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INTRODUCTION

What are Allee effects?

An Allee effect occurs when some component of
individual fitness deteriorates as population density or
size decreases towards zero (Allee 1938, Stephens et
al. 1999), resulting in a positive density dependent
relationship. Standard population models assume that
fitness increases as density declines (negative density
dependence), but there are various processes that can
reduce fitness when there is a dearth of conspecifics
(e.g. a lack of mating encounters, failure of fertilisation
for broadcast spawners or wind pollinated plants,
inbreeding depression; see Fowler & Baker 1991,
Stephens et al. 1999 for reviews).

If there is an Allee effect in some component of fitness,
there may also be a decline in per capita population
growth rate at small population size or low density. If the
population growth rate becomes negative, there will be
a critical population size or density below which the pop-
ulation cannot sustain itself (Courchamp et al. 1999). An

Allee effect in some component of fitness (e.g. output of
fertilised eggs) may or may not result in a decline in the
population growth rate, since it may be balanced by
negative density dependence in other components of
fitness (e.g. survival or growth). Stephens et al. (1999)
distinguish between ‘component’ Allee effects (positive
density dependence in some component of individual fit-
ness) and ‘demographic’ Allee effects (positive density
dependence in the per capita population growth rate).
Component Allee effects may or may not lead to demo-
graphic Allee effects. Note that ‘depensation’ has been
used in the fisheries’ literature to refer to positive density
dependence, either through predation or reproduction
(e.g. Peterman & Gatto 1978, Myers et al. 1995, see
general discussion in Hilborn & Walters 1992), by anal-
ogy with compensation (negative density dependence).
Depensatory mortality in populations is equivalent to a
demographic Allee effect.

Component Allee effects can arise from various pro-
cesses, such as reproductive strategies (Levitan et al.
1992, Shepherd & Brown 1993, Kuussaari et al. 1998,
Petersen & Levitan 2001), predator-prey interactions
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(Kenward 1978, Calvert et al. 1979, Foster & Treherne
1981, Inman & Krebs 1987) or social systems (Halliday
1980, Clutton-Brock et al. 1999, Courchamp et al.
2000a,b, Courchamp & Macdonald 2001). Conserva-
tion biologists and managers are usually more inter-
ested in demographic Allee effects, because they ulti-
mately govern extinction or recovery probability of
species at low abundance.

Are Allee effects likely in marine systems?

Marine populations have generally been considered
to be open with large effective population sizes,
because most marine taxa have planktonic larvae that
spend days to months in the water column and are
therefore capable of wide dispersal. Allee effects have
thus been assumed to be relatively unimportant. How-
ever, for many species, larvae may be retained locally,
which produces relatively closed populations (Jones et
al. 1999, Swearer et al. 1999, Barber et al. 2000, Cowan
et al. 2000), and many species have fragmented or dra-
matically reduced populations (Myers & Worm 2003),
rendering them susceptible to Allee effects.

Allee effects may occur at small population size or
low population density. Most marine populations are
probably metapopulations with subpopulations con-
nected by larval transport (Lipcius et al. 1997, 2001,
Crowder et al. 2000). Allee effects related to density
(such as encountering conspecifics for reproduction)
can still exert an effect on large populations or on
metapopulations if population density has declined to
low levels. Allee effects related to population size are
also possible in large populations and metapopulations
if they depend on the size of the local subpopulation
rather than on the metapopulation as a whole (e.g.
predator dilution effects). Local population size and
density may interact, as for fertilisation success in
broadcast spawning sea urchins, where an effect of
density is exacerbated by small population size (Levitan
& Young 1995). Allee effects on subpopulation growth
rate can also cause metapopulation level ‘Allee effects’
on a larger spatial scale, with a critical number of sub-
populations below which the metapopulation will go
extinct (Courchamp et al. 2000a). Hence, the postulated
large size and metapopulation structure of marine pop-
ulations is not necessarily a protection against Allee ef-
fects, and Allee effects may in fact operate in a more or
less similar way in marine and terrestrial systems.

Allee effects and human impacts on marine systems

Populations that are naturally susceptible to Allee
effects are under selective pressure to evolve mecha-

nisms to avoid them (e.g. large eggs, long-lived sperm,
and aggregation or spawning synchrony in the case of
broadcast spawners; Yund 2000). The simplest way of
avoiding Allee effects is to maintain a large or dense,
and stable population — if the population is never
small or at low density, Allee effects never become
relevant. Allee effects could still be ‘latent’ in the
population, should population size or density be
reduced — there may exist a component Allee effect (a
mechanism for an Allee effect), but the population is
not small or sparse enough for the mechanism to create
a demographic Allee effect.

Top-down predation by humans has become a domi-
nant force in almost every marine ecosystem (Dayton
et al. 1998, Pauly et al. 1998, Jackson et al. 2001), even
in remote locations and at what is normally considered
low levels of fishing intensity (biomass at 95% of
unfished levels; Jennings & Polunin 1996). Numerous
species have been fished to greatly reduced popu-
lation levels; in 1994, the FAO considered 25% of the
world’s exploited marine resources to be ‘over-
exploited’, ‘depleted’ or ‘recovering’, with another
44% ‘heavily or fully exploited’ (Garcia & Newton
1997), and the situation has deteriorated since then
(Watson & Pauly 2001, Myers & Worm 2003). Hence,
population dynamics at small population size or low
density have recently become important for marine
species in a way that is unprecedented in ‘natural’
systems through their evolutionary history.

Some marine species have also been severely reduced
through disease outbreaks. The causes are frequently
anthropogenic, either directly by introduction of diseases
into new areas (e.g. the oyster disease agents Bonamia
ostreae and Haplosporidium nelsoni; Ford & Tripp 1996),
or indirectly through land use and desertification (e.g.
mass mortalities of Acropora corals and the Caribbean
long-spined sea urchin Diadema antillarum; Shinn et al.
2000), although this idea is controversial.

It is important to know how anthropogenic factors
that increase mortality interact with latent or compo-
nent Allee effects. Exploited or perturbed populations
are the logical place to look for empirical evidence of
demographic Allee effects in marine systems. We
developped a model to quantify the interaction be-
tween Allee effects, exploitation and critical thresh-
olds. We then examined the published evidence for
Allee effects in marine populations.

MODEL DESCRIPTION

We used a matrix population model (Caswell 2001)
with density dependent reproduction to examine the
interaction between Allee effects, critical thresholds
and exploitation. The core of the model is a transition
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matrix that defines transition probabilities within and
between each stage of the life history, as determined
by rates of survival, maturation and reproduction. A
vector representing the population size at time t is
multiplied by the transition matrix (Table 1) to obtain
the projected population at time t + 1, and so on for the
desired number of iterations.

This model has 2 stages: juvenile and adult. Individu-
als move from juvenile to adult at a rate determined by
the time to maturity (τ). Adults reproduce at a per capita
rate α — in this case, α incorporates the production of
embryos and survival up to the juvenile stage. Individu-
als in each stage have a natural mortality rate Mj (juve-
niles) and Ma (adults), resulting in survival probabilities
e–Mj and e–Ma. This definition of mortality is usual in
fisheries science, and has the advantage that different
sources of mortality are additive. In addition to natural
mortality, adults suffer a fishing mortality rate F, result-
ing in an overall adult survival probability of e–(Ma+F).
For simplicity, density dependence was only added to
reproduction, though the effect of density dependence
in the juvenile stage is qualitatively similar.

We added density dependence to the model in repro-
duction only, for simplicity. Elsewhere, we have found
that density dependent reproduction and juvenile mor-
tality have similar qualitative population conse-
quences. Mortality from exploitation may be negatively
density dependent (if fishers aggregate in high density
areas) or positively density dependent or density inde-
pendent (if fishers are not completely free to choose a
fishing area). Here, we assume it is density indepen-
dent. The model is appropriate for iteroparous species
without a fixed life span; other life histories can be
accommodated by changing the parameters (Table 1).

We added density dependence in reproduction as
follows:

Per capita reproductive output  =  
(1)

αNt
(δ – 1)/(1 + βNt

δ)

where Nt = adult density at time t, δ = Allee effect para-
meter, maximum reproductive output and β sets the
slopes and intersection point of the curves (Table 2).

When δ = 1, Eq. (1) collapses to α/(1 + βNt), which
results in negative density dependence. Increasing δ
any amount above 1 adds positive density dependence
at low density (a component Allee effect in reproduc-
tion). Larger values of δ intensify the Allee effect by

shifting the peak reproductive output towards higher
densities, while not affecting reproductive output at
densities above the peak (Fig. 1). We varied the value
of δ between 1 (no Allee effect) and 5 (a strong Allee
effect) (Myers et al. 1995, Stoner & Ray-Culp 2000).

Parameter values were set such that the model rep-
resented a generalised iteroparous ‘marine inverte-
brate’ and equilibrated at reasonable population val-
ues: adult reproductive output per time-step (embryo
production plus larval survival) α = 1000, adult mortal-
ity per time-step Ma = 0.5 resulting in adult survival
probability of 0.61 per time-step; juvenile mortality per
time-step Mj = 2, resulting in juvenile survival proba-
bility of 0.14 per time-step, time to maturity τ = 3 time-
steps, scaling parameter β = 45. β was set empirically;
biologically, its role is to ensure that the curves look
similar at high density, such that the Allee effect only
operates at low density. The model was run for 200
time-steps, by which time it had reached equilibrium.

With the model, we examined the effects of fishing
mortality (F) and initial density for different levels of
Allee effect (δ) upon equilibrium population size and
critical thresholds. We defined the critical threshold in
3 ways: (1) a critical Allee effect threshold (critical δ
value), above which a population of given density and
mortality rate goes extinct; (2) a critical mortality rate,
above which a population of given density and Allee
effect strength goes extinct; and (3) a critical density
threshold, below which a population with a given
Allee effect strength and mortality goes extinct.
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Table 1. Transition matrix for the density independent version
of the model; Mj = mortality of juvenile stage, Ma = mortality
of adult stage, τ = time to maturity, α = reproductive output 

of adults

e–Mj (1 – 1/τ) α Na
δ–1/(1 + βNa

δ) 

e–Mj (1/τ) e–Ma

Table 2. Transition matrix for density dependent Allee effect
model; δ = Allee effect parameter, α = maximum reproductive
output, β = scaling factor, Mj = mortality of juvenile stage, 

Ma = mortality of adult stage, τ = time to maturity
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Fig. 1. Effect of changing the value of the exponent δ in 
the density dependent equation for reproductive output
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MODEL RESULTS

Equilibrium population size for an unexploited pop-
ulation is affected very little by the strength of the
Allee effect, while exploitation without an Allee effect
causes an approximately exponential decline in equi-
librium population size. The most dramatic effect of
exploitation on a population with Allee effects is that
there is a critical threshold value of fishing mortality,
above which the population crashes abruptly to extinc-
tion. Such thresholds have been shown in many mod-
els incorporating Allee effects (Gerritsen 1980, Dennis
1989, Quinn et al. 1993, Courchamp et al. 1999, Boukal
& Berec 2002). When we varied the strength of the
Allee effect, fishing mortality and the Allee effect
interacted, such that populations with stronger Allee
effects became extinct under lower levels of fishing

mortality, or conversely that as fishing mortality
increased, weaker Allee effects drove populations
extinction (Fig. 2). Additional fishing mortality caused
an exponential decline in the critical Allee effect (the
Allee effect which drives a population of given size
extinction; Fig. 3). It also caused an exponential
increase in critical density thresholds (Fig. 4). The
modelling results demonstrate that increased fishing
mortality (or any other anthropogenic source of mortal-
ity) can activate latent demographic Allee effects by
(1) reducing population size or density to the Allee
threshold and (2) increasing the critical density thresh-
old such that a given component Allee effect has more
severe demographic consequences.

EMPIRICAL EVIDENCE

In general, there have been 2 approaches to the
empirical study of Allee effects in marine and terres-
trial systems: (1) experimental or observational studies
on component Allee effects, with the link to population
dynamics sometimes made through modelling; and
(2) Allee model fitting to empirical data such as repro-
ductive success or population time-series where there
is large variation in population size. Studies of compo-
nent Allee effects, or possible mechanisms for Allee
effects, can show where there are latent Allee effects
in a population. Studies of population time-series,
however, are looking for demographic Allee effects.

In marine systems, studies of component Allee
effects have focused mainly on reproductive success in
invertebrates, particularly broadcast spawners. In con-
trast, studies of demographic Allee effects have
focused on searching for evidence of Allee effects in
fisheries stock recruitment data or in predator-prey
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interactions involving fishery species, as a possible
explanation for the collapse and lack of recovery in
exploited fish populations.

Broadcast spawners

Many marine taxa possess a clear-cut mechanism for
component Allee effects in their reproductive system:
they are sessile or semi-sessile broadcast spawners.
Fertilisation success of eggs depends on the concentra-
tion of sperm in the water column. The proportion of
eggs fertilised declines exponentially with the distance
of the female downstream from the nearest male
(Fig. 5). At nearest-neighbour distances of <1 m, mod-
els predict that <0.1% of eggs will be fertilised under
high turbulence (Denny & Shibata 1989), although fer-
tilisation efficiency varies depending on the taxon and
the environment (Pennington 1985, Babcock et al.
1994).

Numerous marine invertebrate taxa are broadcast
spawners (Giese & Kanatani 1987). Most species
where the adults are usually sessile, such as corals,
anemones, ascidians and sponges, have no other
option for sexual reproduction, although they usually
also reproduce clonally and may be self-fertile (Carlon
1999). Bivalves, echinoderms and archaeogastropods
are also broadcast spawners, although many are some-
what mobile as adults.

In sea urchins, both density and population size have
an effect on fertilisation efficiency, with density being
critical in small populations but less so in large ones.
There is evidence of a trade-off between fertilisation
efficiency and competition in several species, implying
that there is a positive relationship between density
and fertilisation efficiency across the full range of nat-
ural densities to the carrying capacity (Levitan et al.
1992, Levitan & Young 1995). Research has therefore
emphasised the importance of Allee effects in these
species.

The relationships between population size, density
and fertilisation efficiency do not guarantee a demo-
graphic Allee effect or even a component Allee effect
in reproductive output. In urchins, competition often
results in a smaller mean body size rather than higher
mortality, since most echinoderms can shrink if
resources are scarce (Levitan 1991). In Diadema antil-
larum, the increase in gamete production by larger
individuals at low density seems to offset the reduction
in fertilisation efficiency, such that individual repro-
ductive output remains broadly similar across a wide
range of densities (Levitan 1991). In addition, many
taxa have evolved ecological and physiological mech-
anisms to avoid sperm limitation, so in natural (non-
experimental) systems, may be well adapted for effi-

cient fertilisation even at low density (Yund 2000).
Moreover, various invertebrates show negatively den-
sity dependent predation mortality at low population
densities (Seitz et al. 2001), which could offset compo-
nent Allee effects in reproduction.

The populations of many broadcast spawners have
suffered dramatic reductions in density through
exploitation. There has been heavy exploitation of sea
urchins (Pfister & Bradbury 1996), sea cucumbers
(Uthicke & Benzie 2001), Eastern oysters (Hargis 1999),
scallops (Murawski et al. 2000) and abalone (Farlinger
& Campbell 1992, Guzman del Proo 1992, Parker et al.
1992, Tegner et al. 1992). Recent major disease out-
breaks in corals and Diadema antillarum, and seem to
be unprecedented in recent even in geological history
(Lessios et al. 1984, Aronson & Precht 2001). Is there
evidence that a component Allee effect from broadcast
spawning has had demographic consequences in these
exploited populations?

There are several examples where populations sub-
jected to exploitation have collapsed rapidly (e.g.
abalone: Farlinger & Campbell 1992, Guzman del Proo
1992, Parker et al. 1992, Tegner et al. 1992; urchins:
Lesser & Walker 1998, Kalvass 2000). This fits well with
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the results of our model, which indicate that Allee
effects result in critical thresholds above which popu-
lations collapse rapidly, and that such critical thresh-
olds are strongly affected by increases in fishing mor-
tality.

There is evidence from the geological record that,
within taxa which have a diverse variety of life histo-
ries (e.g. corals, gastropods), species with brooding lar-
vae survived better through times of stress, implying
that they can recover more easily from episodes of
reduced density or population size (Wray 1995). Aron-
son & Precht (2001) suggested that Allee effects are
implicated in the failure of the corals Acropora palmata
and A. cervicornis to recover from the disease and
bleaching outbreaks of the 1980s and 1990s. Both spe-
cies broadcast eggs and sperm, with fertilisation in the
water column and planktotrophic larvae. They have
been largely replaced on Caribbean reefs for the first
time in recent geological history by Agaricia and
Porites, which are brooding species where eggs are
retained by the females during and after fertilisation,
reducing problems of sperm limitation by eliminating
the need for 2 gametes to meet in the water column.

Aside from the effects of decreased population size
or density and increased mortality, evolved mecha-
nisms for avoiding sperm limitation may break down at
low density. In abalone, a decreasing proportion of
reproductive adults participates in reproductive
aggregations in heavily fished, low density popula-
tions (Shepherd & Brown 1993). Abalone species have
been serially depleted along NE Pacific coasts, demon-
strating the rapidity with which each population col-
lapsed after the fishery focused on it (Fig. 6).

Abalone may be unable to support heavy fishing
mortality at any density — i.e. the decline in population

growth rate may not be density dependent, as would
be required for a demographic Allee effect. To test this,
we examined landings of red and pink abalone, which
have the longest time series. If we assume that land-
ings are proportional to population size, the ratio of
landings at time t + 1 to landings at time t is an estimate
of the average population growth rate over the year.
The relationship between estimated population
growth rate and landings is significantly positive
(Figs. 7 & 8), suggesting that population growth rate
increases with population size. This is suggestive of a
demographic Allee effect, although it could also be a
function of changes in effort.

Reproduction in non-broadcast spawners

There are few experimental studies on Allee effects
in marine systems not related to fertilisation efficiency
in broadcast spawners. In general, non-broadcast
spawners have been considered too mobile and too
behaviourally sophisticated to suffer from reproductive
Allee effects; however, there are some exceptions. In
queen conch Strombus gigas, a heavily exploited
Caribbean gastropod, there is a positive relationship
between density and per capita reproductive activity
at low density (Stoner & Ray-Culp 2000). This has been
interpreted as an Allee effect related to the decreasing
probability of encountering a mate at low density.

An observational study cannot demonstrate a causal
relationship between per capita reproductive output
and density. There are alternative explanations for
observed correlations; for example, conch may migrate
away from high density reproductive aggregations
when reproductively spent, or there may be an ontoge-
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netic shift from low density/non-reproductive young
adults to high density/reproductive adults. This is not
to say that Allee effects are not important, but rather,
that the evidence for Allee effects in queen conch is
indirect (including vulnerability to fishing pressure, as
predicted in the model, and failure to recover when
fishing is stopped, e.g. in Bermuda and Florida; Berg et
al. 1992a,b). Such studies illustrate the difficulty of
demonstrating Allee effects in natural populations.

Sperm limitation can be an issue at low density, even
in mobile animals, particularly when the mechanism
for density reduction is fishing, since this also reduces
the proportion of older and larger males (Fig. 9). Poten-
tial sperm limitation has been demonstrated in the
New Zealand rock lobster Jasus edwardsii, the
Caribbean spiny lobster Panulirus argus and the blue
crab Callinectes sapidus, all of which are fished heav-
ily and where large males are targeted. Smaller males
and fewer matings result in smaller female clutch sizes
and a higher proportion of unfertilised females (Mac-
Diarmid & Butler 1999, Kendall et al. 2001, P. Jivoff
pers. comm.).

Sperm limitation in crabs and lobsters may or may
not reduce female fitness at low density (i.e. a compo-
nent Allee effect). These species possess other life his-
tory components that mitigate the impact of compo-
nent Allee effects at the population level. Rock and
spiny lobster have an exceptionally long larval dura-
tion (several months; Lipcius & Eggleston 2000), which
decouples local recruitment from local reproductive
success (Lipcius et al. 1997, 2001). The blue crab also
has larval mixing on a broad scale and is cannibalistic,
such that low adult density may improve juvenile sur-
vival (Moksnes et al. 1997) and female reproductive
output (Lipcius & Stockhausen 2002). Nonetheless, if
fishing pressure is substantial across the entire
metapopulation, which is likely in these species, demo-
graphic Allee effects may occur.

Survival-related Allee effects

Positive density dependence in individual survival
also constitutes a component Allee effect. For example,
survival due to predation will be positively density
dependent where predators have a Type II functional
response (Holling 1959) with a limited aggregative or
numerical response (Fig. 10). This is an interesting
mechanism in that it is not linked to specific life history
traits such as broadcast spawning.

Positive density dependence in survival during some
life stage has been demonstrated experimentally in a
number of marine species, including queen conch
(Marshall 1992, Ray & Stoner 1994), New Zealand rock
lobster (Butler et al. 1999), Caribbean spiny lobster
(Mintz et al. 1994), red sea urchins Strongylocentrotus
franciscanus (Quinn et al. 1993), Pacific salmonids
(Wood 1987), soft-shell clams Mya arenaria (Lipcius &
Hines 1986), Eastern oysters Crassostrea virginica
(Eggleston 1990), marine insects (Foster & Treherne
1981) and zooplankton (Folt 1987); see Seitz et al.
(2001) for a review for marine bivalves. The survival of
one life history stage may be positively related to the
density of another; for example, newly settled red sea
urchins, Eastern oysters Crassostrea virginica and
mussels Mytilus edulis survive better under adult
canopies (Rowley 1989, Quinn et al. 1993, R. Mann
pers. comm.), and adult cod feed on the competitors
and predators of juvenile cod (Walters & Kitchell 2001).
With the exception of red sea urchins (Botsford et al.
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Fig. 9. Age structure of populations with different probabili-
ties of survival (p) from one stage to the next. Data from a sim-
ple density independent matrix population model. High p
(0.7) corresponds to low mortality (i.e. the unfished scenario),
while low p (0.3) corresponds to high mortality (i.e. the fished
scenario). Note that even though all stages have an equal sur-
vival probability in each case, the lower survival probability
(higher mortality) scenario results in a depletion of older
stages relative to younger ones. Hence, a fishery that targets
all individuals in the population equally still alters the age
structure by reducing the proportion of older individuals
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1993, Quinn et al. 1993, Pfister & Bradbury 1996) and
other fished species (e.g. Peterman & Gatto 1978,
Hilborn & Walters 1992), these results have not been
linked to demographic Allee effects.

Human ‘predation’ can be a mechanism for creating
component Allee effects in survival (Hilborn & Walters
1992). An exploitation Allee effect occurs when the per
capita exploitation rate increases as population size or
density decreases. There are, for example, situations
where decreasing population size does not result in
decreasing population density (e.g. schooling fish,
spawning aggregations), and in this case, a reduction
in population size will not make individuals any harder
to catch. Hence, if effort is constant, total catch will
remain more or less constant, and the proportion of
individuals caught (the per capita exploitation rate)
will increase as population size decreases, creating an
Allee effect (= depensatory fishing mortality). Another
possibility is for effort to increase as catch per unit
effort declines (this is usual, given economic invest-
ments in fisheries), so that catches decrease at a lower
rate than population size, again resulting in an
increase in the per capita exploitation rate. Note, how-
ever, that these Allee effects will only operate under
exploitation; elimination of exploitation also removes
the Allee effect. Therefore, exploitation Allee effects
will affect the rate at which a population declines
under heavy exploitation, but will not affect the rate at
which populations recover if exploitation stops, unlike
Allee effects intrinsic to species life history or ecology.

Demographic Allee effects

For fish, as for mobile invertebrates, Allee effects
were not considered likely to be important, until the
failure of several populations to recover from overex-
ploitation after substantial reductions in fishing effort

led to a debate about the possibility of recruitment fail-
ure and low or negative per capita population growth
rates at low density (demographic Allee effects). This
work has focused on fitting models with and without
Allee effects to population size and recruitment data,
which is possible only for (economically important)
species for which such data sets exist. In a database of
population size and recruitment for 128 fish stocks,
26 allowed an analysis with high statistical power
(>0.95) and there was significant evidence of Allee
effects in only 3 of them (Myers et al. 1995). Myers con-
cluded that Allee effects were not of widespread
importance, and collapses and recovery failures should
be attributed to other causes.

The large variance in stock recruitment data means
that there may be limited statistical power to detect
Allee effects in time-series data, and the failure to
reject a null hypothesis of no Allee effects might not be
an indicator that they are not present (Liermann &
Hilborn 1997, Shelton & Healey 1999). In addition,
there is often uncertainty about what constitutes a
‘stock’, which should be a population or subpopulation
that is more or less reproductively isolated. If the stock
considered by managers actually consists of several
substocks, the impact of Allee effects and extinctions at
the substock level may be masked until the metapopu-
lation reaches a critical point (Courchamp et al. 2000a,
Frank & Brickman 2000). Conversely, if the ‘stock’ is
only part of a much larger open population, recruit-
ment will be decoupled from local individual fitness,
even if component Allee effects due to density are
important (i.e. component Allee effects will not lead to
demographic Allee effects until a critical point is
reached across the whole population).

There is indirect evidence for Allee effects in some
exploited fish species, particularly gadids (the cod fam-
ily). An analysis of recovery from exploitation in 90 fish
populations showed that 15 yr after major declines in
stock size, 40% of the populations (mainly gadids)
showed no recovery, with 48% showing only marginal
recovery (Hutchings 2000).

CONCLUSIONS

Our model suggests that increases in mortality, such
as those due to fishing, interact very strongly with
Allee effects, to increase population size or density
thresholds below which the population is driven to
extinction. Exploitation therefore has the potential to
render populations very vulnerable to collapse when
Allee effects are present. There is no a priori reason for
Allee effects to be intrinsically unlikely in marine pop-
ulations, notwithstanding their (possibly) open,
metapopulation structure. Despite this, our analysis of
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the empirical data on Allee effects in diverse marine
species revealed numerous suggestive observations,
but very little firm evidence. Does this mean that Allee
effects can be dismissed as unusual or insignificant in
marine populations?

The failure to demonstrate Allee effects convincingly
in marine populations might in fact be methodological.
There is a lack of clear understanding on the part of
many ecologists as to the precise definition of Allee
effects. Allee effects require a causal relationship
between density or population size and either a com-
ponent of individual fitness (component Allee effects;
sensu Stephens et al. 1999) or the per capita population
growth rate at low density (demographic Allee effects;
sensu Stephens et al. 1999). Correlations between den-
sity and fitness can have various explanations, includ-
ing mutual dependence on a third variable such as site
or age. Showing a causal relationship between 2 vari-
ables is an age-old problem for ecologists, to which we
do not have a solution, except to say that clear demon-
strations of component Allee effects are likely to
require large-scale manipulative experiments, and will
therefore be limited to a few taxa.

Another issue is that of temporal lags. Our model
assumes that population equilibria adjust very rapidly
to changes in demographic rates such as reproduction.
This is not the case in long-lived species, where popu-
lations equilibrate only slowly. In this case, thresholds,
while still present as unstable equilibria in the under-
lying model, are visible only as gradual declines over a
long time period, rather than as abrupt crashes. This
smearing out of thresholds, plus the usual time scale of
scientific research, might make the presence of Allee
effects difficult to verify in a large category of long-
lived exploited species, including gadids and abalone.

Given constraints on assessing Allee effects in
marine populations, we feel that a promising tactic is to
model potentially vulnerable populations with differ-
ent strengths of Allee effect (e.g. Fig. 2). This approach
gives a prediction of the likely consequences of differ-
ent scenarios if Allee effects are important. This is par-
ticularly useful for exploited populations in the context
of precautionary management. If Allee effects are
strong, spatial considerations become critical. Tradi-
tional fisheries management, with control of inputs
(effort) or outputs (landings), may not be very success-
ful because it allows fishers to target dense areas and
tends to reduce a population to uniform low density.
Spatial management measures, such as no-take
reserves, maintain areas of high population density,
and are a better management option where Allee
effects may be a risk.

Our model, and Allee effect/exploitation models pre-
sented elsewhere (e.g. Botsford et al. 1993, Quinn et al.
1993, Pfister & Bradbury 1996) demonstrate that Allee

effects can have major consequences for population
dynamics, sustainable exploitation and management.
The potential population consequences of mechanisms
for component Allee effects remain unexplored in most
marine species. We contend that this limits both our
ecological understanding and the probable success of
conservation for marine species.
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