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The Dynamics of Long-Term Mass Transport in Estuaries 

John M. Hamrick 

Virginia Institute of Marine Science 
The College of William and Mary 

Gloucester Point, VA 23062 

ABSTRACT 

The dynamics of long-term mass transport in estuaries having weakly 
nonlinear long wave dynamics are investigated. Low pass filtered 
long-term mass transport equations are derived for conditions of 
weak and strong vertical stratification. The dynamics of the 
residual mass transport velocity, or lowest order approximation to 
the Lagrangian residual velocity, are investigated by perturbation 
analyses of the hydrodynamics equations. For weak vertical 
stratification conditions, analytical results showing the influence 
of topography, the earth's rotation, and channel curvature on the 
distribution of the residual mass transport velocity field are 
presented. The calculation of the residual mass transport velocity 
field from field current meter measurements and numerical 
hydrodynamic model output is also discussed. 

I. Introduction 

It is now recognized that the management of estuarine resources necessitates the 
ability to predict and understand the transport and transformation of dissolved and 
suspended biogeochemical constituents over time periods on the order of several 
years. From the modeling point of view, the disparity between short time scale 
transport processes, associated with tides, for example, and the desired long-term 
evaluation of water quality, makes the integration of mass transport equations at 
the short time steps necessary to resolve short time scale transport processes 
unattractive. Likewise, from the point of view of achieving an understanding of the 
pathways of long-term mass transport in estuaries, a formulation and solution of the 
mass transport problem, which filters out short term advective and diffusive 
transport variations, while effectively retaining the correlations or interactions 
of short term variations is desirable. Both of these considerations have led to the 
formulation of time-averaged or filtered mass transport equations. 

Early attempts at formulating time-averaged or filtered long-term mass transport 
equations were primarily ad hoc in approach, and resulted in physically 
unjustifiable temporal subscale transport parameterization. Typically in these 
equations, the time-averaged concentration field is advectively transported by some 
type of time-averaged velocity field, with the nonzero averaged subscale advective 
transport completely ignored or unjustifiably parameterized as diffusive or 
dispersive transport depending upon the spatial dimensions of the equations. A 
recent example of this approach, starting from the three-dimensional advection-
diffusion equation in conservative form using a stretched vertical coordinate, used 
the Eulerian residual transport velocity field obtained from simple tidal cycle time 
averaging as the long-term advective transport velocity, (Hydroqual, 1987). 
Calibration to field data was relied upon to determine the magnitude of diffusion 
coefficients necessary to represent temporal subscale transport processes. An 
alternate approach to the formulation of time-averaged or filtered long-term mass 
transport equations has been the utilization of perturbation analyses of the three-
dimensional advection-diffusion equation for conditions under which the 
instantaneous advective transport field is dominated by a velocity field resulting 

Coastal and Estuarine Studies, Vol. 38 
R.T Cheng (Ed.) 
Residual Currents and Long-term Transport 
©Springer-Verlag Ne w York, Inc., 1990 

Copyright American Geophysical Union. Transferred from Springer-Verlag in June 1992. 



18 

from weakly nonlinear long wave motions, associated with tidal and/or atmospheric 
forcings. Using this approach, Feng et al. (1986) derived a two-dimensional in the 
horizontal, steady, time averaged mass transport equation from the unsteady depth 
averaged advection-dispersion equation. Depending upon the scaling of the 
horizontal shear dispersion terms, two equations were obtained. In an equation for 
strong shear dispersion transport, the advective transport field is the lowest order 
barotropic Lagrangian residual or residual mass transport velocity presented by 
Longuet-Higgins (1969). In an equation for weak shear dispersion transport, an 
additional next order correction, termed the Lagrangian drift velocity, is made to 
the advective transport field. Subsequently, Hamrick (1986a) derived an unsteady 
form of the equation of Feng et al., appropriate for strong shear dispersion from 
the three-dimensional advective-diffusion equation, and provided a rigorous 
definition of vertical stratification conditions for which the equation is 
appropriate. 

A three-dimensional, unsteady, expected value, long-term mass transport 
equation, appropriate for conditions of strong vertical stratification, was derived 
using the perturbation approach, by Hamrick (1987), with a similar steady time 
averaged equation presented by Feng (1987). In both of these equations, the 
advective transport field is the three-dimensional lowest order Lagrangian residual 
or residual mass transport velocity, and is consistent with the three-dimensional 
Eulerian-Lagrangian transformation presented by Longuet-Higgins (1969). The 
parameterization of vertical diffusive transport in Hamrick's (1987) and Feng's 
(1987) equations use respectively the expected value and time averaged values of the 
instantaneous vertical turbulent diffusion coefficient, while Hamrick's equation 
also includes horizontal turbulent diffusion parameterized in a similar fashion. 

Along a complementary line of investigation, beginning with Longuet-Higgins 
(1969), numerous researchers have recognized that the Lagrangian residual velocity 
field, and in particular its lowest order approximation termed the residual mass 
transport velocity field, is the appropriate representation of long-term advective 
mass transport in estuaries and coastal seas having weakly nonlinear long wave 
dynamics. The ability to predict and understand the long-term transport pathways in 
estuaries now becomes strongly dependent upon knowledge of the dynamics of the 
residual mass transport velocity which is composed of the Eulerian residual velocity 
and the Stokes drift velocity. Until the last decade, dynamic theories of residual 
circulation in estuaries have been dominated by the two-dimensional vertical plane 
density driven Eulerian residual circulation theory formalized by Hansen and Rattray 
(1965) and most recently extended by Hamrick (1979) and Oey (1984), and to a lesser 
extent the two-dimensional horizontal plane density driven Eulerian residual 
circulation theory proposed by Fischer (1972) and extended by Imberger (1976), 
Hamrick (1979) and Smith (1980). 

Over the last decade, the scope of study of residual circulation dynamics has 
expanded to consider Eulerian residual circulation induced by nonlinear interaction 
of long wave velocity and surface elevation fields, as well as the Stokes drift 
velocity field associated with the long wave motion. For two-dimensional motion in 
the vertical plane, Ianniello (1977, 1979) presented analytical solutions for the 
Eulerian residual velocity field, the Stokes drift velocity and the residual mass 
transport velocity for homogeneous density and a single constituent tidal forcing. 
Subsequently, Najarian et al. (1984) reported the results of a numerical study of 
the two dimensional geometry considered by Ianniello. Two-dimensional in the 
horizontal plane, tide induced Eulerian and Lagrangian residual circulation in 
estuaries has primarily been studied with the aid of numerical hydrodynamic models, 
with recent studies including Cheng and Casulli (1982), Oey et al. (1985), Feng et 
al. (1986), and Smith and Cheng (1987). In contrast, an extensive body of 
analytical results for two-dimensional in the horizontal plane Eulerian and 
Lagrangian residual circulation, associated with topographic influences on the 
nonlinear interaction of long wave velocity and surface elevation fields in coastal 
seas, exist with recent reviews given by Zimmerman (1981) and Robinson (1983). 

The purpose of the present paper is to present some results on the dynamics of 
long-term mass transport in estuaries. The paper is organized in the following 
manner. The hydrodynamic and mass transport equations in a scaled form consistent 
with weakly nonlinear long wave dynamics and suitable for perturbation analysis are 
presented. This is followed by a discussion of the relationship between temporal 
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filtering and the multiple time scale perturbation expansion to be used in the long-
term mass transport analysis. Some linearization considerations that are useful in 
subsequent analytical treatments and in understanding the scaling of the vertical 
turbulent viscosity and diffusion .coefficients are also presented. Filtered long-
term mass transport equations for weak and strong vertical stratification conditions 
are next presented as are the two-dimensional barotropic and the three-dimensional 
residual mass transport velocity fields. The paper concludes with an analysis of 
the dynamics of the residual mass transport velocity field, including the 
presentation of some analytical results for the two-dimensional barotropic field and 
a discussion of the general features of the three dimensional field. Methodologies 
for numerically determining the three-dimensional mass transport velocity and 
analyzing field current meter data are also presented. 

II. Hydrodynamic and Mass Transport Equations 

The scaled hydrodynamic and mass transport equations in a horizontal curvilinear 
orthogonal and vertically stretched coordinate system are: 

with being the square root of the diagonal components of the metric tensor, m the 
square^ root of the metric tensor determinant, u the components of the horizontal 
velocity vector, w the physical vertical velocity in the stretched vertical 
coordinate, 0 < z < 1, h the total water column depth, h the still water column 
depth, s the salinity, fi the volumetric expansion coefficient, and N and K 
vertical turbulent diffusion coefficients for momentum and mass. The scaling 
parameters are: F the long wave Froude number or ratio of free surface 
displacement, scale to still water depth scale, F^ the rotational Froude 
number, and F^ the densimetric long wave Froude number. It is noted that Eqs.(l-3) 
assume dimensionless form by setting f, g and to unity, while dimensional forms 
are obtained by setting the three scaling parameters to unity. 

Horizontal velocity has been scaled by FC, with C being the shallow water wave 
speed, (gh)1/2. Time and horizontal distance have been scaled by the long wave 
motion frequency, a? , and wave number A , with C — /A . The vertical turbulent S S c g 
viscosity, N , has been scaled by w h2, thus including Frictional effects at lowest 
order. TheV vertical turbulent Siffusivity, K , has been scaled by F€ u> h2. The 
exponent, c, is used to adjust the scaling to accommodate different vertical 
stratification conditions with a value of zero for weak vertical stratification and 
of two for strong vertical stratification. The rational for this variable scaling 
will be discussed further in a following section. The omitted terms of order h A 
in Eqs.(l) and (3) are the horizontal diffusive momentum and mass fluxes, assuming 
that the scale of the horizontal diffusion coefficients does not exceed > a 
conservatively large value. 

III. Scaling, Filtering and Linearization Considerations 

III.l Multiple time scaling and filtering 

For weakly nonlinear long wave dynamics, the long wave Froude number, F, is much 
less than unity, and may be taken as the small parameter in a regular perturbation 

2 

(1) 

(2) 

(3) 
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analysis of Eqs.(1-3). It is expedient to introduce a multiple time scale expansion 
of the time derivative, 

(4 ) 

which serves to isolate short-term variations in the fast time variable, t , from 
long-term variations in the slow time variable, t2" Correspondingly. the timg scale 
associated with long-term variations is F-2w-I, corresponding to weeks or months for 
long-term variability as opposed to hours or

S
days for short term variability. 

Previous derivations of long-term mass transport equations have utilized simple 
time averaging over the period of the long wave motion for single frequency motion 
(Feng � �. 1986), time averaging over the synodic period for deterministic 
multiple period long wave motion (Hamrick. 1987), and ensemble averaging for a 
continuous spectrum of mixed deterministic and random long wave motion, 
(Hamrick. 1987). A more general approach for the analysis of continuous time 
variation and discrete time variation, characteristic of both field data and 
numerical model output, is to employ a filtering operation rather than a time or 
ensemble average operation. 

The multiple time scale expansion of the time derivative, Eq.(4). applied to the 
salinity, for example, is equivalent to the time domain convolution operation 

(5) 

or the frequency domain multiplication operation 

where, * denotes convolution and, �, denotes the Fourier transform. The Fourier 
transforms of the derivative operators may be defined as 

, 
o { 

{ 

iw; 0 ::s Iwl ::S a::> (70) 

0; o ,; Iwl ,; 
(7b) 

iw; w < Iwl ,; � 
p 

iw; 0 ,; Iwl ,; wp 
(7c) 

0; w < Iwl ,; 
p 

with w defining the intermediate frequency scale satisfying, F2w
s

< w < w .  A low 
pass f� lter operator is now defined in the time domain by 

p s 

* 

<s> = if! s (8 ) 

with the Fourier transformation of the filtering operation defined theoretically by 
the ideal frequency domain filter response function 

• � 
p 

, { 1; 0 ,; Iwl ,; w 

0; w ,; Iwl ,; � 
p 

where w is now identified as the upper limit of the filter pass band. 
filter Eperation is applied to the time derivative, the result is 

(9) 

When the 

<8ts> - F28t <s> (10) 
, 

representing the slow or long-term variation of low pass filtered salinity. For 
application to digital processing of discrete data, the ideal filter, Eq.(9) is 
replaced with a filter tapered about the frequency w

p
' 

The choice of w , the upper limit of the filter is related to the dynamics of 
the situation of Pinterest. For weakly nonlinear wave motion, the lowest order 
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motion at order F° should not pass through the filter. The next order motions at 
order F1 represent nonlinear corrections including higher harmonics and higher 
frequency compounds and steady and lower frequency compounds. It is these steady 
and lower frequency compound components and the slowly varying density and 
atmospheric forced motions, also presumed of order F1, that are the residual 
circulation and must pass through the low pass filter, thus determining 

III.2 Vertical diffusivity scaling and linearization 

In this section linearizations of the vertical diffusive fluxes of momentum and 
mass are presented, which are useful in subsequent analytical solution procedures 
and provide insight into the scaling of the momentum and mass diffusion 
coefficients. Beginning with the vertical momentum flux, the vertical boundary 
conditions are 

N 
r~~ d u - t. - c, I u „ I u ; z - z. (11a) h z at ba b1 a' b v 1 

N 
r 2 d u - r ; z = 1 (lib) n z a set v ' 

1 / 2 K 
V - Z T T ~ • <12> 

o 
where r ^ and are the bottom and free surface kinematic stresses respectively 
and c^ is the bottom friction coefficient, which depends on z, , the height above the 
bottom boundary at which the boundary condition is applied, ~ , 
height, and the von Karman constant, k. It is noted that as z, approaches zero, the 
friction coefficient c^ approaches infinity and the bottom boundary condition 
becomes the no slip condition. For stratified turbulent estuarine flow a simple, 
but realistic, relationship for the vertical turbulent viscosity or momentum 
diffusivity is 

i f ~ SN ("h~>2 K V ' <13> 
where S^ is a Richardson number dependent stability function such as that given by 
Mellor and Yamada (1982), and A is the mixing length. 

The bottom boundary condition, Eq.(ll) and the form of N given by Eq.(13) are 
strongly nonlinear, in both temporal and spatial dependence. For analytical 
solution of Eq.(l), a constant momentum diffusivity is defined by 

N 
if - % <14> 

where qN has dimensions of velocity. This allows a linearized bottom boundary 
condition 

qXT3 u - r, - 7qx,u at z - 0 (15) nN z a Da ,nN a v 7 

n z + z 
1 - (z + z ) In (— fi)f (16) 
' o 

where 7 is a slip coefficient chosen such that the constant diffusivity velocity 
profile matches the logarithmic profile at a height z . Requiring that the depth 
integrated, low pass filtered, turbulent energy production by vertical shear be 
equivalent between the nonlinear and linearized formulations gives 

< c b |yz b)|3 + J 1 SN |5 zu^l 3 d z > 

7 1^(0)12 + J 1 |azu^|2 dz 
(17) 
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allowing the magnitude of qN to be determined such that bulk energy conservation is 
insured. 

The preceeding results can be used to support the scaling of the vertical 
turbulent diffusivity, N . In essence the scaling of N is chosen consistent with 
the scaling of the vertical momentum flux whose scaling is in turn set by the bottom 
boundary stress. This is immediately evident from Eqs.(14) and (15), which indicate 
that N scales as v 

c c 
N = q h = — u = — FC (18) vs nNs s 7 s 7 

in the limit of no vertical shear. At tidal forcing frequencies and for 
representative matching and roughness heights the scale given by Eq.(18) is 
consistent with the scale u> h2 . 

s s 
For the vertical salinity flux, the boundary conditions are 

K r ^ d s = 0 ; z = 0, 1 (19) n z 
where the vertical turbulent mass diffusivity, Kv, is given by 

i r -  s k <£> 2 K V < 20> 
with S^ being a Richardson number dependent stability function. For analytical 
solution of Eq.(3), a constant mass diffusivity is defined by 

!r -  %  < 21> 
where q^ has units of velocity. Requiring that the depth integrated, low pass 
filtered, turbulent energy production by the vertical buoyancy or salinity flux be 
equivalent between the nonlinear and linearized formulations gives 

JC Q S k P 2 l ^ l ( - * z S > d 2 > 
<s(l) - s(0)> ' K } 

which allows the magnitude of q^ to be determined such that bulk energy conservation 
is insured. 

The results represented by Eq.(22) can now be used to justify the variable 
scale, F w h2, introduced for the vertical turbulent mass diffusivity, K . For weak 
vertical stratification € was chosen as unity with K being scaled by w K2, the same 
scale used for the vertical turbulent viscosity. The limiting case of weak vertical 
stratification is vertical homogeniety for which Eq.(22) fails to define qN< Thus, 
for weak vertical stratification the scale for K can be chosen consistent with the 
scale for N based on similarity of mass and momentum diffusion in homogeneous flow. 
The limiting case of strong stratification is a two layer system with sufficient 
interfacial stability as to eliminate diffusive mass flux across the interface, with 
(22) giving q„ equal to zero, however, a finite but very small scale for K^ is 
necessary in the strong stratification case. To meet this condition, e is chosen as 
two, giving a scale of F2 u> h2, which serves to include vertical diffusive transport 
in the long-term mass transport equation for strong stratification. 

IV. Filtered Long-term Mass Transport Equations 

IV.1 Weak vertical stratification equation 

For weak vertical stratification conditions, Eq.(3) in conservative form 
incorporating Eq.(4), is 

< \ + F 2 * t 2 > < h s > + m V ^ h V > 

+ Fd (ws) - £ a ( K a s ) + 0(h A ) - 0 (23) z n z v z s s 



with the boundary conditions 
K v � 8zs - 0 ; z - 0, 1. 

The order FO approximation to Eq.(23) is 
_ 2 

Btoso - ho 8z<Kv8zs0) - 0 

23 

(24) 

(25) 

with the zero flux boundary conditions given by Eq.(24). For arbitrary temporal and 
spatial distribution of K and an arbitrary initial condition, the solution for s 
will exponentially decay onva time scale of b2/K , asymptotically approaching itg 
vertically averaged, t time domain filtered ?al�e, <8 >, where, -, demotes the depth 
average over 0 S z � 1� Without loss of generality <so> may be replaced by <5>, the 
slowly or long-term varying filtered depth avergged salinity for which a mass 
transport equation is sought. 

The asymptotic order F approximation to Eq.(23) is, in nooconservative form, 

�2az(KvazSl) - 0 
o 

(26) 

subject to the no flux boundary condition, Eq.(24). Integrating Eq.(26) over the 
depth gives: 

_ 
uJ2.Q _ 

BtoSI + mpBp<s> o , 

which may be integrated to give 

(27) 

(28) 

where � is the barotrop!c displacement. For SI' given by Eq.(28) to be bounded in 
the t P time domain, u , the order FO barotropic or external mode ho�izontal 
veloci�y cannot pass the �8w pass_filter! <u� > - 0, whic� also results in <SI> - 0, 
consistent with the assumption <s > = <s>. ��his allows u A to be identified as the 
higher frequency barotropic or ext�rnal velocity field ass2ciated with tidal and 
strong higher frequency atmospheric forcings. The salinity field, SI' simply 
represents the advection of the long-term varying salinity field, <5>, by the short
term varying velocity field upo. 

Subtracting Eq.(27) from Eq.(26) gives 

(29) 

the equation governing the order F vertical salinity variation or stratification. 
It is noted the vertical shear or internal mode velocity field, uR ' may include a 
long-term or slowly varying portion resulting in a slowly vgrying vertical 
stratification governed by 

<u�> _ 1 
mp 8p<s> - h�Bz<KvBzSl> - 0. (30) 

Hamrick (1986b), presented analytic solutions of Eqs.(29) and (30), for constant K
v

. 

The depth integrated, low pass filtered, order F2 approximation to Eq.(23), in 
conservative form, is, 

The third divergence term in Eq.(3l) may be rewritten using the solution for SI' 
Eq.(28), to give 
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3 (®-h <u s,>) = 3 [ - 2 1— e QdQ (h A )] (32) arm o ao 1 7 a Lmm / 1afljS oz / J 
a aft 

ft 
Az - <u10Jo° u20dto> (33) 

where h A is the vertical component of a vector potential. The fourth divergence 
term in 6q?(31) represents shear dispersion and may be written as 

<u' s[> - - d <-> (34) ao 1 mp fi 

with <D „> being the low pass filtered generalization of the ensemble averaged shear 
dispersion coefficient tensor given by Hamrick (1986b). 

It is useful to express Eq.(31) in expanded form using conventional notation, 
the results being 

m m h 3. <s> + 3 (m h uT<s>) + 3 (m h vT<s>) x y o t 2 x x y o L ' y x y o L 
m 

- 3 h <D >3 <s> + h <D >3 <s>) (35) x mx o xx x o xy y 
m 

- 3 (h <D >3 <s> + — h <D >3 <s>) - 0, y o yx x niy o yy y ' 

the filtered long-term mass transport equation for weak vertical stratification. The 
advective transport field, (u^,v^) is given by 

hxu n 
u, - <ux> + <-r_2> + u — d ( h A ) (36) J-. 1 h h m y o z o o y J 

hxv -
v_ - <vx> + - 7T—3 (h A ) (37) L 1 h h m x v o z / 

o o x 
rt 

A - <u ° v dt >, (38) z o Jo o o 

which is identified as the lowest order approximation to the barotropic Lagrangian 
residual velocity (Longuet-Higgins, 1969), and may be appropriately termed the 
barotropic residual mass transport velocity. The residual mass transport velocity, 
(UL,VL) s u m t*ie Eulerian residual velocity, (<u1>,<v1>) , and the Stokes 
drift velocity. The Stokes drift velocity may be further divided into the wave 
transport velocity, (<hxu >/h ,<hxv >/h ), since hx is the long wave surface 
displacement, and the vector potential transport velocity, the last terms in 
Eqs.(38) and (39). 

The Eulerian residual velocity and the wave transport velocity may be combined 
to form the barotropic Eulerian residual transport velocity which satisfies the 
depth averaged, low pass filtered, order F approximation of the continuity equation, 
Eq.(2). In addition, the residual mass transport velocity satisfies the zero 
divergence condition 

3 (m h u. ) + 3 (m h vT) = 0. (39) xv y oH/ yv x o L7 

The weak stratification, long-term mass transport model is completed by noting that 
Eq.(30) may be used to determine the slowly or long-term varying vertical 
stratification, <s1>, after Eq.(35) has been used to determine the depth 
averaged,filtered salinity, <s>. Analytic solutions of Eq.(30) may be obtained 
using a constant vertical diffusion coefficient defined by Eqs.(21) and (22). 

IV.2 Strong vertical stratification equation 

For strong vertical stratification conditions, Eq.(3) in conservative form 
incorporating Eq.(4), is 
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(S + F2a )(hs) + h <|j- hu s) tQ t2 m £ mp P 

+ F5z(ws) - { f W z 1 0 + ° < V s > " ° ( 4 0 ) 

with the boundary conditions given by Eq.(24). The order F° approximation to 
Eq.(40) has the solution, s - <s >, and without loss of generality,s - <s>, the 
low pass filtered salinity. ¥he orcter F, nonconservative approximation °to Eq.(40) 
is u w 

at s i + £ afi<a> + f - a z < s > - <41> O o 
which may be integrated to give 

Si - sx(t -0) - f ° u. dt da<s> • f ° w dt J- 3 <s> o o Bo o mQ B o o o h z 
P o 

«i - si(t0-o> . € 1- a <s> - f o i- az<s> (42) 
P o 

with and C being the horizontal and vertical displacements. For sx to be 
bounded in tne tQ time domain, the order F velocity field cannot pass the low pass 
filter. The order F velocity field may be identified as the higher frequency three 
dimensional velocity field associated with tidal and strong higher frequency 
atmospheric forcings. 

The low pass filtered, order F2 approximation to Eq.(40), in conservative form 
i s , 

1 m l U 
h a <s> + — a [— h (<u1Xs> + < - T — < S > + <u s,>)] o t 2 m a m o 1 h o 1 J 

z a o 
+ a z(< W lxs> + <WqSi>) - ~ az(<Kv>az<s>) - o. (43) 

o 
The third horizontal divergence term, and the second vertical divergence term may be 
rewritten, using the solution for sx given by Eq.(42), to give 

a (—h <u s,>) = a [ -JL—e 0d0(h B ) - — e „a B A (44) a m o o 1 aL m m_ ap /3V o zJ m aB z B1 K J 

a a p a ^ r 

d <w s,> = a e Qd (m^B^)1 (45) z o 1 zLm a/3 av fi /T1 

- <u20 { \dt0>> B 2 - < Wo I ° ui0dt
o
>» B3 = <u10 | t ou 2 0dt o> (46) 

where B„ and Bz are the horizontal and vertical components, respectively, of a 
vector potential. 

Expressing Eq.(43) in expanded form gives 

h a_ <s> + — — a (m h uT<s>) + — — a (m h vT<s>) o t 2 m m x y o L 7 m m y v x o L ' * x y J x y J 

+ az(wL<s>) - J- a z«K v> az<s>) = o , (47) 
o 

the filtered long-term mass transport equation for strong vertical stratification. 
The advective transport field is given by 

hxu 1 -
uT - <u,> + <~T~> + r a (h B ) - z~d B (48a) L 1 h h m y v o z / h z y v / 

o o y J o J 

hiv i i vT - <vx> + <-T-2> + r~a B - 7f—a (h B ) (48b) L A h h z x h m x o z x 7 
o o o y 

wT - <Wi> + 0 + — — a (m B ) - — a (m B ) (48c) L 1 m m xv y y7 m m yv x x7 v 7 
x y J J x y J 
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rt 
B X - <v o J ° 

J o 
rt 

w dt > o o (49a) 

B 
y - <w o J 

J o 
rt 

u dt > o o (49b) 

B z = <u o J J o v dt > , o o (49c) 

which is identified as the lowest order approximation to the three-dimensional 
Lagrangian residual velocity, and may be appropriately termed the three-dimensional 
residual mass transport velocity. The residual mass transport velocity, (uL,v ,w^) 
is the sum of the Eulerian residual velocity, (<u1>,<v1>,<w1>), and the tfiree-
dimensional Stokes drift velocity. The Stokes drift velocity may be further divided 
into the horizontal wave transport velocity, ( ^ ^ ^ / h ,<h1vo>/hQ,0) and the vector 
potential transport velocity. The vector potential transport velocity is composed 
of the terms in Eq.(48), which involve (B ,B ,B ), the components of the vector 
potential B and is equivalent to curl B sine? h^ is equivalent to m^. 

The Eulerian residual velocity and the horizontal wave transport velocity may be 
combined to form the Eulerian residual transport velocity which satisfies the low 
pass filtered, order F approximation of the continuity equation, Eq.(2). In 
addition, the residual mass transport velocity satisfies the zero divergence 
condition 

d (m h u_) + d (m h v ) + d w = 0 , (50) x y o L y x o L z L 
which allows the long-term mass transport equation, Eq.(47), to alternately be 
written in nonconservative form. 

The parameterization of the vertical diffusive salinity transport in the long-
term mass transport equation, Eq.(47), using the low-pass filtered vertical 
diffusivity requires some elaboration. If the lowest order and most significant 
contribution to the velocity field is a single dominant frequency tidal forcing, 
Eq.(20), indicates that the temporal structure of K will involve steady and second 
harmonic of the dominant frequency components. For this simple forcing, the lowest 
order salinity will be steady in time, while Eq.(42), indicates that the next order 
salinity will be oscillatory at the dominant frequency. Thus, it is readily shown 
that for these temporal structures of the vertical diffusivity and salinity, the low 
pass filter of the vertical salinity flux gives the parameterization in the filtered 
long-term mass transport equation, Eq.(47). 

V. Dynamics of the Residual Mass Transport Velocity Field 

A definitive analysis of the dynamics of the residual mass transport velocity 
field, for either weak or strong vertical stratification conditions, for a prototype 
estuary would require numerical integration of the hydrodynamic and mass transport 
equations and subsequent manipulation and filtering of the output. An alternative 
approach is to rigorously analyze the hydrodynamic equations using the perturbation 
techniques employed in deriving the two filtered long-term mass transport equations 
in the preceeding section, with an objective of gaining insight into the significant 
dynamic influences. 

V. 1 Weak vertical stratification analysis 

The major simplification to the hydrodynamic equations, Eqs.(l) and (2), for the 
condition of weak vertical stratification results from the vertical uniformity and 
short-term temporal independence of the order F salinity. For weak vertical 
stratification conditions, the order F approximations to the momentum and 
continuity equations, Eqs.(l) and (2), are: 
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(52) 

where for the present, the order of FIFO is unspecified. Eqs.(51) and (52) may be 
integrated over the depth to give equations governing the external or barotropic 
mode. The presence of the slowly or long· term varying salinity gradient in the 
momentum equations is in conflict with the requirement that the order FO barotropic 
or external velocity field not pass the low pass filter. Since the order of FIFO is 
in general intermediate between FO and Fl, it is reasonable to rescale the 
barotropic portion of the horizontal salinity gradient forcing and the portion of 
the bottom boundary stress associated with it to order F. The resulting external 
equations are: 

g La h m Q ' Q 
- 0 . 

(52) 

(54) 

Before continuing with the analysis of the external equations, it is necessary to 
consider the internal or shear and baroclinic mode equations and the specification 
of the bottom boundary stress. 

The internal or shear and baroclinic mode equations are obtained by subtracting 
the depth integrals of Eqs.(51) and (52) from the original equations, the results 
being 
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(55) 

(56) 

The baroclinic portion of the horizontal salinity gradient forcing has been retained 
at this order such that the strong vertical shear associated with it might be 
incorporated into the shear dispersion transport in the long-term mass transport 
equation. Hamrick (1986b) has presented analytical solutions to Eq.(55) for a 
constant vertical turbulent viscosity, Nv' and with the horizontal velocity 
represented as 

u' + QO 
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Using Nv given by Eqs.(14) and (17), the solutions for no surface stress are: 

<u' > QO 
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where the r's are functions of z given by 
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The r coefficients are functions of a, c and the bottom slip parameter, 7 . They are 
determined by requiring that r^ satisfy Eq.(15), which in turn defines the Fourier 
transform of the bottom boundary stress as 

Tb«o - - W ) q N V (63) 
where is the Fourier transform of the external or barotropic mode horizontal 
velocity. 

The external or depth mean order F° hydrodynamic problem may now be analyzed by 
Fourier transforming Eqs.(53) and (54) and using Eq.(63), to give 

[ V l a * r i ? > " VFR f + iT >1 V a
a*> ' 0 (64) 
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for the case of no surface stress. These equations may be combined into a single 
elliptic equation for the Fourier transform of the free surface displacement, 
The elliptic equation may be solved numerically for realistic bottom topography and 
shoreline geometry, however, analytical solutions of the two-dimensional problem 
with variable bottom topography are difficult, if not impossible to obtain. To gain 
some general insight into the role of topography, channel curvature and the earth's 
rotation in determining the external barotropic flow dynamics, and ultimately the 
residual mass transport velocity dynamics, Eqs.(64) and (65) can be solved by 
perturbation techniques for slight variations in topography, slight channel 
curvature and a narrow channel width resulting in a weak geostrophic effect. 

Rescaling the lateral horizontal coordinate, x2 - y, and the lateral velocity, 
u20 = v , by a small parameter 8 such that the channel width is of order and 
representing the topography and channel curvature by 

m = 1 - 5 jj I (66) x c R b 
my = 1 (67) 

h = h + 5, h0, (68> o 00 h 01 
where y is zero along the channel centerline whose radius of curvature R varies with 
x along the channel. The spatially averaged still water depth is hQQ while h 1 
represents a slight lateral, y, variation having zero mean when averaged across tne 
constant channel width, b. The solutions of Eqs.(64) and (65) to lowest order in 
the perturbation parameters, in dimensional form are: 
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where Doa and H10 are the solutions of 
(iw+v) Doo + g8xH10 = 0 
iwH10 + 8x(hooUoo) = 0 

(70) 

(71) 

(72) 

(73) 
(74) 

the equations for a constant depth, straight, nonrotating channel. Eqs.{69-71) 
capture the essential dynamic influences of lateral topography, channel curvature 
and the earth's rotation. As indicated by the solutions, the longitudinal velocity 
distribution across the channel is influenced by all three effects, while the 
lateral velocity results only from topography and curvature, and the lateral 
variation of the free surface displacement is associated only with the geostrophic 
effect. 

To continue with the analysis, the order F hydrodynamic equations must be solved 
for the barotropic Eulerian residual horizontal velocity, <u 1>. For shallow depth 
and strong turbulence as represented by a large value of q � N_�, the parameters a 
and e defined by Eqs.(61) and (62) are small, indicating t�at t�e magnitude of the 
internal modes are small relative to the external, thus allowing the vertical 
integrals of quadratic products of the shear modes to be at lowest approximation 
neglected. Since the barotropic portion of the order F/F2 horizontal salinity 
gradient forcing and its associated contribution to the bottom Roundary stress have 
been rescaled to this order, it is reasonable to neglect higher order F2/FO 
horizontal salinity gradient forcings. The resulting set of filtered equations for 
the order F barotropic Eulerian residual velocity are: 
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The most promising solution strategy for Eqs.(7S) and (76) 
between the components of Eq.(7S) forming a vorticity equation, 
Eulerian residual transport stream function defined by 

is to eliminate <h2> 
and introduce the 
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The solution of the resulting equation for, < l/J >, readily allows c 
Eulerian residual transport velocity. 
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The equation for the Eulerian residual transport stream function was solved by 
perturbation methods for the narrow channel rescaling and the slight channel 
curvature and topography conditions specified by Eqs.(66-68). The longitudinal 
salinity gradient was also assumed independent of lateral position. Making use of 
the solutions of the order F baratropic problem, Eqs.(69-71), the longitudinal, x, 
component of the Eulerian residual transport velocity is in dimensional form 
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The above results show the important influences of topography, channel curvature and 
the earth's rotation on the Eulerian residual transport velocity. The fresh water 
river discharge and longitudinal salinity gradient driven portions are stronger in 
the seaward and landward directions, respectively in deeper regions of the lateral 
transect. Curvature serves to intensify the seaward river discharge toward the 
inner bank of a curved section. The geos trophic influence on the tidal 
rectification induced portion results in landward transport to the right side facing 
landward. The topographic influence of the tidal rectified portion is not 
immediately apparent. 

The barotropic residual mass transport velocity, u^, defined by Eqs.(36-38), may 
now be obtained by adding the vector potential transport velocity. The longitudinal 
vector potential transport velocity, evaluated using Eqs.(69) and (70) is 

~ 3 (h A ) = — Re A 0*"'" + -Re f ""^'"l — (79) h y o z R R e ( h }b + 2 (iw+i/) h 1 h ( 7 9 ) 
o J oo oo OO 

Combining Eqs.(78) and (79) gives the longitudinal barotropic residual mass 
transport velocity, 

-Qf h01 h a h01 
"L - bh- ( 1 + — + I b> - efr ̂ 0(l-2r,)8x<B> (JJ-) oo oo oo 

3_ , i„ Hi*®oo>i + b / U H - X 
- 2 R e ( W ~ h > — + S(h >b 

oo oo oo 
_ fb lUool2 3a>2 | ^ | 2

 2 2 gh + o)2+i/2 h ; b ° oo oo 
in dimensional form. Eq.(79) indicates that the residual vector potential transport 
velocity is influenced by topography and curvature as would be expected from the 
results for the lateral order F barotropic velocity, Eq.(70). Combining the 
residual vector potential transport velocity with the Eulerian residual transport 
velocity to form the residual mass transport velocity results in modifying the 
topographic influenced portion of tidal rectification component and adding a 
curvature influenced portion. For the topographic influenced portion in the limit 
of small friction, the real operator produces a negative quantity for a simple 
landward propagating wave, thus the transport velocity is seaward in shallower 
regions. The real operator in the curvature influenced portion also produced a 
negative quantity resulting in seaward transport toward the inner bank of a curving 
channel. 

V.2 Strong vertical stratification analysis 

For the case of strong vertical stratification, the constraint that the order F° 
three-dimensional velocity not pass the low pass filter requires that the salinity 



31 

gradient forcing terms in Eq.(l) not enter until order F, which is readily 
accomplished by specifying F~ to be of order unity. The order F approximations to 
Eqs.(l) and (2) are identical to Eq.(51), with the salinity gradient term absent and 
Eq.(52). The internal shear mode solutions to the horizontal momentum equations are 
given by Eq.(59), while for slight topography and curvature, and a narrow channel 
width the external or barotropic solutions, Eqs.(69-71), are also applicable. Thus, 
the condition of strong vertical stratification does not modify the order F tidal 
driven long wave motion. For the functions, T, given by Eq.(60), very slowing 
varying with horizontal position, the Fourier transform of the vertical velocity is 

wo - Jz[ -iaKr^ + r2r2)H1+ ( r ir 2 - r2r1)h(nzo 

V u 
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where 0 is the Fourier transform of the order F° barotropic vorticity. Since the 
interna?0 shear modes of the horizontal velocity exhibit cos(nTrz) modal structure, 
the corresponding modes of the vertical velocity exhibit sin(nTrz) structure, which 
satisfies the boundary conditions on w in the stretched vertical coordinate 
exactly. 

The analysis for strong vertical stratification could continue by presenting the 
order F1 filtered approximations to Eqs.(l) and (2), which govern the three-
dimensional Eulerian residual velocity field. However, such a lengthy exercise is 
beyond the scope of this work, and instead only the solution strategy will be 
briefly discussed, before moving to a qualitative discussion of the three-
dimensional residual mass transport velocity field. Since the order F internal 
solutions, Eqs. (59) and (81) are in a modal or spectral form with cosine and sine 
basis functions, the order F, filtered approximations to Eqs.(l) and (2) can be 
readily expanded in the same basis functions, for the three dimensional Eulerian 
residual transport velocity. The salinity would be expanded in the cosine functions 
as would the filtered long-term mass transport equation, Eq.(47). Semi-analytical 
solutions may then be possible for low order expansions while numerical solutions 
would be necessary for higher order expansions. For situations where, F^, the 
densimetrie long wave Froude number is less than unity, the salinity gradient 
driving force will likely be dominant in determining the vertical structure, while 
geostrophic, topographic and curvature influences will make significant 
contributions to the horizontal structure. 

The general features of the three-dimensional vector potential transport 
velocity field may be briefly discussed at this point. The longitudinal component, 
from Eq.(48), is 

u = rr—3 (h B ) - J-3 B (82) v p h m y o z h z y r o y J o J 

with B and B given by Eq.(49). Expressing the Fourier transforms of the order F° 
three-SimensiXnal velocity field using cosine and sine basis modal forms allows B 
and B to be written as 
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It is readily seen that B has a barotropic component equivalent to A given by 
Eq.(38). The behavior of this barotropic component will likely dominate B and the 
single series contribution will dominate the double series contribution, fhus a low 
order approximation of the portion of u associated with the lateral gradient of B 
will be strongly influenced by topogrSphy and dominated by a barotropic component 
followed next by a two layer shear mode. 

The vertical structure of B will be dominated by the lowest mode of the single 
series which when differentiated^with respect to z in forming its contribution to 
u in Eq.(82) will result in a two layer structure. Using W given by Eq.(81), 
tnis two layer structure will likely have landward flow near the surface in 
opposition to the classical salinity gradient driven flow. 

The four temporal representations of B and B in Eqs. (83) and (84) and a 
similar expression for B suggest how thl filtering operations necessary to obtain 
these quantities might be carried out. For current meter records or numerical 
hydrodynamic model output, the three-dimensional velocity time series are fast 
Fourier transformed and filtered in the frequency domain, which is equivalent to 
setting, for example U , equal to zero over the band, . |u>| < u> . The time 
integration is also performed in the frequency domain by dividing the ^transformed 
quantities by ia>. The multiplication of the two transform representations is best 
done after inverting each filtered and time integrated series back to the time 
domain. The final series is again fast Fourier transformed, filtered in the 
frequency domain and inverted to give slowly or long-term varying series for the 
vector potential components. The same procedure can be applied to determine the 
Eulerian residual and wave transport velocities. For values of quantities at 
discrete spatial points, local linear basis functions are the natural spatial 
representations, with spatial gradients determined by finite difference 
differentiation. 

VI. Summary and Conclusion 

An approach for analyzing the dynamics of long-term mass transport in estuaries 
has been presented. The primary results are a pair of filtered long-term mass 
transport equations for conditions of weak and strong vertical stratification and 
weakly nonlinear long wave dynamics. The advective transport field in these 
equations has been shown to be the two and three-dimensional lowest order 
approximations to the Lagrangian residual velocity field, termed the residual mass 
transport velocity field. Analytical solutions were presented for the internal 
shear and baroclinic mode and external barotropic mode order F velocity fields. 
These results were used to obtain an analytical solution for the weak stratification 
case, two-dimensional barotropic residual mass transport velocity showing the 
influences of topography, channel curvature and the earth's rotation. The dynamics 
of the three-dimensional residual mass transport velocity were discussed in a 
qualitative manner. A filtering procedure for analyzing current meter measurements 
and numerical hydrodynamic model output to determine the residual mass transport 
velocity was also presented. 

Acknowledgement 

Contribution number 1558 from the Virginia Institute of Marine Science, The 
College of William and Mary, Gloucester Point, VA. 

VII. References 

Cheng, R. T., and V. Casulli, 1982: On Lagrangian residual currents with 
applications in South San Francisco Bay, Ca. Water Resour. Res.. 18, 1652-1662. 

Feng, S., R. T. Cheng, and P. Xi, 1986: On tide induced Lagrangian residual current 
and residual transport. Part 2. Water Resour. Res.. 22, 1635-1646. 

Feng S., 1987: A three-dimensional weakly nonlinear model of tide-induced Lagrangian 
residual current and mass transport, with an application to the Bohai Sea, in 



33 

J.C. Nihoul and P. M. Jamart, (eds). Three-Dimensional Models of Marine and 
Estuarine Dynamics. Elsevier, Amsterdam. 

Fischer, H. B., 1972: Mass transport mechanisms in partially stratified estuaries. 
J. Fluid Mech.. 53, 671-687. 

Hamrick, J. M., 1979: Salinity intrusion and gravitational circulation in partially 
stratified estuaries. PhD dissertation. University of California, Berkeley. 

Hamrick, J. M., 1986a: Subtidal circulation and transport in estuaries. In 
Advancements in Aerodynamics, Fluid Mechanics and Hydraulics. American Society 
of Civil Engineers. New York. 

Hamrick. J. M., 1986b: Long-term dispersion in unsteady skewed free surface flow. 
Estuarine. Coastal and Shelf Sci.. 23, 807-845. 

Hamrick, J. M., 1987: Time averaged estuarine mass transport equations, in 
Proceeding of the National Conference on hydraulic Engineering, American Society 
if Civil Engineers, New York. 

Hansen, D. V. and M. Rattray, Jr., 1965: Gravitational circulation in straits and 
estuaries. J. of Marine Res.. 23, 104-122. 

Hydroqual, Inc., 1987: A steady state coupled hydrodynamic, water quality model of 
the eutrophication and anoxia process in Chesapeake Bay. 

Ianniello, J. P., 1977: Tidally induced residual currents in estuaries of constant 
breadth and depth. J. Mar. Res.. 35, 755-786. 

Ianniello, J. P., 1979: Tidally induced residual currents in estuaries of variable 
breadth and depth. J. Phvs. Oceanogr.. 9. 962-974. 

Imberger, J., 1976: Dynamics of a longitudinally stratified estuary, in Proceeding 
15th Int. Conf. on Coastal Engr. 

Longuet-Higgins, M. S., 1969: On the transport of mass by time-varying ocean 
currents. Deep-Sea Res.. 16, 431-447. 

Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model for 
geophysical fluid problems. Rev.Geophys.. 20, 851-875. 

Najarian, T. 0., D. -P. Wang, and P. -S. Huang, 1984: Lagrangian transport model for 
estuaries. J. Waterways. Port. Coastal and Ocean Engr.. 110, 321-333. 

Oey, L. -Y., 1984: On steady salinity distribution and circulation in partially 
mixed and well mixed estuaries. J. Phvs.Oceanogr.. 14, 629-645. 

Oey, L. -Y., G. L. Mellor, and R. I. Hires, 1985: Tidal modeling of the Hudson-
Raritan estuary. -Estuarine. Coastal and Shelf Sci.. 20, 511-527. 

Robinson, I. S., 1983: Tidally induced residual flows, in B. Johns (ed), Physical 
Oceanography of Coastal and Shelf Seas, Elsevier, Amsterdam. 

Smith, L. H. and R. T. Cheng, 1987: Tidal and tidally averaged circulation 
characteristics of Suisun Bay, CA. Water Resour. Res.. 23, 143-155. 

Smith, R., 1980: Buoyancy effects upon longitudinal dispersion in wide well-mixed 
estuaries. Philos. Trans. R. Soc. London, A 296, 467-496. 

Zimmerman, J. T. F., 1981: Dynamics, diffusion and geomorphological significance of 
tidal residual eddies. Nature, 290, 549-555. 


	The Dynamics of Long-Term Mass Transport in Estuaries
	Recommended Citation

	The Dynamics of Long-Term Mass Transport in Estuaries

