enjoyment, and 

relatedness in both the technology and in the subject matter.  
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