Vol. 264: 297-307, 2003

MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Conceptual progress towards predicting
quantitative ecosystem benefits of ecological
restorations

Charles H. Peterson'*, Romuald N. Lipcius?

IInstitute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, USA
2School of Marine Sciences, The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point,

Virginia 23062, USA

ABSTRACT: Satisfying the needs of mitigation for losses of habitat and biological resources demands
further development of ecological theory to improve quantitative predictions of benefits of ecological
restoration projects. Several limitations now exist in scaling compensatory restoration to match losses
of ecosystem services. Scaling of restoration projects has historically been done by area of habitat,
assuming that function follows. One recent development in compensatory mitigation uses a currency
of secondary production, which has the important merit of specifying one measurable, functional goal
against which to judge success. Future development of the fundamental basis for restoration ecology
might profitably include: (1) identifying and quantifying important ecosystem services to serve as
alternative goals of restoration; (2) discriminating among size classes in a population in estimating
their contributions to ecosystem services; (3) re-evaluating the practice of restoring the populations of
only a few representative or dominant species to replace a diversity of species losses; (4) contrasting
the success of habitat restorations versus population enhancements; (5) incorporating more landscape-
scale considerations into ecosystem-based restoration designs; (6) injecting more formal uncertainty
analyses into scaling restoration projects; (7) enhancing the basic science of population, community,
and ecosystem ecology to improve the capacity of the discipline to predict impacts of interventions;
(8) integrating empirical and theoretical developments in food web dynamics to resolve contradictions
in our models of how population changes propagate across trophic levels; and (9) incorporating the
concept that populations, communities or ecosystems targeted for restoration may now be in alterna-
tive states and that restoration targets have been biased by shifting historical baselines. Forging part-
nerships between the practitioners of ecological restoration and basic ecologists holds a dual promise
for testing ecological theory and for improving the effectiveness of environmental restoration.
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INTRODUCTION

If ecological restoration is ever to approach the effi-
cacy of conservation as a tool to combat the growing
degradation of habitat (Vitousek et al. 1997) and de-
pletion of living resources (Botsford et al. 1997), both of
which are driven by pressures of expanding human
populations, dramatic advances will be needed in the
conceptual ecological foundation on which restoration
relies (Allen et al. 1997, Young 2000). Both approaches,
conservation and restoration, seem necessary because
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while conservation is the typically more reliable and
less costly means of sustaining ecosystem services,
restoration is often required to respond to unexpected
losses and to compensate for a long cumulative history
(Jackson et al. 2001, Scheffer et al. 2001) of incremental
degradation and destabilization of natural ecosystems.

In many ways, restoration ecology makes more de-
mands on the discipline of ecology (e.g. Ewel 1987).
This is not to argue that conservation comes easy: in
fact, many of the biggest challenges in conservation
biology involve developing novel techniques for recon-
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ciling human uses of natural resources with a mandate
to sustain provision of those resources indefinitely (e.g.
Soule 1987, Wilson 1992). For example, recent growth
in the conceptual basis for designing marine reserves
may lead to management actions to sustain fishery
stocks and harvest levels (Palumbi 2001, Lubchenco et
al. 2003). In contrast to conservation, which involves
managing human activities to reduce their influence
on nature, restoration typically requires overt human
intervention into degraded ecosystems to achieve a de-
sired target (Jordan et al. 1987, NRC 1992). Restoration
ecology depends on population, community, and eco-
system ecology to provide the conceptual basis for
predicting not only direction but also magnitude of
responses of ecosystems to restoration actions (Zedler
2000). Designing restoration projects and evaluating
their subsequent success involves interdisciplinary
science, including consideration of hydrology, hydro-
dynamics, sedimentary geology, biogeochemistry, and
land-use planning (NRC 1992). The history of human
interventions into ecosystems does not inspire high
levels of confidence in our ability to design and engi-
neer model ecosystems through intervention, raising
skepticism about achieving restoration goals. Intentional
introductions of non-native species have an especially
poor record of achieving their predicted benefits. The
practice of scaling to achieve compensatory restoration,
despite its flaws and uncertainties, has the positive
benefit of identifying an explicit functional goal of
restoration against which success can be measured; this
can force restoration ecology to become more focused,
rigorous, and quantitative (Hobbs & Harris 2001).

This Theme Section on restoration scaling in MEPS
(Peterson et al. 2003b, in this Theme Section) publicizes
the recent development of alternative approaches to
designing and scaling compensatory restorations in
the marine environment. Specifically, the papers illus-
trate the application of ecological concepts to design
restoration actions for the purpose of quantitatively
enhancing ecosystem services to compensate for nat-
ural resource injuries (NOAA 1997). Agencies respon-
sible for protecting and managing public trust re-
sources are often required by law or policy to facilitate
restoration as compensation for losses (Peterson et al.
2003b). This mandate has inspired original syntheses
of available scientific evidence on population regula-
tion of many affected species and their practical appli-
cation to develop alternative designs for restoration
actions. The requirement to achieve full quantitative
compensation for the losses places a special burden on
the discipline of ecology because of its explicit need
to predict numerical responses (Ewel 1987). Here we
identify important ecological considerations that still
need to be addressed to improve the conceptual
underpinnings for restoration scaling.

FUTURE CHALLENGES TO IMPROVE
RESTORATION SCALING

Identifying and measuring ecosystem services.
From its initiation, habitat restoration in the marine
environment focused almost exclusively on developing
the methods for re-establishing and sustaining the bio-
genic structural element, usually a plant, that defines
the habitat and facilitates its function (NRC 1992). Suc-
cessful culture methods have now been achieved for
salt marsh grasses (Woodhouse et al. 1974), seagrasses
(Fonseca et al. 1998), and oysters (Luckenbach et al.
1998). Many habitat restoration projects have been
scaled based upon the simple metric of habitat area,
assuming that function would follow structure (Lawton
1996). This assumption has been partially tested by
evaluation of the rates of return of animal communities
that depend upon the structure-providing (foundation)
species (e.g. Cammen 1976, Fonseca et al. 1996,
Grabowski 2002). Growing knowledge of the rate of
return of associated animals has allowed this compo-
nent of habitat function to be included in scaling some
restoration projects. More recently, the movement
towards quantifying success of restoration by func-
tional measures has been accelerated by governmental
mandates for compensatory replacement of injured or
lost ecosystem services after environmental disasters
(Peterson et al. 2003b).

The fundamental assumption underlying most gov-
ernmentally mandated attempts to scale restoration
actions to achieve quantitative compensation for losses
of living natural resources is the assumption that bio-
mass production is an appropriate proxy for ecosystem
services (e.g. NOAA 1997, Fonseca et al. 2000). Many
processes of value and significance to the ecosystem
clearly are enhanced as biological production grows.
For example, a system in which production of an ex-
ploited species is augmented will typically sustain en-
hanced levels of exploitation. Yet choice of the trophic
level at which to assess production can make an enor-
mous difference to evaluation and quantification of
ecological benefits of potential restoration options. For
example, eutrophication is the process of nutrient
loading in aquatic ecosystems that enhances primary
production in the water column (Nixon 1995). This en-
hanced primary production can interfere with food-
chain transfers to higher trophic levels by stimulating
production of inedible nuisance algae, destroying
nursery habitats such as rooted macrophytes and oys-
ter reefs, killing benthic invertebrates by induction of
bottom-water hypoxia and anoxia, and diverting ener-
gy flow away from consumers and into microbial loops
(Elmgren 1989, Jackson et al. 2001, Baird et al. in
press). Eutrophication is understandably viewed as a
process that degrades the services provided by lakes,
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estuaries, and coastal oceans (Carpenter & Lathrop
1999). Consequently, stimulating additional biological
production at the level of phytoplankton would not
serve as compensation for lost ecosystem services and
benefits in eutrophic estuaries or coastal oceans.

Restoration design and scaling needs to consider not
only the trophic level at which success should be mea-
sured, but also the species-specific responses within
trophic level. For example, replacement of Spartina
alterniflora marsh with Phragmites communis marsh is
widely viewed as a failure to restore the functional
value of the marsh habitat for animals (see Able et al.
2003) in large part because of difficulty in accessing
the much denser Phragmites. Recent work in natural
Spartina marshes, Phragmites marshes, and restored
Spartina marshes in the Delaware Bay (New Jersey,
USA) has demonstrated not only that juvenile fish
(Fundulus heteroclitus) utilization is far greater in
Spartina marshes but also that marsh restoration
through Phragmites removal re-establishes the quanti-
tative level of this particular nursery function (Able et
al. 2003). Documenting and quantifying more such
species-specific services of marine and estuarine habi-
tats is a necessary step towards including species-level
predictions in scaling restoration projects.

In principle, one could specify the important services
provided by any given species or habitat and then
design restoration actions to enhance one or more of
them, with compensation computed as the sum of all
such scaled benefits. Unfortunately, this procedure
requires recognition and definition of the important
services provided by the species or habitats that may
serve as the target of restoration. Some benefits are
known and widely acknowledged. However, others
that are equally important may be unrecognized. For
example, oyster reef habitat provides the ecosystem
benefits of: (1) producing oysters of market value and
of value to recreational fishermen; (2) filtering the
estuarine waters, which can enhance their clarity and
allow sufficient light penetration to support expansion
of seagrass habitat, an important estuarine nursery;
(3) promoting denitrification by concentrated deposi-
tion of feces and pseudofeces; (4) providing a hard sub-
stratum that enhances biodiversity and production of
epibenthic invertebrates; (5) serving as emergent bio-
genic habitat that provides food and shelter to many
demersal fishes and mobile crustaceans; (6) sequester-
ing carbon in the calcium carbonate of shells, thereby
reducing concentration of a greenhouse gas; (7) acting
as a breakwater to protect the estuarine shoreline,
including salt-marsh habitat, against erosive waves
(Peterson et al. 2003a, in this Theme Section); and
(8) diversifying the seascape to enhance the synergis-
tic benefits of multiple habitat types, such as creating
corridors between shelter and foraging grounds (Peter-

son et al. 2003a). Other benefits of oyster reef habitat
doubtless exist without due recognition. Even after
recognition of the suite of important benefits, convert-
ing them to a common comparable unit so as to sum
them represents a major challenge to both ecology and
natural resource economics. Scaling restoration so as
to provide a sum of all benefits that will match a given
loss represents a complex task certain to overlook
some important ecosystem functions. Thus, the use of
secondary production as proxy for ecosystem services
may actually result in more accurate compensation
from a restoration project. Nevertheless, this assertion
is wishful thinking that deserves to be tested by actu-
ally enumerating ecosystem services, scaling them to
production, and summing them in defensible ways to
evaluate whether the procedure of matching gains
and losses in secondary production suffices to achieve
quantitative compensation in ecosystem services.

Few alternative metrics have been suggested to
replace production as the scalar for compensatory re-
storation of ecosystem services. M. Buchman (unpubl.),
however, has developed a metric for marine soft-
sediment habitats to scale restoration of sediment
chemistry through pollutant removal or capping. In
several places, notably Chesapeake Bay (Weisburg et
al. 1997) and the shallow shelf of the Pacific Ocean
coast of North America (Word 1978), scientists have
developed a site-specific index of benthic community
health. M. Buchman (unpubl.) proposes a scaling
method for quantifying the ecosystem benefits that
scales benefits linearly to the increase in value of this
index. Because an index like B-IBI (Benthic Index of
Biotic Integrity: Weisburg et al. 1997) for the Chesa-
peake Bay includes several disparate components,
such as categorical ratings for pollution-tolerant
species and pollution-indicator species, and implicitly
weights the multiple components in pooling them, it
is unclear how scaling on such an index would com-
pare to actual enhancement in production or to other
explicit and quantifiable ecosystem services. This
approach, however, represents a novel means of eval-
uating one component of the restoration process,
specifically the quality of the restored resource. A nec-
essary adjunct to this qualitative measure of restora-
tion success is the integration of quantitative mea-
sures, such as estimates of secondary production, into
a joint metric of ecosystem benefits of marine restora-
tion.

Size-dependent value of production. Current use of
secondary production as the metric by which to scale
restoration projects and achieve compensation for bio-
logical losses assumes that the ecosystem services pro-
vided by production are equal independent of the size
class in which that production occurs. This is clearly
false, at least for some readily specified ecosystem ser-
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vices. For example, small size classes of bivalve mol-
luscs such as surf clams and hard clams serve as prey
largely for crabs but also for fishes, octopi, seastars,
predatory gastropods, and other marine predators
(Kraeuter 2001). As bivalves grow larger, they gradu-
ally reduce their risk of predation (e.g. Arnold 1984).
On the other hand, they contribute more to reproduc-
tive output (e.g. Peterson 1986) and they filter water at
much higher per capita rates. Consequently, quantify-
ing restoration success by the enhanced production of
juvenile clams, which would lead to greater trophic
transfer to consumers, differs substantially from that
measured by enhanced production of older clams,
which would lead to greater release of gametes and
reduction of turbidity. These ecosystem services are
not equivalent and one may be preferred over the
others depending upon the situation. For example, if
recruitment limitation exists because of depletion of
adult spawning stock (e.g. Peterson 2002), then
enhancement of larger clams would be the more
appropriate metric for restoration success than aug-
mentation of juvenile abundance. On the other hand,
for populations in which recruitment is not limited by
spawning stock biomass, enhancement of juveniles
may provide the more suitable measure of restoration
success by supporting production at higher trophic
levels. This issue arose but was not resolved in plan-
ning the compensatory restoration for loss of surf clams
and other bivalves after the North Cape oil spill
(French McCay et al. 2003b, in this Theme Section).
Enhancing one species to compensate for many.
Frequently an environmental incident will cause losses
distributed among many species within an ecological
guild, such as the losses of benthic invertebrates in salt
ponds (French McCay et al. 2003b) or seabirds (Sper-
duto et al. 2003, in this Theme Section) following the
North Cape oil spill. Because it would seem impractical
and disproportionately costly to design and conduct
population restoration projects for each species sepa-
rately, one species is commonly chosen for restoration
to compensate for the total loss within the guild (Zedler
2000). This decision may imply an assumption of func-
tional equivalence among guild members such that the
total abundance within the guild, not the distribution
of abundances among component species, dictates the
level of ecosystem services provided. This may be rea-
sonably accurate in some situations, but such a deci-
sion contradicts the usual management strategy and
conservation position maintaining that biodiversity is
important to sustaining ecosystem functions (Naeem &
Li 1997, Tilman et al. 1997, Elmquist et al. 2003). One
possible alternative to implicitly assuming that main-
taining biodiversity is unimportant in conducting com-
pensatory restoration may be to replace losses of guilds
of species with a habitat restoration project designed to

enhance many species rather than employing popula-
tion restoration options.

Differing uncertainty in population versus habitat
restoration. Designing a restoration project for a single
species carries high uncertainty. Success requires
deep understanding of the factors that control the spe-
cies population at the site and time of the restoration.
For many species, there exists little history of previous
restoration attempts on which to base scaling computa-
tions or even on which to make accurate predictions of
direction of population response to intervention in the
ecosystem. Predicting the quantitative magnitude of
enhancement and projecting that forward over years
represents a form of ecological hubris of extraordinary
dimensions. When such population restorations are
chosen to compensate for losses of important public-
trust resources, conducting well-designed monitoring
and retaining financial resources for any necessary
adaptive management of the restoration would seem
advisable (NRC 1992). For some exploited resources,
such as targets of fisheries, substantial information is
available on population regulation and often also on
the success of population enhancement programs (e.g.
French McCay et al. 2003a,b, in this Theme Section).
Such information can justify choosing a population-
based restoration project for those resources. Further-
more, if an endangered or threatened species is
affected by an ecological mishap, then for both legal
and ethical reasons, choosing an action that is ex-
pected to restore that population is understandable,
despite the practical difficulties that lie ahead (Donlan
et al. 2003, in this Theme Section).

Alternatively, compensatory restoration might be
achieved by habitat restoration instead of targeting a
specific population (Soule 1987, Wilson 1992). Because
of loss and degradation of so many important habitats
(Jackson et al. 2001), actions taken to construct, revi-
talize, restore, or protect otherwise-doomed habitat of
established value to critical living resources generally
carry less uncertainty about success and performance.
In estuarine and coastal environments, this approach
would be represented by accelerated restoration of salt
marsh, seagrass, mangrove, oyster reef, and other
structured, biogenic habitats (Thayer 1992, Heck et al.
2003, Peterson et al. 2003a). It may not be prudent,
however, based on the results of Powers et al. (2003,
in this Theme Section), to construct offshore artificial
reefs to compensate for lost fish production, given the
high uncertainty about their ability to promote higher
net production of associated fishes if fishing pressure
targeting those reefs cannot be controlled.

When population enhancement is chosen as the
means of achieving compensatory restoration, there
arises a potential to flood the system with the en-
hanced species and thereby induce unanticipated den-
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sity-dependent responses that limit or eliminate the
enhancement pulse. For example, flooding the envi-
ronment with large numbers of small organisms as part
of a population enhancement project could induce
either functional (prey switching in their feeding
choices) or numerical (population increases) responses
in predator populations such that survival of the target
of restoration is negatively density-dependent and
no net enhancement is achieved. Spreading out the
enhancement over several years is one means of mini-
mizing the impacts of this effect, but numerical
responses in predators could result in persistent
build-up of predator populations that could conceiv-
ably negate most or all of the benefits of enhancement.

Another density-dependent mechanism that could
impede restoration efforts, particularly those involving
modest population enhancements, involves the Allee
effect (Allee 1931)—positive density dependence in
fitness at low population size (Courchamp et al. 1999,
Stephens et al. 1999). Allee effects may be manifested
at the population level through: (1) reproductive activ-
ity, which often depends on adequate population den-
sities to achieve effective egg fertilization or to locate
a mate (Petersen & Levitan 2001): or (2) predation-
induced mortality of juvenile stages. Allee effects gen-
erally have been ignored in restoration and conserva-
tion efforts (Gascoigne & Lipcius in press), with a few
notable exceptions (e.g. Tegner & Dayton 1977, Quinn
et al. 1993, Marshall & Lipcius unpubl.). Positively den-
sity-dependent survival due to predation (= inversely
density-dependent predation) is a widespread attribu-
te of marine predator-prey systems (Seitz et al. 2001),
and could easily prevent the recovery of populations at
low abundance (Gascoigne & Lipcius in press, Lipcius
et al. in press a). In these cases, attempts at restoration
would require information on the minimal level of
population enhancement needed to overcome Allee
effects due either to predation or to reproductive limi-
tations. Furthermore, there may be interactive mecha-
nisms between multiple juvenile and adult stages
experiencing density-dependent predation. For in-
stance, in queen conch the presence of older juveniles
significantly increases the survival of young juveniles
(Lipcius et al. in press a). Older juveniles provide a
positive feedback on younger juveniles through modi-
fying their susceptibility to predators, which appar-
ently increases handling time and decreases attack
rates on younger juveniles when older juveniles are
available. Restoration of such stage-structured popula-
tions may therefore require attention not simply to a
single life stage, but also to the interdependent stages
that impinge on population recovery.

Landscape effects of project siting and ecosystem-
based restoration. In estimating the quantitative en-
hancement expected from alternative restoration pro-

jects, each project is often considered independently.
Ecosystem benefits of paired or multiple projects can
exceed the sum of projects done in isolation. These
extra benefits typically are derived through landscape
effects of proximity of restorations (NRC 1992). For ex-
ample, salt marsh restoration has the well-appreciated
benefit of providing additional subsidy of the detrital
food chains of estuaries, leading to enhanced produc-
tion of many important estuarine organisms, such as
penaeid shrimps and their consumers (Haines & Mon-
tague 1979, Zimmerman et al. 2000). Benthic micro-
algal production is high in salt marshes (Pinckney &
Zingmark 1993) and leads to secondary production of
many marsh animals (Sullivan & Moncreiff 1990, Cur-
rin et al. 1996, Deegan & Garritt 1997). The structure
provided by salt marsh grasses is also important as
habitat for many birds, such as rails, and invertebrates,
including marsh periwinkles and mussels. Oyster reef
restoration enhances production of fishes and mobile
crustaceans by providing habitat for recruiting larvae,
shelter for juveniles, and prey for all life stages (Peter-
son et al. 2003a). Kneib (2003, in this Theme Section)
estimated the quantitative benefits of salt marsh re-
storation by computing the likely enhancement of ter-
tiary production by small fishes and crustaceans that
are the major beneficiaries of the increased primary
production. Nevertheless, if a salt marsh restoration
were paired in proximity to a restored oyster reef,
interactions between the 2 habitats would be likely to
provide additional ecosystem benefits that derive from
landscape-level synergism between the habitats and
that would not normally be included in the 2 indepen-
dent scaling exercises. For example, demersal preda-
tors that seek structural habitat as shelter from their
own enemies are likely to be better able to utilize the
restored salt marsh if there is a corridor of biogenic
oyster reef habitat connecting the restored marsh in
the intertidal zone to subtidal refuge habitat (Micheli
& Peterson 1999). Low-tide exposure of salt marshes
forces aquatic consumers to retreat to the subtidal,
where availability of structural refuges, such as sea-
grass beds or subtidal oyster reefs, may determine the
capacity of these mobile consumers to use the re-
sources available at high tide in the salt marsh. More-
over, marsh-associated nutritional subsidies appar-
ently enhance the abundance of benthic prey in the
subtidal zone bordering salt marshes (R. Seitz & R.
Lipcius unpubl.), such that additional food would also
be available to epibenthic predators, in addition to the
shelter provided by the oyster reef. Furthermore, as
sea level continues to rise through effects of green-
house warming of the earth's atmosphere, erosion and
destruction of salt-marsh habitat will likely grow at an
increasing pace. Fringing oyster reefs serve as a bio-
genic breakwater that can not only reduce the erosive
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energy of waves striking the marsh shoreline but also
can grow vertically at rates that exceed sea-level rise.
With adequate sources of sediments from rivers, the
elevation of the salt marsh could also be maintained in
depositional environments. Consequently, pairing of
salt-marsh restorations with oyster reef restorations
has the potential to extend the longevity of the marsh
and thus enhance the long-term delivery of ecosystem
services. This sort of ecosystem-based based restora-
tion can be considered part of ‘integrated resource
management’ and is strongly encouraged (NRC 1992).

The decision about where to locate a restoration pro-
ject has many implications for its subsequent function-
ing and value to the ecosystem. The primary consider-
ation in locating a restoration project is to place it in
an environment suitable for sustaining the restoration
over a long time. This requires assessing and then
matching the environmental conditions required to
support development and success. Often historical pre-
sence of the targeted restoration habitat guides siting
decisions, although environmental changes do occur
and may render past knowledge obsolete (see ‘Alter-
native stable states and shifting baselines in popula-
tions and ecosystems'). However, even within the
range of physically suitable conditions, habitat func-
tions can vary with physical setting. For example, sea-
grass habitat located in high-energy environments is
patchier and utilized by fishes and invertebrates in dif-
ferent ways than seagrass beds in low-energy settings
(Fonseca & Bell 1998).

There can be advantages to designing restoration
projects in a fashion that creates a network of habitat
patches along an environmental gradient, similar to
that being proposed as a solution to the problems
posed by environmental uncertainty (Allison et al.
2003) and by unknown complexities of metapopulation
source-sink dynamics (Lipcius et al. in press b) in the
effective design of marine protected areas. Then, if
environmental conditions deteriorate in one part of the
gradient, habitat at the remaining portions of the gra-
dient could serve as a refuge for mobile organisms to
survive what otherwise could become a widespread
mortality event. This process has been documented by
Lenihan et al. (2001) for oyster reefs restored along a
depth gradient in an estuary subject to bottom-water
hypoxia; by placing reefs in shallow as well as deep
water, fish possessed a refuge during a major hypoxic
event that eliminated their sessile invertebrate prey on
deep-water reefs. Reefs in shallow waters are, alterna-
tively, more vulnerable to storm damage. In addition,
survivors in one habitat patch could become a source
population for recruits to sink habitats where popula-
tions have been extirpated by environmental (e.g.
hypoxia) or biotic (e.g. disease) catastrophes (Lipcius
et al. in press b). The potential impact of source-sink

dynamics on the effectiveness of population restora-
tion efforts in marine reserves has been recognized
(Crowder et al. 2000, Lipcius et al. 2001, Botsford et al.
2003) and integrated into conceptual models that syn-
thesize the multiple pathways by which metapopula-
tion structure may drive restoration success in marine
reserves (Lipcius et al. in press b). Similarly, for habitat
and population restoration efforts, whether dealing
with plants or animals, it is imperative to examine the
impact of spatially explicit processes and metapopula-
tion implications on the efficacy of restoration.

Evaluation of the significance of ecosystem setting to
the functional role and value of estuarine habitats is an
active current focus of ecological research (e.g. Irlandi
& Crawford 1997, Grabowski 2002, Hovel et al. 2002).
Ecology may not be capable yet of providing confident
predictions of the interactive benefits of landscape
pairing of natural or restored habitats because study of
trophic subsidies and connectivities from one system
to another are still in their infancy (Polis et al. 1997).
However, as ongoing research is completed, this cur-
rent focus in ecosystems ecology can contribute to
more complete and accurate valuation of restoration
projects.

Uncertainty analyses. In rigorous ecological model-
ing, it is customary to provide formal uncertainty and
sensitivity analyses to provide quantitative indications
of how much risk of error is associated with various
model predictions. Uncertainty analyses have not yet
been formally incorporated into the practice of restora-
tion scaling. Uncertainty is typically acknowledged
and even used by employing qualitative rankings of
restoration options to help guide choices for com-
pensatory mitigation of natural resource losses (e.g.
Powers et al. 2003). Yet trustees of natural living
resources would be able to make more informed deci-
sions about future compensatory restoration actions if
they were armed with explicit estimates of the proba-
bilities of a suite of alternative outcomes associated
with each restoration alternative (e.g. Reckow 1999,
Kinzig et al. 2003). If quantitative estimates of uncer-
tainty were available, they could conceivably be used
to modify the scale of restoration effort required for
compensatory restoration, applying a replacement
ratio for resource or habitat lost that grows with un-
certainty. This principle is already regularly used by
management agencies in scaling mitigation projects
required as conditions of various construction permits
(Fonseca et al. 2000). Perhaps the most reliable means
of insuring quantitative replacement of a lost public-
trust resource involves monitoring of the resource(s) of
interest and then adaptively modifying the scale or
even type of restoration in response to documented
performance of the restoration (Fonseca et al. 1998).
Such monitoring and adaptive management could
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legitimately be included among the costs of restora-
tion. Similarly, knowledge gained about the efficacy of
alternative restoration actions, which has value for
planning future restoration and adaptive management
actions, could be credited as a benefit of restoration. At
present, most monitoring of compensatory restoration
projects seems rudimentary, incomplete, and inade-
quate to advance restoration science. Knowledge en-
hancement is not presently included as one of the
credits in conducting compensatory restoration.
Building the science of restoration ecology. Com-
pensatory restoration projects occasionally involve
large-scale experimental interventions that represent
ideal, and perhaps otherwise unaffordable, opportuni-
ties to test basic ecological hypotheses involving dy-
namics of populations, communities, and ecosystems
(Zedler 2000). Yet, there is insufficient collaboration
between restoration agents in government and agen-
cies charged with supporting basic science (Carpenter
& Lathrop 1999, Hobbs & Harris 2001). After an ex-
tended period of denigration by mainstream academia,
terminated by bold syntheses (e.g. Lubchenco et al.
1991), conservation biology became academically
accepted as part of the science of ecology. Restoration
ecology is, however, still typically viewed with suspi-
cion by academia and often characterized as applied
horticulture with inadequate fundamental foundation
in theory (e.g. Palmer et al. 1997). The ability to render
accurate predictions about interventions into ecologi-
cal systems indeed represents an acid test of the capa-
bilities of the science of ecology. The practice of
restoration can be greatly enhanced by further devel-
oping the conceptual foundation of restoration eco-
logy, which could be achieved by forging partnerships
between ecosystem restoration and basic ecology.
Unresolved conflicts in habitat paradigms and food-
web dynamics. Basic ecological understanding of the
functioning of important biogenic habitats in estuarine
and coastal marine environments is still incomplete.
Presently prevailing models for the functioning of the
most important biogenic habitats such as seagrass
beds and salt marshes contain largely unrecognized
and thus unresolved conflicts. For example, the pre-
sumption that seagrass beds serve as an obligate nurs-
ery habitat for juvenile fishes does not stand up to
rigorous scrutiny: other structured habitats are popu-
lated by similar densities of juvenile fishes and mobile
invertebrates (Heck et al. 2003). One of the most
important unrecognized conflicts in our present para-
digms for the functioning of important biogenic habi-
tats relates directly to estimation of production at
higher trophic levels and thus to the ability to accu-
rately scale restoration projects. Specifically, seagrass
beds and salt marshes are commonly assumed to pro-
vide enhanced food availability and simultaneously

enhanced refuge from predation. This dual function of
the habitat can pose an unresolved contradiction. A
refuge from predation implies inhibition of energy flow
up the food chain to higher-order predators, not
enhancement of energy flow to apex consumers. Con-
sequently, the quantitative production enhancement
achieved by establishment of restored seagrass or salt-
marsh habitat may be expected to vary dramatically by
trophic level. Secondary producers, the herbivorous
and detritivorous marine benthic invertebrates, may
experience dramatically enhanced production through
energy subsidies in seagrass and salt-marsh habitat.
However, structural refuges provided by the emergent
plants and their subsurface roots may block high rates
of transfer of energy to their predators, the tertiary pro-
ducers (Coen et al. 1981, Peterson 1982). Integration of
these 2 processes of bottom-up enhancement of sec-
ondary production and provision of structural refuges
from predation could be achieved in restoration scal-
ing by appropriately modifying the ecological transfer
efficiency between the second and third trophic levels.
However, ecologists have not yet recognized this
contradiction in prevailing concepts of energy flow
through vegetated estuarine habitats and thus have
not provided estimates of how the refuge action modi-
fies these transfer efficiencies. Even when transfer effi-
ciencies can be confidently assigned to reflect refuge
functions, computation of the benefits of habitat
restoration will still vary between the second and third
trophic levels. Thus, application of the approach of
French McCay & Rowe (2003, in this Theme Section)
that synthesizes all ecosystem injuries and benefits
by conversion to a single trophic level would yield
different answers at different levels.

A related role of emergent structure in restored habi-
tats is also not adequately incorporated into present
energetics-based estimations of production benefits
from restoration. Energetics-based methods of compu-
tation combine knowledge of gains in primary produc-
tivity, trophic structure of subsequent energy flow, and
conversion efficiencies to compute the enhancement of
secondary or tertiary production (e.g. French McCay
& Rowe 2003, Kneib 2003). However, secondary and
tertiary production is also enhanced by mere provision
of structural habitat for species that do not feed on pri-
mary producers in that habitat. For example, the emer-
gent culms of Spartina alternifora baffle currents and
wave energy sufficiently to stabilize the sediment sur-
face and allow occupation by oysters. Those oysters
feed largely on microalgae, phytoplankton and benthic
diatoms (Haines & Montague 1979, Riera & Richard
1996, Page & Lastra 2003), and do not derive much
nutritional benefit from the vascular plants whose pro-
duction is directly enhanced by marsh-habitat restora-
tion. In addition, clumps of oysters provide habitat for
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mussels, barnacles, and other filter feeders energeti-
cally dependent to some large degree on phytoplank-
ton, which are not enhanced by the marsh. Conse-
quently, when enhancement of secondary production
through restoring salt marshes is estimated by tracking
the fate of the enhanced primary production in the
marsh, the mechanism of enhancement of secondary
production by habitat provision is not included.
Similarly, in seagrass-bed habitat, water currents are
baffled by emergent vegetation projecting into the
water column. This deceleration of flow induces depo-
sition of larvae of marine benthic invertebrates and
deposition of suspended organic food particles (Peter-
son et al. 1984, Eckman 1987, Wilson 1990). Thus, sec-
ondary production in restored seagrass beds is also
enhanced through physical effects of the provision of
habitat for organisms that are not fully, or in some
cases even partially, nourished by the enhanced pri-
mary production of that habitat. Like the salt marsh,
scaling calculations for the seagrass habitat that are
based solely upon bottom-up enhancement of produc-
tion would miss this contribution from provision of
structural habitat and thus underestimate ecosystem
benefits (see French McCay & Rowe 2003).

Successful enhancement of populations by restora-
tion efforts will also be shaped by food-web interac-
tions because secondary production in restored habi-
tats is dictated by size-dependent growth and survival
within the habitat, which depend on predator-prey
interactions (see Lipcius et al. in press b for examples
from population restoration using marine reserves).
The manner in which food web interactions will deter-
mine the size structure and abundance of individuals
within a restored habitat may be predictable to some
degree based on fundamental relationships between
the life-history features of the target species and the
geometry of the restored habitat (Walters 2000). As the
abundance of predators increases within a restored
habitat, the abundance of their major prey may de-
cline, which can result in trophic cascades that further
modify community structure. For instance, in popula-
tion restoration projects using marine reserves in New
Zealand, abundance and size of a predatory demersal
fish (sparid snapper Pagrus auratus) and spiny lobster
(palinurid lobster Jasus edwardsii) increased signifi-
cantly, which decreased abundance of an invertebrate
grazer (sea urchin Evechinus chloroticus), and sub-
sequently permitted re-establishment of vigorous kelp
forests dominated by the laminarian Ecklonia radiata
(Babcock et al. 1999). Changes in food-web and
trophic structure allow some species to increase, but
cause others (notably prey species) to decline, which
may lead to lower production and slower biomass
accumulation in restored habitats than expected. Simi-
larly, establishment of reserves in kelp beds led to sub-

stantial increases in the abundance of sea otters Enhy-
dra lutris, which subsequently reduced the abundance,
size and microhabitat use of the targeted restoration
species, red abalone Haliotis rufescens, even more
than fishery exploitation (Fanshawe et al. 2003). Vari-
ous features of restored habitats will interact with life-
history characteristics of target species to determine
restoration effectiveness, and these must be addressed
to increase the likelihood of restoration success.

Success of restoration projects will therefore depend,
in part, upon the incorporation of multispecies man-
agement approaches, based predominantly on food-
web dynamics (e.g. Pauly et al. 1998). For instance, in
coastal salt marshes, reductions in blue crab abun-
dance (Lipcius & Stockhausen 2002), partly through
heavy fishing pressure, may have allowed marsh snails
Littoraria irrorata to increase in abundance and subse-
quently injure salt marsh grasses through their feeding
activities, ultimately leading to reduction of the marsh
habitat (Silliman & Bertness 2002). If such an interac-
tion were strong in restored marshes, it could easily
retard or preclude recovery of the salt marsh and its
community. Hence, it is imperative to incorporate
an ecosystem-based approach in restoration ecology.
Admittedly, there is considerable debate over the reli-
ability of predictions about changes in the abundance
of target species derived from multispecies approaches
(Yodzis 2001). Thus, restoration ecology must incorpo-
rate multispecies approaches, preferably as testable
hypotheses to be evaluated during monitoring and, if
supported, acted upon through adaptive management
of the restoration.

Alternative stable states and shifting baselines in
populations and ecosystems. A significant potential
difficulty for restoration efforts arises from the possibil-
ity that populations and ecosystems may exhibit alter-
native stable states (Scheffer et al. 2001, Carpenter
2002). Given that many food webs and ecosystems
have undergone dramatic, historical alterations due to
both anthropogenic (e.g. overfishing and eutrophica-
tion: Jackson et al. 2001) and natural (hurricanes:
R. Lipcius & R. Seitz unpubl.) disturbances, it is pos-
sible that restoration attempts will fail to restore habi-
tats or communities to their ‘pristine’ state. Even when
there is agreement among restoration biologists on the
preferred state of a habitat or community, its composi-
tion, and its biomass structure, that habitat or commu-
nity may be unattainable due to the ‘stability’ of the
degraded ecosystem or distorted community (Scheffer
et al. 2001, Carpenter 2002). ‘Stability’ refers to the
situation wherein a disturbed or degraded ecosystem is
an ‘alternative stable state' (Scheffer et al. 2001, Car-
penter 2002), one not easily shifted back to the undis-
turbed state due to feedback mechanisms maintaining
the status quo. The characteristic of stability is not lim-
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ited to pristine systems; it is also a feature of disturbed
systems (Scheffer et al. 2001, Carpenter 2002), which
is one of the factors that may render restoration of
disturbed ecosystems difficult. Restoration biologists
should therefore consider the possibility that some
desired habitat or community configurations may not
be readily achievable, at least in the short term, with-
out massive intervention (Carpenter 2002). For in-
stance, the seaside lagoons of the Eastern Shore of
Chesapeake Bay harbored extensive seagrass beds
that supported a lucrative bay scallop fishery until the
Storm King hurricane of 1933 devastated the ecosys-
tem. The resultant turbid conditions have not only pre-
cluded restoration of seagrass beds, but also prevented
the re-establishment of a productive bay scallop fish-
ery in the seaside lagoons for over 6 decades (R. Lip-
cius & R. Seitz unpubl.). Alternative stable states of
ecosystems are a very real possibility in disturbed
ecosystems that must be considered in planning and
scaling restoration efforts.

In summary, the process of scaling restoration pro-
jects to compensate for natural resource injuries has
served to identify important unresolved questions that
may help direct new basic research in the science of
restoration ecology and promote partnerships between
habitat restoration and basic ecology.
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