B-s -> D(s)l nu form factors and the fragmentation fraction ratio f(s)/f(d)

Christopher J. Monahan

Heechang Na

Chris M. Bouchard
College of William and Mary, chris.bouchard@glasgow.ac.uk

G. Peter Lepage

Junko Shigemitsu

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation
Monahan, Christopher J.; Na, Heechang; Bouchard, Chris M.; Lepage, G. Peter; and Shigemitsu, Junko, B-s -> D(s)l nu form factors and the fragmentation fraction ratio f(s)/f(d) (2017). PHYSICAL REVIEW D, 95(11). 10.1103/PhysRevD.95.114506

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
B_{s} \rightarrow D_{s} \ell \nu form factors and the fragmentation fraction ratio f_{s}/f_{d}

Christopher J. Monahan, Heechang Na, Chris M. Bouchard, G. Peter Lepage, and Junko Shigemitsu (HPQCD Collaboration)

Phys. Rev. D 95, 114506 — Published 16 June 2017

DOI: 10.1103/PhysRevD.95.114506
$B_s \to D_s \ell \nu$ Form Factors and the Fragmentation Fraction Ratio f_s/f_d

Christopher J. Monahan,1,2 Heechang Na,3,2 Chris M. Bouchard,4,5 G. Peter Lepage,6 and Junko Shigemitsu7 (HPQCD Collaboration)

1New High Energy Theory Center and Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
2Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
3Ohio Supercomputer Center, 1224 Kinnear Road, Columbus, OH 43212, USA
4School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
5Department of Physics and Astronomy, College of William and Mary, Williamsburg, Virginia 23187, USA
6Laboratory of Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA
7Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

We present a lattice quantum chromodynamics determination of the scalar and vector form factors for the $B_s \to D_s \ell \nu$ decay over the full physical range of momentum transfer. In conjunction with future experimental data, our results will provide a new method to extract $|V_{ub}|$, which may elucidate the current tension between exclusive and inclusive determinations of this parameter. Combining the form factor results at non-zero recoil with recent HPQCD results for the $B \to D\ell\nu$ form factors, we determine the ratios $f_0^{B_s \to D_s} (M_2^2) / f_0^{B_s \to D_s} (M_K^2) = 1.000(62)$ and $f_0^{B_s \to D_s} (M_2^2) / f_0^{B_s \to D_s} (M_1^2) = 1.006(62)$. These results give the fragmentation fraction ratios $f_s/f_d = 0.310(30)_{\text{stat.}} (21)_{\text{syst.}} (38)_{\text{theor.}}$ and $f_s/f_d = 0.307(16)_{\text{stat.}} (21)_{\text{syst.}} (23)_{\text{theor.}} (44)_{\text{th.}}$, respectively. The fragmentation fraction ratio is an important ingredient in experimental determinations of B_s meson branching fractions at hadron colliders, in particular for the rare decay $B(B_s \to \mu^+\mu^-)$. In addition to the form factor results, we make the first prediction of the branching fraction ratio $R(D_s) = B(B_s \to D_s \ell \nu)/B(B_s \to D_s \ell \nu) = 0.301(6)$, where ℓ is an electron or muon. Current experimental measurements of the corresponding ratio for the semileptonic decays of B mesons disagree with Standard Model expectations at the level of nearly four standard deviations. Future experimental measurements of $R(D_s)$ may help understand this discrepancy.

I. INTRODUCTION

Studies of B and B_s meson decays at the Large Hadron Collider provide precision tests of the Standard Model of particle physics and are an important tool in the search for new physics. For example, the first observation of the rare decay $B_s \to \mu^+\mu^-$, through a combined analysis by the LHCb and CMS collaborations [1, 2], tested the Standard Model prediction of the branching fraction. This decay is doubly-suppressed in the Standard Model, but may have large contributions from physics beyond the Standard Model (see, for example, [3]). Although the observed branching fraction is currently consistent with Standard Model expectations, there is still considerable room for new physics, given the experimental and theoretical uncertainties. Both LHCb and CMS are expected to reduce their errors significantly in Run II and tightening constraints on possible new physics requires a corresponding improvement in the theoretical determination of the Standard Model branching fraction.

Extraction of the B_s meson branching fraction $B(B_s \to \mu^+\mu^-)$ relies on the normalization channels $B_{u}^+ \to J/\Psi (\mu^+\mu^-) K^+$ and $B_{d}^0 \to K^+\pi^-$. [4]. The branching fraction can then be expressed as [1]

$$B(B_s \to \mu^+\mu^-) = \frac{f_q \epsilon_X N_{\mu\mu}}{f_s \epsilon_{\mu\mu} N_X},$$

where the f_q are the fragmentation fractions, which give the probability that a b-quark hadronizes into a B_q meson. The ϵ factors in this equation represent detector efficiencies and the N factors denote the observed numbers of events.

The analysis of [1] used the value of $f_s/f_d = 0.259(15)$, determined from LHCb experimental data [5–7]. The ratio f_s/f_d depends on the kinematic range of the experiment, leading to the introduction of an additional systematic uncertainty in the value of f_s/f_d to account for the extrapolation of the LHCb result to the CMS acceptance. Reducing sources of systematic uncertainties in the value of this ratio will improve the precision of the determination of the $B_s \to \mu^+\mu^-$ branching fraction. Indeed, an accurate value for the fragmentation fraction ratio is necessary for improved measurements of other B_s meson decay branching fractions at the LHC [4].

The ratio of the fragmentation fractions, f_s/f_d, can be expressed in terms of the ratios of form factors [8, 9],

$$N_F = \left[\frac{f_0^{(s)}(M_2^2)}{f_0^{(d)}(M_K^2)} \right]^2 \quad \text{and} \quad N_F' = \left[\frac{f_0^{(s)}(M_2^2)}{f_0^{(d)}(M_1^2)} \right]^2,$$

where $f_0^{(q)}(M^2)$ is the scalar form factor of the $B_q \to D_q \ell \nu$ semileptonic decay at $q^2 = M^2$. The first lattice calculations of the form factor ratios in Equation (2) using heavy clover bottom and charm quarks were published in [10]. In addition, the form factors, $f_+(q^2)$ and $f_0(q^2)$, for the semileptonic decay $B_s \to D_s \ell \nu$ were determined with twisted mass fermions for the region near zero recoil in [11].

In this article we calculate the form factors, $f_+(q^2)$ and $f_0(q^2)$, for the semileptonic decay $B_s \to D_s \ell \nu$. We
present a determination of these form factors over the
full physical range of momentum transfer, \(q^2 \) using the
modified \(z \)-expansion for the chiral-continuum-kinematic
extrapolation. We combine these form factor results with
recent HPQCD results for the \(B \to D\ell\nu \) decay [12] to
determine the ratios of \(B_s \to D_s\ell\nu \) and \(B \to D\ell\nu \) form
factors relevant to the ratio of fragmentation fractions,
\(f_s/f_d \).

We use the non-relativistic (NRQCD) action for the
bottom quarks and the Highly Improved Staggered Quark
(HISQ) action for the charm quarks. Our form factors for \(B \to D\ell\nu \) have appeared already in [12]. Here we
first present \(B_s \to D_s\ell\nu \) form factor results and then
proceed to the form factor ratios. We find
\[
\frac{f_0^{(s)}(M_{K}^2)}{f_0^{(d)}(M_{K}^2)} = 1.000(62) \quad \text{and} \quad \frac{f_0^{(s)}(M_{Z}^2)}{f_0^{(d)}(M_{Z}^2)} = 1.006(62).
\]

This leads to
\[
\frac{f_s}{f_d} = 0.310(30)_{\text{stat.}}(21)_{\text{syst.}}(6)_{\text{theor.}}(38)_{\text{latt.}}. \quad (3)
\]

and
\[
\frac{f_s}{f_d} = 0.307(16)_{\text{stat.}}(21)_{\text{syst.}}(23)_{\text{theor.}}(44)_{\text{latt.}}. \quad (5)
\]

respectively. The uncertainties in these results are:
the experimental statistical and systematic uncertainties;
theoretical uncertainties (predominantly arising from a
factor that captures deviations from naive factorization
and, in Equation (5), an electroweak correction factor); and
the uncertainties in our lattice input. In quoting these
results, we have assumed that there are no correlations
between the lattice results and the other sources of
uncertainty.

In addition to determining the fragmentation fraction
ratio relevant to the measurement of the branching fraction
for the rare decay, \(B_s \to \mu^+\mu^- \), the semileptonic
\(B_s \to D_s\ell\nu \) decay provides a new method to determine
the CKM matrix element \(|V_{cb}| \). There is a long-standing
tension between determinations of \(|V_{cb}| \) from exclusive
and inclusive measurements of the semileptonic \(B \) meson
decays (see, for example, [13, 14] and the review in
[15]), although recent analyses suggest the tension has
eased [16, 17]. The \(B_s \to D_s\ell\nu \) decay has yet to be
observed experimentally and consequently has received
less theoretical attention than semileptonic decays of the
\(B \) meson. The studies that have been undertaken for
the \(B_s \to D_s\ell\nu \) decay include calculations based on
relativistic quark models [18, 19], light-cone sum rules [20],
perturbative factorization [21] and estimates using the
Bethe-Salpeter method [22, 23]. At present, there is one
unquenched lattice calculation of the form factor \(G(1) \)
at zero recoil [11]. The FNAL/MILC collaboration has
previously studied the ratio of the form factors of the
\(B_s \to D_s\ell\nu \) and \(B \to D\ell\nu \) decays [10].

We determine the form factor for the \(B_s \to D_s\ell\nu \)
semileptonic decay at zero momentum transfer to be

\[
f_{0}(0) = f_{+}(0) = 0.656(31) \quad \text{and at zero recoil to be}
G(1) \propto f_{+}(q_{\text{max}}^2) = 1.068(40). \quad \text{Although experimental}
data is frequently presented in the form \(|V_{cb}|G(1)| \), the
additional information provided by our calculation of the
shape of the form factors throughout the kinematic range
will, when combined with future experimental data, pro-
vide a new method to extract \(|V_{cb}| \) and may elucidate
the puzzle of the tension between inclusive and exclusive
determinations of this CKM matrix element.

In the next section we briefly outline the details of the
calculation, including the gauge ensembles, bottom-
charm currents and two- and three-point correlator con-
struction. Our calculation closely parallels that pre-
vented in [12] for the \(B \to D\ell\nu \) semileptonic decay and we
refer the reader to that work for further details. In Sec-
ction III we discuss correlator fits to our lattice data and
Section IV covers the chiral-continuum-kinematic extrap-
lations, which follows closely the methodology of [12].
We explain how some of the correlations between the
new \(B_s \to D_s\ell\nu \) data and the \(B \to D\ell\nu \) data are incor-
porated into the chiral-continuum-kinematic expansion.
Section V presents our final results for the \(B_s \to D_s\ell\nu \)
form factors, for \(N_F \) and \(\tilde{N}_F \), and for \(f_s/f_d \) and \(R(D_s) \).
We summarize in Section VI and in Appendix A we give
the information necessary to reconstruct the \(B_s \to D_s\ell\nu \)
form factors. The analogous details for \(B \to D\ell\nu \) form factors were summarized in Appendix A of [12].

II. ENSEMBLES, CURRENTS AND CORRELATORS

Our determination of the form factors for the \(B_s \to D_s\ell\nu \) semileptonic decay closely parallels the analysis
presented in [12]. Here we simply sketch the key ingre-
dients of the analysis and refer the reader to Sections II
and III of [12] for more details of the lattice calculation.

We use five gauge ensembles, summarized in Table I,
indicated by the MILC collaboration [24]. These
ensembles include three “coarse” (with lattice spacing
\(a \simeq 0.12 \text{ fm} \)) and two “fine” (with \(a \approx 0.09 \text{ fm} \)) ensembles and incorporate \(n_f = 2 + 1 \) flavors of AsqTad sea quarks.
In addition, we tabulate the light pseudoscalar masses
on these ensembles, for both AsqTad and HISQ valence
quarks, in Table II. The difference in these masses cap-
tures discretization effects arising from partial quenching.
We account for these effects in the chiral-continuum-

<table>
<thead>
<tr>
<th>Set</th>
<th>(r_1/a)</th>
<th>(m_1/m_2) (sea)</th>
<th>(N_{\text{cont}})</th>
<th>(N_{\text{src}})</th>
<th>(L^3 \times N_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2.647</td>
<td>0.005/0.050</td>
<td>2096</td>
<td>4</td>
<td>24^3 \times 64</td>
</tr>
<tr>
<td>C2</td>
<td>2.618</td>
<td>0.010/0.050</td>
<td>2256</td>
<td>2</td>
<td>20^3 \times 64</td>
</tr>
<tr>
<td>C3</td>
<td>2.644</td>
<td>0.020/0.050</td>
<td>1200</td>
<td>2</td>
<td>20^3 \times 64</td>
</tr>
<tr>
<td>F1</td>
<td>3.699</td>
<td>0.0062/0.031</td>
<td>1896</td>
<td>4</td>
<td>28^3 \times 96</td>
</tr>
<tr>
<td>F2</td>
<td>3.712</td>
<td>0.0124/0.031</td>
<td>1200</td>
<td>4</td>
<td>28^3 \times 96</td>
</tr>
</tbody>
</table>

\(f_{0}(0) = f_{+}(0) = 0.656(31) \) and at zero recoil to be
\(G(1) \propto f_{+}(q_{\text{max}}^2) = 1.068(40) \). Although experimental
data is frequently presented in the form \(|V_{cb}|G(1)| \), the
additional information provided by our calculation of the
shape of the form factors throughout the kinematic range
will, when combined with future experimental data, pro-
vide a new method to extract \(|V_{cb}| \) and may elucidate
the puzzle of the tension between inclusive and exclusive
determinations of this CKM matrix element.
kinematic expansion, which we discuss in more detail in Section IV.

In Table III we list the valence quark masses for the NRQCD bottom quarks and HISQ charm quarks [25, 26]. For completeness and ease of reference, we include both the tree-level wave function renormalization for the massive HISQ quarks [27] and the spin-averaged Υ mass, corrected for electroweak effects, determined in [26].

To study \(B_s \rightarrow D_s \) semileptonic decays, we evaluate the matrix element of the bottom-charm vector current, \(V^\mu \), between \(B_s \) and \(D_s \) states. We express this matrix element in terms of the form factors \(f_+ (q^2) \) and \(f_0 (q^2) \) as

\[
\langle D_s(p_{D_s})|V^\mu|B_s(p_{B_s})\rangle = f_0(q^2)\frac{M_{D_s}^2 - M_{B_s}^2}{q^2}q^\mu + f_+(q^2)\left[p_{D_s}^\mu + p_{B_s}^\mu - \frac{M_{D_s}^2 - M_{B_s}^2}{q^2}q^\mu\right],
\]

where the momentum transfer is \(q^\mu = p_{B_s}^\mu - p_{D_s}^\mu \). In practice it is simpler to work with the form factors \(f_\parallel \) and \(f_\perp \), which are related to \(f_+ (q^2) \) and \(f_0 (q^2) \) via

\[
f_+^{(s)}(q^2) = \frac{1}{\sqrt{2M_{B_s}}}
\left[f_\parallel^{(s)}(q^2)
+ (M_{B_s} - E_{D_s})f_\perp^{(s)}(q^2)\right],
\]

\[
f_0^{(s)}(q^2) = \frac{\sqrt{2M_{B_s}}}{M_{B_s}^2 - M_{D_s}^2}
\left[(M_{B_s} - E_{D_s})f_\parallel^{(s)}(q^2)
+ (E_{D_s}^2 - M_{D_s}^2)f_\perp^{(s)}(q^2)\right].
\]

Here \(E_{D_s} \) is the energy of the daughter \(D_s \) meson in the rest frame of the \(B_s \) meson. In the following, we work in the rest frame of the \(B_s \) meson and when we refer to the spatial momentum, \(\vec{p} \), we mean the momentum of the \(D_s \) meson.

NRQCD is an effective theory for heavy quarks and results determined using lattice NRQCD must be matched to full QCD to make contact with experimental data. We match the bottom-charm currents, \(J_\mu \), at one loop in perturbation theory through \(\mathcal{O}(a_s, \Lambda_{QCD}/m_b, \alpha_s/m_b) \), where \(a_s \) is the bare lattice mass [27]. We re-scale all currents by the nontrivial massive wave function renormalization for the HISQ charm quarks, tabulated in Table III, [12].

We calculate \(B_s \) and \(D_s \) meson two-point correlators and three-point correlators of the bottom-charm currents, \(J_\mu \). We use smeared heavy-strange bilinears to represent the \(B_s \) meson and incorporate both delta-function and Gaussian smearing, with a smearing radius of \(r_0/a = 5 \) and \(r_0/a = 7 \) on the coarse and fine ensembles, respectively. Three-point correlators are computed with the setup illustrated in Figure 1. The \(B_s \) meson is created at time \(t_0 \) and a current \(J_\mu \) inserted at timeslice \(t \), between \(t_0 \) and \(t_0 + T \). The daughter \(D_s \) meson is then annihilated at timeslice \(t_0 + T \). We use four values of \(T \): 12, 13, 14, and 15 on the coarse lattices; and 21, 22, 23, and 24 on the fine lattices. We implement spatial sums at the source through the \(U(1) \) random wall sources \(\xi(x) \) and \(\xi(x') \) [28]. We generate data for four different values of the \(D_s \) meson momenta, \(\vec{p} = 2\pi/(aL)(0, 0, 0) \), \(\vec{p} = 2\pi/(aL)(1, 0, 0) \), \(\vec{p} = 2\pi/(aL)(1, 1, 0) \), and \(\vec{p} = 2\pi/(aL)(1, 1, 1) \), where \(L \) is the spatial lattice extent.

We fit \(B_s \) meson two-point functions to a sum of decaying exponentials in Euclidean time, \(t \),

\[
C_{B_s}^{\alpha \beta}(t) = \sum_{i=0}^{N_{B_s}^{(s)}-1} b_i^{(s)} b_i^{(s)*} e^{-E_{i}^{B_s,\text{sim}} t} + \sum_{i=0}^{N_{B_s}^{(s)}-1} b_i^{(s)} b_i^{(s)*} (-1)^t e^{-E_{i}^{B_s,\text{sim}} t}.
\]

Here the superscripts \(\alpha \) and \(\beta \) indicate the smearing associated with the \(B_s \) meson source (delta function or Gaussian); the \(b_i \) and \(b_i^{(s)} \) are amplitudes associated with the ordinary non-oscillatory states and the oscillatory states that arise in the staggered quark formalism; the meson energies are \(E_{i}^{B_s,\text{sim}} \) and \(E_{i}^{B_s,\text{sim}} \) for the non-oscillatory and oscillatory states, respectively; and \(N_{B_s}^{(s)} \) is the number of exponentials included in the fit.

The ground state \(B_s \) energy in NRQCD, \(E_{0}^{B_s,\text{sim}} \), is related to the true energy in full QCD, \(E_{0}^{B_s} \), by

\[
E_{0}^{B_s} = M_{B_s} = \frac{1}{2} \left[\overline{M}_{b\bar{b}}^{\text{exp}} - E_{0}^{B_s,\text{sim}} \right] + E_{0}^{B_s,\text{sim}},
\]

because the \(b \)-quark rest mass has been integrated out in NRQCD. Here \(\overline{M}_{b\bar{b}}^{\text{exp}} \) is the spin-averaged \(\Upsilon \) mass used to tune the \(b \)-quark mass and \(aE_{0}^{\text{sim}} \) was determined in [26]. We tabulate the values for \(aE_{0}^{\text{sim}} \) in Table III.

We fit the \(D_s \) meson two-point functions to the form

\[
C_{D_s}(t; \vec{p}) = \sum_{i=0}^{N_{D_s}^{(s)}-1} |d_i|^2 \left[e^{-E_{i}^{D_s} t} + e^{-E_{i}^{D_s} (N_{i} - t)} \right]
+ \sum_{i=0}^{N_{D_s}^{(s)}-1} |d_i'|^2 (-1)^t \left[e^{-E_{i}^{D_s} t} + e^{-E_{i}^{D_s} (N_{i} - t)} \right].
\]
TABLE II. Meson masses on MILC ensembles for both AsqTad [24] and HISQ valence quarks [25]. The aM_{K} values are determined with HISQ valence quarks in [25].

<table>
<thead>
<tr>
<th>Set</th>
<th>M_{w}^{AsqTad}</th>
<th>aM_{K}^{AsqTad}</th>
<th>M_{w}^{HISQ}</th>
<th>aM_{K}^{HISQ}</th>
<th>$aM_{\eta_{c}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.15971(20)</td>
<td>0.36530(29)</td>
<td>0.15990(20)</td>
<td>0.31217(20)</td>
<td>0.41111(12)</td>
</tr>
<tr>
<td>C2</td>
<td>0.22447(17)</td>
<td>0.38331(24)</td>
<td>0.21110(20)</td>
<td>0.32851(18)</td>
<td>0.41445(17)</td>
</tr>
<tr>
<td>C3</td>
<td>0.31125(16)</td>
<td>0.40984(21)</td>
<td>0.29310(20)</td>
<td>0.35720(22)</td>
<td>0.41180(23)</td>
</tr>
<tr>
<td>F1</td>
<td>0.14789(18)</td>
<td>0.25318(19)</td>
<td>0.13460(10)</td>
<td>0.22855(17)</td>
<td>0.294109(93)</td>
</tr>
<tr>
<td>F2</td>
<td>0.20635(18)</td>
<td>0.27217(21)</td>
<td>0.18730(18)</td>
<td>0.24596(14)</td>
<td>0.29315(12)</td>
</tr>
</tbody>
</table>

The sixth column lists the values of the spin-averaged Υ mass, corrected for electroweak effects.

For the three-point correlator we use the fit ansatz

$$C_{ij}^{\alpha}(t, T; \vec{p}) = N_{i}^{D_{i}} - 1 \sum_{j=0}^{N_{j}^{B_{j}} - 1} A_{ij}^{\alpha} e^{-E_{i}^{D_{i}} t} e^{-E_{j}^{B_{j}, \text{sim}}(T-t)}$$

$$+ \sum_{i=0}^{N_{i}^{B_{i}} - 1} \sum_{j=0}^{N_{j}^{B_{j}} - 1} B_{ij}^{\alpha} e^{-E_{i}^{D_{i}} t} e^{-E_{j}^{B_{j}, \text{sim}}(T-t)}$$

$$+ \sum_{i=0}^{N_{i}^{B_{i}} - 1} \sum_{j=0}^{N_{j}^{B_{j}} - 1} C_{ij}^{\alpha} e^{-E_{i}^{D_{i}} t} e^{-E_{j}^{B_{j}, \text{sim}}(T-t)}$$

$$+ \sum_{i=0}^{N_{i}^{B_{i}} - 1} \sum_{j=0}^{N_{j}^{B_{j}} - 1} D_{ij}^{\alpha} e^{-E_{i}^{D_{i}} t} e^{-E_{j}^{B_{j}, \text{sim}}(T-t)}.$$ \hspace{1cm} (12)

The amplitudes A_{ij}^{α} for energy levels (i, j) depend on the current J_{μ}, the daughter D_{s} meson momentum \vec{p}, and the smearing of the B_{s} meson source, α.

The hadronic matrix element between B_{s} and D_{s} meson states is then given in terms of the ground state energies and amplitudes extracted from two- and three-point correlator fits by the relation

$$\langle D_{s}(\vec{p})|V^{\mu}|B_{s} \rangle = \frac{A_{0}^{\alpha}}{\partial_{0}^{\alpha} p_{0}^{\alpha}} \sqrt{2a^{3} E_{0}^{D_{s}}} \sqrt{2a^{3} M_{B_{s}}}.$$ \hspace{1cm} (13)

For more details on this relation, see Section III of [12].

III. CORRELATOR FIT AND FORM FACTOR RESULTS

We employ a Bayesian multi-exponential fitting procedure, based on the python packages isqfit [29] and corrfitter [30], that has been used by the HPQCD collaboration for a wide range of lattice calculations. Statistical correlations between data points, and correlations between data and priors, are automatically captured with the gvar class [31], which facilitates the straightforward manipulation of Gaussian-distributed random variables.

In this Bayesian multi-exponential approach, one uses a number of indicators of fit stability, consistency, and goodness-of-fit to check the fit results. For example, we check that, beyond a minimum number of exponentials, the fit results are independent of the number of exponentials included in the fit. Figure 2 illustrates the results of this test for the D_{s} meson two-point fits on ensemble set F1. The upper panel presents our results for four values of the spatial momentum, plotted as a function of the number of exponentials included in the plot. The lower panel shows the results obtained from three types of fits: a simultaneous fit to correlator data for all four spatial momenta, plotted with blue diamonds; a chained fit (discussed in detail in Appendix A of [25]) to correlator data for all four spatial momenta simultaneously, shown with red squares; and an “individual” fit, plotted with purple circles. These individual fits include the correlator data for just a single daughter meson momentum in each fit.

We take the result for $N_{\text{exp}} = 5$ from the chained fit as our final result for each momentum. These results are tabulated in Table IV and shown in Figure 2 as shaded bands in each plot. All three fit approaches give consistent results, as seen in the lower panel of Figure 2, but the simultaneous fits, with or without chaining, have the advantage that they capture the correlations between momenta, which is then reflected in the uncertainty quoted in the fit results. The chained fits give slightly better values of reduced χ^{2}. For example, for the ground state results plotted in the lower panel, the chained fits give $\chi^{2}/\text{dof} = 0.88$ for $N_{\text{exp}} = 5$, while the simultaneous fits give $\chi^{2}/\text{dof} = 1.1$. Both fits include 164 degrees of freedom. In addition, the chained fits are about ten percent faster than the simultaneous fits—14.6s to generate all the data in the lower plot for the chained fit compared to 16.4s for the simultaneous fit. This is not an important consideration for the two-point fits, but be-
FIG. 2. Fit results for the D_s meson two-point correlator as a function of the number of exponentials included in the fit on ensemble F1. The upper plot includes data for all four values of the spatial momentum of the D_s meson. The lower plot compares the values for the ground state energy from the simultaneous fit with two alternative fitting strategies, which are described in the text, at zero spatial momentum. Note the magnified scale on the vertical axis in the lower panel.

TABLE IV. Fit results for the ground state energies of the D_s meson at each spatial momentum \vec{p}. We take $N_{\text{exp}} = 5$ and fit all two-point correlator data simultaneously.

<table>
<thead>
<tr>
<th>Set</th>
<th>aM_{D_s}</th>
<th>$aE_{D_s}(1,0,0)$</th>
<th>$aE_{D_s}(1,1,0)$</th>
<th>$aE_{D_s}(1,1,1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1.18755(22)</td>
<td>1.21517(34)</td>
<td>1.24284(33)</td>
<td>1.27013(39)</td>
</tr>
<tr>
<td>C2</td>
<td>1.20090(30)</td>
<td>1.24013(56)</td>
<td>1.27822(61)</td>
<td>1.31543(97)</td>
</tr>
<tr>
<td>C3</td>
<td>1.19010(33)</td>
<td>1.23026(53)</td>
<td>1.26948(54)</td>
<td>1.30755(79)</td>
</tr>
<tr>
<td>F1</td>
<td>0.84674(12)</td>
<td>0.87559(19)</td>
<td>0.90373(20)</td>
<td>0.93096(26)</td>
</tr>
<tr>
<td>F2</td>
<td>0.84415(14)</td>
<td>0.87348(25)</td>
<td>0.90145(25)</td>
<td>0.92869(33)</td>
</tr>
</tbody>
</table>

comes relevant for the larger three-point fits, which can take many hours. Choosing to use chained fits for both two- and three-point fits ensures a consistent approach throughout the fitting procedure.

As a further test of the two-point fits for the D_s meson we determine the ratio $(M_{D_s}^2 + p^2)/E_{D_s}^2$ on each ensemble. We plot the results in Figure 3. The shaded region corresponds to $1 \pm \alpha_s (ap/\pi)^2$, where we set $\alpha_s = 0.25$. In general, the data lie systematically above the relativistic value of unity, indicating that the statistical uncertainties of the fit results are sufficiently small that we can resolve discretization effects at $O(\alpha_s (ap/\pi)^2)$. These discretization effects are less than 0.5% in the dispersion relation.

Figure 4 shows the corresponding two-point fit results for the ground state of the B_s meson for ensemble sets C2 and F1. These ensemble sets have the same sea quark mass ratios, $m_\ell/m_s = 1/5$ (see Table I) and the difference between the results stems almost entirely from the lattice spacing. We take the values with $N_{\text{exp}} = 5$ as our final results, highlighted in the figure by the square data points and the shaded bands. We tabulate our final results in Table V.

For the three-point correlator fits, we use a fitting procedure that diverges slightly from the approach taken in
TABLE V. Fit results for the ground state $aE_0^{B,sim}$, on each ensemble set, with $N_{\text{exp}} = 5$.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.53714(60)</td>
<td>0.54332(65)</td>
<td>0.53657(86)</td>
<td>0.40873(53)</td>
<td>0.40819(44)</td>
</tr>
</tbody>
</table>

FIG. 5. Fit results for the three-point amplitudes as a function of the number of exponentials on two ensemble sets, C2 and F1. We fit to correlator data for all values of the spatial momentum simultaneously and thin by keeping every third timeslice. We plot our final results, for which $N_{\text{exp}} = 5$, as a green hexagon for C2 and a purple square for F1, with corresponding shaded bands. Note that the amplitudes on set C2 are approximately three times larger than the amplitudes on set F1, as indicated by the left (F1) and right (C2) vertical axes.

To improve stability and goodness-of-fit, we thin the three-point correlator data on the fine ensembles by keeping every third timeslice. We illustrate the stability of these fits with the number of exponentials in the fit in Figure 5.

We test our choice by comparing fit results for the three-point amplitudes with thinning (keeping both every third and every fifth timeslice) and without thinning and plot the results in Figure 6. We do not consider thinning by an even integer, which removes information about the oscillatory states generated by the staggered quark action.

In Figure 7 we present results for the three-point fits when different combinations of source-sink separations, T, are used. For our final results we take the full set, $T = (12, 13, 14, 15)$ on the coarse ensembles and $T = (21, 22, 23, 24)$ on the fine ensembles. We fit the three-point correlator data after matching the bottom-charm currents to full QCD, as described briefly in Section II and in more detail in [12]. In [12] this approach was...
between form factors at different momenta as a heat map in Tables VI and VII. We represent the correlations between quark masses that are heavier than their physical values determined at finite lattice spacing, with sea quark species in the form factor results.

Compared with fitting the data first and then matching to full QCD and, as expected, the results are in good agreement within errors.

We summarize our final results for the form factors, $f_0(q^2)$ and $f_+(q^2)$, for each ensemble and D_s momentum in Tables VI and VII. We represent the correlations between form factors at different momenta as a heat map in Figure 8 for ensemble set F2.

IV. CHIRAL, CONTINUUM AND KINEMATIC EXTRAPOLATIONS

The form factor results presented in the previous section are determined at finite lattice spacing, with sea quark masses that are heavier than their physical values. These form factors are therefore functions of the momentum transfer, the lattice spacing, and the sea quark masses. The form factors determined from experimental data are functions of a single kinematic variable only. Typically this variable is the momentum transfer, q^2, or the daughter meson energy, E_{D_s}, but the form factors can also be expressed in terms of the w-variable, defined by

$$w(q^2) = 1 + \frac{q_{\text{max}}^2 - q^2}{2M_{B_s}M_{D_s}},$$

where $q_{\text{max}}^2 = (M_{B_s} - M_{D_s})^2 \approx 11.54\text{GeV}^2$ or the z-variable,

$$z(q^2) = \frac{t_+ + q^2 - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}.$$

Here $t_+ = (M_{B_s} + M_{D_s})^2$ and t_0 is a free parameter, which we take to be $t_0 = q_{\text{max}}^2$ to ensure consistency with the analysis of [12]. In Figure 9 we compare our results for the form factors, $f_0(q^2)$ and $f_+(q^2)$, with the corresponding form factors for the $B \rightarrow D\ell\nu$ decay, taken from [12], as a function of the z-variable. From the plot, we see that there is little dependence on the light spectator quark species in the form factor results.

To relate the form factor results determined at finite lattice spacing and unphysical sea quark masses to experimental data, we must therefore perform continuum and chiral extrapolations, along with a kinematic extrapolation in terms of one of the choices of kinematic variables. We combine these extrapolations through the modified z-expansion, introduced in [28, 32], and applied to B_s heavy-light decays in [25, 33, 34]. Our analysis of the chiral-continuum-kinematic extrapolation for $B_s \rightarrow D\ell\nu$ decay closely parallels that for the $B \rightarrow D\ell\nu$ decay in [12], so we only briefly outline the key components and refer the reader to [12] for details.

We express the dependence of the form factors on the z-variable through a modification of the BCL parameterization [35]

$$f_0(q^2) = \frac{1}{P_0} \sum_{j=0}^{J-1} a_j^{(0)}(m_l, m_{l_1}^{\text{sea}}, a) z^j,$$

$$f_+(q^2) = \frac{1}{P_+} \sum_{j=0}^{J-1} a_j^{(+)}(m_l, m_{l_1}^{\text{sea}}, a) \times \left[z^j - (-1)^j \frac{j}{J} z^J \right].$$

Here the $P_{0,+}$ are Blaschke factors that take into account the effects of expected poles above the physical region,

$$P_{0,+}(q^2) = \left(1 - \frac{q^2}{M_{P_{0,+}}^2} \right),$$

where we take $M_{P_0} = M_{B_s} = 6.330(9)\text{GeV}$ [36], and $M_{P_+} = 6.42(10)\text{GeV}$. We find little dependence on the
value of M_0, in line with the results of [12]. The expansion coefficients $a_\pm^{(0,+)}$ include lattice spacing and light quark mass dependence and can be written as

$$a_\pm^{(0,+)}(m_t, m_{t^{\text{sea}}}, a) = \bar{a}_\pm^{(0,+)} \tilde{D}_j^{(0,+)}(m_t, m_{t^{\text{sea}}}, a), \quad (19)$$

where the $\tilde{D}_j^{(0,+)}$ include all lattice artifacts and chiral logarithms. These coefficients are given by

$$\tilde{D}_j = 1 + c_j^{(1)} x_\pi + c_j^{(2)} x_\pi \log(x_\pi)$$

$$+ d_j^{(1)} \left(\frac{\delta x_\pi}{2} + \delta x_K \right) + d_j^{(2)} \delta x_{\eta_s}$$

$$+ e_j^{(1)} \left(\frac{a E_{D_s}}{\pi} \right)^2 + e_j^{(2)} \left(\frac{a E_{D_s}}{\pi} \right)^4$$

$$+ m_j^{(1)} (a m_c)^2 + m_j^{(2)} (a m_c)^4, \quad (20)$$

FIG. 9. Form factor results for the $B_s \rightarrow D_s \ell \nu$ decay, compared to those for the $B \rightarrow D \ell \nu$ decay from [12], as a function of z. We plot four sets of results, for $f_0(q^2(z))$ and $f_+(q^2(z))$ for both B and B_s meson decays. We distinguish the data in four ways. First, the shape of each data marker indicates the corresponding ensemble set, as shown in the legend in the upper left corner: squares represent set C1; diamonds set C2; circles C3; left-triangles F1; and triangles F2. Second, the upper set of points are those for $f_+(q^2(z))$ and the lower set of points show the data for $f_0(q^2(z))$, as indicated by the annotations. Third, the color of the points distinguishes the data as follows: the turquoise-green points represent $f_0^{B_s \rightarrow D_s}(q^2(z))$; the light purple points are $f_0^{B \rightarrow D}(q^2(z))$; the blue points are $f_0^{B \rightarrow D_s}(q^2(z))$; and the orange-yellow points are $f_0^{B_s \rightarrow D}(q^2(z))$. Finally, we distinguish the data by size: the larger markers represent the $B \rightarrow D \ell \nu$ decay, while the smaller points are from those for the $B_s \rightarrow D_s \ell \nu$ decay.

We plot the lattice data and the results of the chiral continuum-kinematic extrapolation for $f_+(z)$ as the upper, red shaded band and for $f_0(z)$ as the lower, purple shaded band. We use the fit ansatz outlined above, including terms up to z^3 in the modified z-expansion, and refer to these results as the “standard extrapolation”. We tabulate our choice of priors and the fit results in Appendix A, and provide the corresponding z-expansion coefficients and their correlations in Table XI. Following [12] and the earlier work of [28, 32], we group the priors into Group I and Group II variables, and add a third group. Broadly speaking, Group I priors are the typical fit parameters, Group II includes the input lattice scales and masses, and Group III priors are physical input masses. See the appendix of [12] for more details. To test the convergence of our fit ansatz, we follow a

where

$$x_{\pi, K, \eta_s} = \frac{M_{\pi, K, \eta_s}^2}{(4\pi f_\pi)^2}, \quad (21)$$

$$\delta x_{\pi, K} = \frac{(M_{\pi, K}^{\text{Asqtad}})^2 - (M_{\pi, K}^{\text{HISQ}})^2}{(4\pi f_\pi)^2}, \quad (22)$$

$$\delta x_{\eta_s} = \frac{(M_{\eta_s}^{\text{HISQ}})^2 - (M_{\eta_s}^{\text{phys}})^2}{(4\pi f_\pi)^2}, \quad (23)$$

and the $c_j^{(i)}$, $d_j^{(i)}$, $e_j^{(i)}$, and $m_j^{(i)}$ are fit parameters, along with the $\bar{a}_j^{(0,+)}$. We use the fit function form of [12], with a new fit parameter, $d_j^{(2)}$, to account for the tuning of the valence strange quark mass on each ensemble. The actions we use are highly improved and $\mathcal{O}(a^3)$ tree-level lattice artifacts have been removed. The $\mathcal{O}(a_s a^2)$ and $\mathcal{O}(a^4)$ corrections are dominated by powers of $(a m_c)$ and $(a E_{D_s})$, rather than those of the spatial momenta $(a p_i)$. Thus, we do not incorporate terms involving hypercubic invariants constructed from the spatial momentum $a p_i$ [37]. In Table II we tabulate the meson masses required to calculate $\delta x_{\pi, K, \eta_s}$.

We further modify the z-expansion parameterization of the form factors to accommodate the systematic uncertainty associated with the truncation of the matching procedure at $\mathcal{O}(a_s, Q_{\text{QCD}}/m_b, a_s/(a m_b))$. We introduce fit parameters m_{\perp} and m_{\parallel}, with central value zero and width $\delta m_{\parallel, \perp}$ and re-scale the form factors, f_\parallel and f_\perp, according to

$$f_{\parallel, \perp} \rightarrow (1 + m_{\parallel, \perp}) f_{\parallel, \perp}. \quad (24)$$

We take the systematic uncertainties in these fit parameters as 3% and refer the reader to the detailed discussion of this approach in [12].

In Figure 10 we plot our fit results for $f_0(z)$, $f_+(z)$ as a function of the z-variable. We obtain a reduced χ^2 of $\chi^2/\text{dof} = 1.2$ with 36 degrees of freedom (dof), with a quality factor of $Q = 0.24$. The Q-value (or p-value) corresponds to the probability that the χ^2/dof from the fit could have been larger, by chance, assuming the data are all Gaussian and consistent with each other. We plot the lattice data and the results of the chiral-continuum-kinematic extrapolation for $f_+(z)$ as the upper, red shaded band and for $f_0(z)$ as the lower, purple shaded band. We use the fit ansatz outlined above, including terms up to z^3 in the modified z-expansion, and refer to these results as the “standard extrapolation”. We tabulate our choice of priors and the fit results in Appendix A, and provide the corresponding z-expansion coefficients and their correlations in Table XI. Following [12] and the earlier work of [28, 32], we group the priors into Group I and Group II variables, and add a third group. Broadly speaking, Group I priors are the typical fit parameters, Group II includes the input lattice scales and masses, and Group III priors are physical input masses. See the appendix of [12] for more details. To test the convergence of our fit ansatz, we follow a
procedure similar to that outlined in [12]. This can be summarized as modifying the fit ansatz in the following ways:

1. include terms up to z^2 in the z-expansion;
2. include terms up to z^4 in the z-expansion;
3. add light-quark mass dependence to the fit parameters $m_j^{(i)}$;
4. add strange-quark mass dependence to the fit parameters $m_j^{(i)}$;
5. add bottom-quark mass dependence to the fit parameters $m_j^{(i)}$;
6. include discretization terms up to $(am_c)^2$;
7. include discretization terms up to $(am_c)^6$;
8. include discretization terms up to $(aE_D_\pi/\pi)^2$;
9. include discretization terms up to $(aE_D_\pi/\pi)^6$;
10. omit the $x_\pi \log(x_\pi)$ term;
11. incorporate a 2% uncertainty for higher-order matching contributions;
12. incorporate a 4% uncertainty for higher-order matching contributions;
13. incorporate 4% and 2% uncertainties on coarse and fine ensembles, respectively, for higher-order matching contributions.

We show the results of these modifications in Figure 11. This plot demonstrates that the fit has converged with respect to a variety of modifications of the chiral-continuum-kinematic extrapolation ansatz. As part of this process, we also tested the significance of the Blaschke factor in the fit results. In line with the results of [12], we found that, while the results agreed within uncertainties, removing the Blaschke lowered the central value and increased the uncertainty of the result. This test is not strictly a test of convergence and is therefore not included in Figure 11.

To determine the ratio of form factors, we simultaneously fit the lattice form factor data for the $B_s \to D_s \ell \nu$ and $B \to D \ell \nu$ decays in a single script. We take the form factor results from Table III of [12] for the $B \to D \ell \nu$ decay. Fitting the results simultaneously ensures that statistical correlations between the two data sets, such as those stemming from the lattice spacing determination on each ensemble set, are included in the final result for the ratio at zero momentum transfer. We do not re-analyze the $B \to D \ell \nu$ to account for statistical correlations between the correlators themselves, which have negligible effect on the final result, given the current precision. This analysis would require fitting both $B \to D \ell \nu$ and $B_s \to D_s \ell \nu$ two- and three-point correlators simultaneously. To ensure that these statistical correlations are not important, we tested the correlations between the three-point correlators on different ensemble sets. We show an example of the corresponding correlations as a heat map in Figure 12, from which one can see that statistical correlations are less than ~ 0.6. We have found
that correlations of this size have negligible impact at our current level of precision.

We fit the form factor data using the standard extrapolation ansätze for both the \(B \to D\ell\nu \) and \(B_s \to D_s\ell\nu \) data. For the \(B_s \to D_s\ell\nu \) decay, we choose the priors for the coefficients in the modified \(z \)-expansion to be equal to those for the corresponding expression for the \(B \to D\ell\nu \) \(z \)-expansion. These priors reflect the close agreement between the values for the \(B \to D\ell\nu \) and \(B_s \to D_s\ell\nu \) decays, illustrated in Figure 9. We list our choice of priors and the fit results for the ratio of form factors in Appendix A, and provide the corresponding \(z \)-expansion coefficients and their correlations in Table XII.

V. RESULTS

A. Form factors

We plot our final results for the form factors, \(f_0(q^2) \) and \(f_+(q^2) \), as a function of the momentum transfer, \(q^2 \), in Figure 13.

Our final result for the form factor at zero momentum transfer is

\[
f_0^{B_s \to D_s}(0) = f_+^{B_s \to D_s}(0) = 0.656(31). \tag{25}
\]

We provide an estimate of the error budget for this result in Table VIII. For the ratio of form factors, we find

\[
\frac{f_0^{B_s \to D_s}(M_{\pi}^2)}{f_0^{B \to D}(M_{K}^2)} = 1.000(62), \tag{26}
\]

and

\[
\frac{f_+^{B_s \to D_s}(M_{\pi}^2)}{f_+^{B \to D}(M_{K}^2)} = 1.006(62), \tag{27}
\]

with corresponding error budgets in Table IX. We show the extrapolation bands as a function of momentum transfer for both \(B_s \to D_s \) (purple hatched band) and \(B \to D \) (plain turquoise band) semileptonic decays in Figure 14.
We find agreement, within errors, with the results of [10], which are
\[
\frac{f_{B_\rightarrow D^0}(M_{D^0}^2)}{f_{B_\rightarrow D^0}(M_K^2)}\text{[FNAL/MILC]} = 1.046(46) \tag{28}
\]
\[
\frac{f_{B_\rightarrow D}(M_{D}^2)}{f_{B_\rightarrow D}(M_{D}^2)}\text{[FNAL/MILC]} = 1.054(50). \tag{29}
\]
Here we have combined the uncertainties quoted in [10], which are statistical and systematic, in quadrature.

For the form factor at zero recoil, \(f_+(q_{\text{max}}^2) \), which is often quoted as
\[
G(1) = \frac{2\sqrt{\kappa}}{1 + \kappa} f_+(q_{\text{max}}^2), \tag{30}
\]
where \(\kappa = M_{D_s}/M_{B_s} \), we find
\[
G(1) = 1.068(40). \tag{31}
\]
This result is in good agreement with the value of \(G(1) = 1.052(46) \) determined in [11], with a slightly smaller uncertainty. The corresponding values for the \(B \rightarrow D\ell\nu \) form factors are \(G^{B\rightarrow D}(1) = 1.035(40) \) [12] and \(G^{B\rightarrow D}(1) = 1.058(9) \) [10] (where the quoted uncertainty includes only statistical uncertainties).

The slope of the form factor, \(f_+(q^2) \), is given by
\[
\rho^2(w) = -\frac{G'(w)}{G(w)}, \tag{32}
\]
where the derivative is with respect to the \(w \)-variable of Equation (14). In the CLN parameterization, [38], the form factor is then parameterized by
\[
G(w) = G(1) \left[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3 \right], \tag{33}
\]
with \(z = z(w) \) the \(z \)-variable of the previous section:
\[
z(w) = \frac{\sqrt{w + 1} - \sqrt{2}}{\sqrt{w + 1} + \sqrt{2}} \tag{34}
\]
We obtain
\[
\rho^2(1) = 1.244(76) \tag{35}
\]
for the slope of the form factor.

Experimental data for the \(B \rightarrow D\ell\nu \) decay is typically presented in the form \(|V_{cb}|G(1) \), since the differential decay rate for the \(B_{(s)} \rightarrow \bar{D}_{(s)}\ell\nu \) decay can be written as
\[
d\Gamma(B_{(s)} \rightarrow D_{(s)}\ell\nu) \propto \frac{G_F^2}{4\pi} \frac{M_{D_{(s)}}^3}{M_{B_{(s)}}^3} \frac{(M_{B_{(s)}} + M_{D_{(s)}})^2}{(w^2 - 1)^{3/2}} |V_{cb}|^2 |G(w)|^2, \tag{36}
\]
where \(G_F \) is the Fermi constant. In this form, lattice results for the form factor \(G(1) \) provide the normalization required to extract \(|V_{cb}| \) from experimental data. Incorporating the slope of the form factor, \(\rho^2(w) \), helps further tighten experimental determinations of \(|V_{cb}| \). An even more powerful approach incorporates the full kinematic dependence on the scalar and vector form factors, in combination with experimental data over a range of momentum transfer [12, 39]. When combined with our form factor results, future experimental data for the \(B_s \rightarrow D_s\ell\nu \) decay will provide a new method to extract \(|V_{cb}| \) and may shed light on the long-standing tension between exclusive and inclusive determinations of \(|V_{cb}| \).

B. Form factor error budget

We tabulate the errors in the form factors at zero momentum transfer, Equation (25), in Table VIII. The sources of uncertainty listed in Table VIII are:

<table>
<thead>
<tr>
<th>Type</th>
<th>Partial uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>1.22</td>
</tr>
<tr>
<td>Chiral extrapolation</td>
<td>0.80</td>
</tr>
<tr>
<td>Quark mass tuning</td>
<td>0.66</td>
</tr>
<tr>
<td>Discretization</td>
<td>2.47</td>
</tr>
<tr>
<td>Kinematic</td>
<td>0.71</td>
</tr>
<tr>
<td>Matching</td>
<td>2.21</td>
</tr>
<tr>
<td>total</td>
<td>3.70</td>
</tr>
</tbody>
</table>

a. **Statistical** The statistical uncertainties include the two- and three-point correlator fit errors and those associated with the lattice spacing determination, \(r_1 \) and \(r_1/a \).

b. **Chiral extrapolation** This uncertainty includes the valence and sea quark mass extrapolation errors and chiral logarithms in the chiral-continuum extrapolation. These effects correspond to the fit parameters \(c_j \) in Equation (20).

c. **Quark mass tuning** Uncertainties arising from tuning errors in the light and strange quark masses at finite lattice spacing, including partial quenching effects between the HISQ valence and AsqTad sea quarks. These uncertainties are generally very small.

d. **Discretization** Discretization effects incorporate the \((am_c)^n \) and \((aE_D/m_c)^n \) terms in the modified \(z \)-expansion. These effects are the dominant source of uncertainty in our results.

e. **Kinematic** These uncertainties stem from the \(z \)-expansion coefficients and the locations of the poles in the Blaschke factors.

f. **Matching** Matching errors arise from the \(m_{\perp,f} \) fit parameters discussed in the previous section. Perturbative matching uncertainties are the second-largest source of uncertainty in our final results. We propagate these uncertainties from the large momentum-transfer region,
TABLE IX. Error budget for the ratio of the form factors, $f_0^{B_s \to D_s^0}(M^2_s)/f_0^{B \to D^0}(M^2_K)$ (second column) and $f_0^{B_s \to D_s}(M^2_s)/f_0^{B \to D}(M^2_K)$ (third column). We describe each source of uncertainty in more detail in the accompanying text.

<table>
<thead>
<tr>
<th>Type</th>
<th>Partial uncertainty (%)</th>
<th>$f_0^{B_s \to D_s^0}(M^2_s)$</th>
<th>$f_0^{B \to D^0}(M^2_K)$</th>
<th>$f_0^{B_s \to D_s}(M^2_s)$</th>
<th>$f_0^{B \to D}(M^2_K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td></td>
<td>2.28</td>
<td>2.32</td>
<td>2.08</td>
<td>2.15</td>
</tr>
<tr>
<td>Chiral extrapolation</td>
<td></td>
<td>1.22</td>
<td>1.22</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Quark mass tuning</td>
<td></td>
<td>0.81</td>
<td>0.81</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>Discretization</td>
<td></td>
<td>3.48</td>
<td>3.49</td>
<td>3.42</td>
<td>3.42</td>
</tr>
<tr>
<td>Kinematic</td>
<td></td>
<td>1.38</td>
<td>1.43</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>Matching</td>
<td></td>
<td>0.07</td>
<td>0.05</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>6.15</td>
<td>6.18</td>
<td>6.15</td>
<td>6.15</td>
</tr>
</tbody>
</table>

for which we have lattice results, to zero momentum-transfer.

The uncertainties associated with physical meson mass input errors and finite volume effects, which are both less than 0.01%, are not included in these estimates, because they are negligible contributions to the final error budget. In our error budget, we also neglect uncertainties from electromagnetic effects, isospin breaking, and the effects of quenching of the charm quark in the gauge ensembles.

In Table IX we list the uncertainties in the form factor ratios, Equations (26) and (27). These uncertainties are dominated by those coming from the $B 	o D\ell\nu$ decay [12].

C. Semileptonic decay phenomenology

With our results for the ratio of the form factors, $f_0^{B_s \to D_s^0}/f_0^{B \to D^0}$, in Equations (26) and (27), we can now determine the ratio of fragmentation fractions. LHCb presents their measurement of the these ratios in the form [40]

$$
\frac{f_s}{f_d} = 0.310(30)_{\text{stat.}}^{+0.00}_{-0.01}\text{(21)_{syst.}} \times \frac{1}{N_a N_F},
$$

$$
\frac{f_s}{f_d} = 0.307(17)_{\text{stat.}}^{+0.00}_{-0.01}\text{(23)_{syst.}} \times \frac{1}{N_a N_c N_F},
$$

where the N_a parameterize deviations from naive factorization and N_c is an electroweak correction factor to account for W-exchange. The dependence on the form factors is expressed in N_F and N'_F, which are given in Equation (2). For convenience, we repeat those expressions here:

$$
N_F = \left[\frac{f_0^{(s)}(M^2_s)}{f_0^{(d)}(M^2_K)} \right]^2
$$

and

$$
N'_F = \left[\frac{f_0^{(s)}(M^2_s)}{f_0^{(d)}(M^2_K)} \right]^2.
$$

These ratios are relevant to the extraction of the fragmentation fraction ratios from the branching fraction ratios

$$
\frac{B(B_s^0 \to D_s^{+}\pi^-)}{B(B_s^0 \to D_s^{+}K^-)} \text{ and } \frac{B(B_s^0 \to D_s^{+}\pi^-)}{B(B_s^0 \to D_s^{+}\pi^-)},
$$

respectively.

Using our results in Equations (26) and (27), we obtain

$$
N_F = 1.00(12),
$$

$$
N'_F = 1.01(12).
$$

These results are uncorrelated with the other factors in Equations (37) and (38), so that we can update the LHCb result for the fragmentation ratio directly. Using the values of $N_a = 1.00(2)$ and $N_c = 0.966(75)$ [8, 9], we find

$$
\frac{f_s}{f_d} = 0.310(30)_{\text{stat.}}^{+0.00}_{-0.01}\text{(21)_{syst.}}^{-0.00}_{+0.00}\text{(38)_{latt.}},
$$

by using N_F for the $B(B_s^0 \to D_s^{+}\pi^-)/B(B_s^0 \to D_s^{+}K^-)$ channel. The uncertainties in this result are: the experimental statistical and systematic uncertainties; the uncertainty associated with N_a; and the uncertainties in our lattice input, N_F. We assume no correlations in these uncertainties. For the $B(B_s^0 \to D_s^{+}\pi^-)/B(B_s^0 \to D_s^{+}\pi^-)$ channel, we obtain

$$
\frac{f_s}{f_d} = 0.307(16)_{\text{stat.}}^{+0.00}_{-0.01}\text{(23)_{syst.}}^{+0.00}_{-0.01}\text{(44)_{latt.}},
$$

from N'_F.

These results are in agreement with the result determined in [10],

$$
\frac{f_s}{f_d} = 0.286(16)_{\text{stat.}}^{+0.00}_{-0.01}\text{(21)_{syst.}}^{+0.00}_{-0.01}\text{(26)_{latt.}}^{+0.00}_{-0.01}\text{(22)_{Ne.}}
$$

Both of these lattice results are a little higher than that quoted in [1] of $f_s/f_d = 0.259(15)$ or the average value of $f_s/f_d = 0.267^{+22}_{-20}$ determined in [5], but all results agree within the quoted uncertainties.

The ratio

$$
R(D) = \frac{B(B \to D\tau\nu)}{B(B \to D\ell\nu)}
$$

measures the ratio of branching fraction of the semileptonic decay to the τ lepton to the branching fraction to an electron or muon (represented by ℓ). The experimental measurements of this branching fraction ratio are currently in tension with the Standard Model result. The global experimental average is [39, 41–43]

$$
R(D)_{\text{exp.}} = 0.391(41)_{\text{stat.}}^{+0.00}_{-0.01}\text{(28)_{sys.}},
$$

a value that is approximately 4σ from the theoretical expectation

$$
R(D)_{\text{theor.}} = 0.299(7),
$$

(47)
where we have taken the mean of the results in [10, 12, 44], and combined uncertainties in quadrature, neglecting any correlations for simplicity, because a full analysis of this result is beyond the scope of this work.

We present the first calculation from lattice QCD of the corresponding ratio for the semileptonic $B_s \to D_s \ell \nu$ decay,

$$R(D_s) = \frac{B(B_s \to D_s \ell \nu)}{B(B_s \to D_s \ell \nu)}.$$

(49)

This ratio has not been experimentally measured and this provides an opportunity for lattice QCD to make a clear prediction of the value expected from the Standard Model. Using the form factor results of the previous section, we find

$$R(D_s) = 0.301(6).$$

(50)

We provide a complete error budget for this ratio in Table X and plot the differential branching fractions for $B_s \to D_s \mu \nu$ and $B_s \to D_s \tau \nu$ as functions of the momentum transfer in Figure 15. This result is larger, and about three time more precise, than the prediction of V_{cb} from exclusive and inclusive decays. Future experimental measurements of semileptonic decays of B_s mesons, in conjunction with our results for the form factors and for $R(D_s)$, may provide some insight into these tensions.

Our result for the form factor at zero recoil, $G(1)$, presented in Equation (31), is consistent with an earlier determination by the ETM collaboration [11]. Moreover, our results for the form factor ratios $f_0^{B_s \to D_s}(M_Z^2)/f_0^{B \to D}(M_K^2)$ and $f_0^{B_s \to D_s}(M_Z^2)/f_0^{B \to D}(M_K^2)$, given in Equations (26) and (27), are in agreement with the values obtained by the FNAL/MILC collaborations. Our determination of this ratio incorporates correlations between the form factors for both decay channels, but the quoted uncertainty does not include the statistical correlations between the raw correlator data, which are negligible at the current level of precision. We determine values for the fragmentation fraction ratio, f_s/f_d, Equations (43) and (44). These results have larger uncertainties associated with the form factor inputs than those determined in [10]. Finally, we give the branching fraction ratio, $R(D_s)$, in Equation (50).

The dominant uncertainty in the form factors for the $B_s \to D_s \ell \nu$ decay arises from the discretization effects, with a significant contribution from the matching to full QCD. Higher order calculations in lattice perturbation theory with the highly improved actions employed in this calculation are currently unfeasible, so we are exploring ways to reduce matching errors by combining results calculated using NRQCD with those determined with an entirely relativistic formulation for the b-quark. This approach is outlined in [12, 25].

The LHC is scheduled to significantly improve the sta-
tistical uncertainties in experimental measurements of B_s decays with more data over the next decade. Currently, the most precise determinations of the fragmentation fraction ratio, f_s/f_d, are those measured in situ at the LHC. To improve the theoretical calculations of this ratio requires several advances. At present the lattice form factor results are the largest source of uncertainty in the theoretical result for the ratio, but this could be improved with a suitable global averaging procedure, such as that undertaken in [45].

Further improvements in the uncertainty in the Standard Model expectation of the ratio of the fragmentation fractions will ultimately require concerted effort to reduce all sources of uncertainty, not just those from lattice QCD. Improved theoretical determinations of the fragmentation fraction ratio will be necessary to take full advantage of the better statistical precision of future experimental results and shed light on current tensions in the heavy quark flavor sector.

ACKNOWLEDGMENTS

Numerical simulations were carried out on facilities of the USQCD collaboration funded by the Office of Science of the DOE and at the Ohio Supercomputer Center. Parts of this work were supported by the National Science Foundation. J.S. was supported in part by DOE grant DE-SC0011726. C.J.M. and H.N. were supported in part by NSF grant PHY1414614. We thank the MILC collaboration for use of their gauge configurations.

Appendix A: Reconstructing form factors

In this appendix we provide our fit results for the coefficients of the z-expansion, for both the $B_s \to D_s \ell \nu$ decay and the ratio of the $B \to D \ell \nu$ and $B_s \to D_s \ell \nu$ decays. We also tabulate our choice of priors for the chiral-continuum extrapolation for the $B_s \to D_s \ell \nu$ decay.
<table>
<thead>
<tr>
<th>$a_0^{(0)}$</th>
<th>$a_1^{(0)}$</th>
<th>$a_2^{(0)}$</th>
<th>P_0</th>
<th>$a_0^{(+)}$</th>
<th>$a_1^{(+)}$</th>
<th>$a_2^{(+)}$</th>
<th>P_+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.658(31)</td>
<td>-0.10(30)</td>
<td>1.3(2.8)</td>
<td>6.330(9)</td>
<td>0.858(32)</td>
<td>-3.38(41)</td>
<td>0.6(4.7)</td>
<td>6.43(10)</td>
</tr>
<tr>
<td>9.53401×10^{-4}</td>
<td>-3.03547×10^{-3}</td>
<td>-5.42391×10^{-3}</td>
<td>8.76501×10^{-4}</td>
<td>5.94503×10^{-4}</td>
<td>1.58251×10^{-3}</td>
<td>1.60091×10^{-2}</td>
<td>6.15598×10^{-6}</td>
</tr>
<tr>
<td>9.03097×10^{-2}</td>
<td>-0.101760</td>
<td>-1.69040×10^{-2}</td>
<td>4.46248×10^{-4}</td>
<td>2.36283×10^{-2}</td>
<td>4.56659×10^{-2}</td>
<td>1.29286×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>8.02283</td>
<td>3.96101×10^{-3}</td>
<td>8.48079×10^{-3}</td>
<td>0.104246</td>
<td>0.760797</td>
<td>-8.23960×10^{-7}</td>
<td>8.06159×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>1.06275×10^{-2}</td>
<td>-3.65165×10^{-5}</td>
<td>-1.30241×10^{-3}</td>
<td>-3.70251×10^{-3}</td>
<td>8.02502×10^{-6}</td>
<td>-1.29286×10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00761×10^{-3}</td>
<td>-4.23358×10^{-3}</td>
<td>-2.64511×10^{-2}</td>
<td>9.42502×10^{-6}</td>
<td>8.09911×10^{-5}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.165251</td>
<td>-0.617234</td>
<td>-1.88031×10^{-4}</td>
<td>6.83236×10^{-5}</td>
<td>8.09911×10^{-5}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE XII. Coefficients and Blaschke factors for the z-expansions for the ratio of the $B_s \to D_s \ell \nu$ and $B \to D \ell \nu$, decays. Note that the Blaschke factors are common to both expansions.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Fit value $B_s \to D_s \ell \nu$</th>
<th>$B \to D \ell \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0^{(0)}$</td>
<td>0.663(32)</td>
<td>0.639(32)</td>
</tr>
<tr>
<td>$a_0^{(1)}$</td>
<td>-0.10(30)</td>
<td>0.18(33)</td>
</tr>
<tr>
<td>$a_2^{(0)}$</td>
<td>1.3(2.8)</td>
<td>-0.2(2.9)</td>
</tr>
<tr>
<td>\bar{P}_0</td>
<td>6.43(10)</td>
<td>6.43(10)</td>
</tr>
<tr>
<td>$a_0^{(+)}$</td>
<td>0.868(34)</td>
<td>0.870(38)</td>
</tr>
<tr>
<td>$a_2^{(+)}$</td>
<td>-3.35(43)</td>
<td>-3.27(59)</td>
</tr>
<tr>
<td>$a_2^{(+)}$</td>
<td>0.6(4.7)</td>
<td>0.5(4.8)</td>
</tr>
<tr>
<td>\bar{P}_{+}</td>
<td>6.330(9)</td>
<td>6.330(9)</td>
</tr>
</tbody>
</table>

TABLE XIII. Group I priors and fit results for the parameters in the modified z-expansion for the $B_s \to D_s \ell \nu$ decay.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prior $[f_0]$</th>
<th>Fit result $[f_0]$</th>
<th>Prior $[f_+]$</th>
<th>Fit result $[f_+]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>0.0(3.0)</td>
<td>0.663(32)</td>
<td>0.0(5.0)</td>
<td>0.868(34)</td>
</tr>
<tr>
<td>a_1</td>
<td>0.0(3.0)</td>
<td>-0.10(30)</td>
<td>0.18(33)</td>
<td>0.18(33)</td>
</tr>
<tr>
<td>a_2</td>
<td>0.0(3.0)</td>
<td>1.3(2.8)</td>
<td>-0.2(2.9)</td>
<td>-0.2(2.9)</td>
</tr>
<tr>
<td>$c_1^{(1)}$</td>
<td>0.28(15)</td>
<td>0.28(15)</td>
<td>0.31(13)</td>
<td>0.31(13)</td>
</tr>
<tr>
<td>$c_2^{(2)}$</td>
<td>0.0(2.0)</td>
<td>0.0(2.0)</td>
<td>0.0(2.0)</td>
<td>0.0(2.0)</td>
</tr>
<tr>
<td>$c_3^{(3)}$</td>
<td>-0.05(0.3)</td>
<td>-0.05(0.3)</td>
<td>-0.05(0.3)</td>
<td>-0.05(0.3)</td>
</tr>
<tr>
<td>$d_0^{(1)}$</td>
<td>-0.19(28)</td>
<td>-0.19(28)</td>
<td>-0.2(29)</td>
<td>-0.2(29)</td>
</tr>
<tr>
<td>$d_2^{(2)}$</td>
<td>-0.01(3.0)</td>
<td>-0.01(3.0)</td>
<td>-0.01(3.0)</td>
<td>-0.01(3.0)</td>
</tr>
<tr>
<td>$d_3^{(3)}$</td>
<td>-7×10^{-5}</td>
<td>-7×10^{-5}</td>
<td>-7×10^{-5}</td>
<td>-7×10^{-5}</td>
</tr>
<tr>
<td>$e_1^{(1)}$</td>
<td>0.22(24)</td>
<td>0.22(24)</td>
<td>0.08(24)</td>
<td>0.08(24)</td>
</tr>
<tr>
<td>$e_2^{(2)}$</td>
<td>-0.05(0.3)</td>
<td>-0.05(0.3)</td>
<td>-0.05(0.3)</td>
<td>-0.05(0.3)</td>
</tr>
<tr>
<td>$e_3^{(3)}$</td>
<td>-0.0001(0.3)</td>
<td>-0.0001(0.3)</td>
<td>-0.0001(0.3)</td>
<td>-0.0001(0.3)</td>
</tr>
<tr>
<td>$m_0^{(1)}$</td>
<td>1.00(1.0)</td>
<td>1.00(1.0)</td>
<td>0.70(73)</td>
<td>0.70(73)</td>
</tr>
<tr>
<td>$m_2^{(2)}$</td>
<td>0.1(1.0)</td>
<td>0.1(1.0)</td>
<td>-0.07(99)</td>
<td>-0.07(99)</td>
</tr>
<tr>
<td>$m_3^{(3)}$</td>
<td>0.0(1.0)</td>
<td>0.0(1.0)</td>
<td>-0.0002(1.0)</td>
<td>-0.0002(1.0)</td>
</tr>
<tr>
<td>$m_0^{(1)}$</td>
<td>0.00(0.3)</td>
<td>0.00(0.3)</td>
<td>0.00(0.3)</td>
<td>0.00(0.3)</td>
</tr>
<tr>
<td>$m_2^{(2)}$</td>
<td>0.0(1.0)</td>
<td>0.0(1.0)</td>
<td>-0.17(38)</td>
<td>-0.17(38)</td>
</tr>
<tr>
<td>$m_3^{(3)}$</td>
<td>0.0(1.0)</td>
<td>0.0(1.0)</td>
<td>-0.27(85)</td>
<td>-0.27(85)</td>
</tr>
</tbody>
</table>

TABLE XIV. Group II priors and fit results for the parameters in the modified z-expansion for the $B_s \to D_s \ell \nu$ decay.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prior $[f_0]$</th>
<th>Fit result $[f_0]$</th>
<th>Prior $[f_+]$</th>
<th>Fit result $[f_+]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1/a</td>
<td>2.6470(30)</td>
<td>2.6474(30)</td>
<td>2.6179(30)</td>
<td>2.6179(30)</td>
</tr>
<tr>
<td>a_{M_B}</td>
<td>3.23019(25)</td>
<td>3.23018(25)</td>
<td>3.26783(33)</td>
<td>3.26783(33)</td>
</tr>
<tr>
<td>$a_{E_D(0,0,0)}$</td>
<td>1.21026(21)</td>
<td>1.21025(20)</td>
<td>1.19031(24)</td>
<td>1.19028(24)</td>
</tr>
<tr>
<td>$a_{E_D(1,0,0)}$</td>
<td>1.2455530</td>
<td>1.24075(28)</td>
<td>1.23055(35)</td>
<td>1.23060(31)</td>
</tr>
<tr>
<td>$a_{E_D(1,1,0)}$</td>
<td>1.27942(29)</td>
<td>1.27953(27)</td>
<td>1.26974(35)</td>
<td>1.26948(32)</td>
</tr>
<tr>
<td>$a_{E_D(1,1,1)}$</td>
<td>1.29521(22)</td>
<td>1.29599(22)</td>
<td>1.29521(22)</td>
<td>1.29599(22)</td>
</tr>
<tr>
<td>a_{M_0}</td>
<td>0.15990(20)</td>
<td>0.15990(20)</td>
<td>0.21110(20)</td>
<td>0.21110(20)</td>
</tr>
<tr>
<td>a_{M_0}</td>
<td>0.13460(10)</td>
<td>0.13460(10)</td>
<td>0.18730(10)</td>
<td>0.18730(10)</td>
</tr>
<tr>
<td>$a_{M_{K}}$</td>
<td>0.41113(18)</td>
<td>0.41113(18)</td>
<td>0.41435(22)</td>
<td>0.41435(22)</td>
</tr>
<tr>
<td>$a_{M_{K}}$</td>
<td>0.38313(24)</td>
<td>0.38313(24)</td>
<td>0.40984(21)</td>
<td>0.40984(21)</td>
</tr>
<tr>
<td>$a_{M_{K}}$</td>
<td>0.32172(20)</td>
<td>0.32172(20)</td>
<td>0.32851(48)</td>
<td>0.32850(48)</td>
</tr>
<tr>
<td>$1 + m_{\parallel}$</td>
<td>1.000(30)</td>
<td>1.000(30)</td>
<td>1.000(30)</td>
<td>1.000(30)</td>
</tr>
</tbody>
</table>
TABLE XV. Group III priors and fit results for the parameters in the modified z-expansion for the $B_s \to D_s \ell \nu$ decay.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prior (GeV)</th>
<th>Fit result (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>0.3133(23)</td>
<td>0.3130(23)</td>
</tr>
<tr>
<td>$m_{q_{phys}}^\pi$</td>
<td>0.6858(40)</td>
<td>0.6858(40)</td>
</tr>
<tr>
<td>$m_{\pi_{phys}}^\pi$</td>
<td>0.13500000(60)</td>
<td>0.13500000(60)</td>
</tr>
<tr>
<td>$m_{\pi_{phys}}^{D}$</td>
<td>5.36679(23)</td>
<td>5.36679(23)</td>
</tr>
<tr>
<td>$m_{\pi_{phys}}^{B}$</td>
<td>1.96830(10)</td>
<td>1.96830(10)</td>
</tr>
<tr>
<td>$m_{\pi_{phys}}^{K_s}$</td>
<td>0.4957(20)</td>
<td>0.4957(20)</td>
</tr>
<tr>
<td>M_+</td>
<td>6.3300(90)</td>
<td>6.3300(90)</td>
</tr>
<tr>
<td>M_0</td>
<td>6.398(99)</td>
<td>6.42(10)</td>
</tr>
</tbody>
</table>
TABLE XVI. Group I priors and fit results for the parameters in the modified z-expansion for the ratio of the form factors for the $B_s \to D_s \ell \nu$ decay, indicated by the superscript B_s, and $B \to D \ell \nu$ decay, labeled by the superscript B.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior f_{B_s}</th>
<th>Fit result f_{B_s}</th>
<th>Prior f_{B_s}</th>
<th>Fit result f_{B_s}</th>
<th>Prior f_B</th>
<th>Fit result f_B</th>
<th>Prior f_B</th>
<th>Fit result f_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>0.0(3.0)</td>
<td>0.663(32)</td>
<td>0.0(5.0)</td>
<td>0.639(32)</td>
<td>0.0(3.0)</td>
<td>0.868(34)</td>
<td>0.0(5.0)</td>
<td>0.870(31)</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.10(30)</td>
<td>0.018(33)</td>
<td>0.0(5.0)</td>
<td>-0.2(29)</td>
<td>0.0(3.0)</td>
<td>0.6(4.7)</td>
<td>0.0(5.0)</td>
<td>0.5(4.8)</td>
</tr>
<tr>
<td>$c_1^{(1)}$</td>
<td>0.0(1.0)</td>
<td>0.28(15)</td>
<td>0.0(1.0)</td>
<td>-0.10(23)</td>
<td>0.0(1.0)</td>
<td>0.43(15)</td>
<td>0.0(1.0)</td>
<td>0.50(25)</td>
</tr>
<tr>
<td>$c_1^{(2)}$</td>
<td>0.0(1.0)</td>
<td>-0.2(1.0)</td>
<td>0.0(1.0)</td>
<td>-0.08(1.0)</td>
<td>0.0(1.0)</td>
<td>0.48(15)</td>
<td>0.0(1.0)</td>
<td>1.13(79)</td>
</tr>
<tr>
<td>$c_1^{(3)}$</td>
<td>0.0(1.0)</td>
<td>0.03(1.0)</td>
<td>0.0(1.0)</td>
<td>0.002(1.0)</td>
<td>0.0(1.0)</td>
<td>-0.003(1.0)</td>
<td>0.0(1.0)</td>
<td>0.004(1.0)</td>
</tr>
<tr>
<td>$d_0^{(1)}$</td>
<td>0.0(1.0)</td>
<td>0.20(13)</td>
<td>0.0(1.0)</td>
<td>-0.11(19)</td>
<td>0.0(1.0)</td>
<td>0.31(13)</td>
<td>0.0(1.0)</td>
<td>0.38(20)</td>
</tr>
<tr>
<td>$d_0^{(2)}$</td>
<td>0.00(30)</td>
<td>0.02(30)</td>
<td>0.00(30)</td>
<td>0.0008(0.3)</td>
<td>0.00(30)</td>
<td>-0.05(29)</td>
<td>0.00(30)</td>
<td>0.13(29)</td>
</tr>
<tr>
<td>$e_1^{(1)}$</td>
<td>0.00(30)</td>
<td>-0.005(0.3)</td>
<td>0.00(30)</td>
<td>-0.0003(0.3)</td>
<td>0.00(30)</td>
<td>0.0002(0.3)</td>
<td>0.00(30)</td>
<td>-0.0005(0.3)</td>
</tr>
<tr>
<td>$e_1^{(2)}$</td>
<td>0.00(30)</td>
<td>-0.19(28)</td>
<td>0.00(30)</td>
<td>0.01(28)</td>
<td>0.00(30)</td>
<td>-0.02(29)</td>
<td>0.00(30)</td>
<td>-0.06(28)</td>
</tr>
<tr>
<td>$e_1^{(3)}$</td>
<td>0.00(30)</td>
<td>0.0002(0.3)</td>
<td>0.00(30)</td>
<td>2.10^{-5}(0.3)</td>
<td>0.00(30)</td>
<td>-7.10^{-5}(0.3)</td>
<td>0.00(30)</td>
<td>9.10^{-5}(0.3)</td>
</tr>
<tr>
<td>$e_2^{(1)}$</td>
<td>0.00(30)</td>
<td>0.04(30)</td>
<td>0.00(30)</td>
<td>-0.02(30)</td>
<td>0.00(30)</td>
<td>0.05(30)</td>
<td>0.00(30)</td>
<td>0.06(30)</td>
</tr>
<tr>
<td>$e_2^{(2)}$</td>
<td>0.00(30)</td>
<td>-0.0002(0.3)</td>
<td>0.00(30)</td>
<td>-0.0003(0.3)</td>
<td>0.00(30)</td>
<td>0.003(0.3)</td>
<td>0.00(30)</td>
<td>-0.002(0.3)</td>
</tr>
<tr>
<td>$f_0^{(1)}$</td>
<td>2.10^{-5}(0.3)</td>
<td>3.10^{-6}(0.3)</td>
<td>0.00(30)</td>
<td>2.10^{-5}(0.3)</td>
<td>0.00(30)</td>
<td>1.10^{-6}(0.3)</td>
<td>0.00(30)</td>
<td>-1.10^{-6}(0.3)</td>
</tr>
<tr>
<td>$f_0^{(2)}$</td>
<td>0.22(24)</td>
<td>0.27(25)</td>
<td>0.00(30)</td>
<td>0.08(24)</td>
<td>0.00(30)</td>
<td>0.05(25)</td>
<td>0.00(30)</td>
<td>0.05(25)</td>
</tr>
<tr>
<td>$f_0^{(3)}$</td>
<td>0.0005(0.3)</td>
<td>0.006(0.3)</td>
<td>0.00(30)</td>
<td>-0.02(0.3)</td>
<td>0.00(30)</td>
<td>-0.01(30)</td>
<td>0.00(30)</td>
<td>-0.01(30)</td>
</tr>
<tr>
<td>$f_0^{(4)}$</td>
<td>0.004(0.3)</td>
<td>-8.10^{-5}(0.3)</td>
<td>0.00(30)</td>
<td>-0.0001(0.3)</td>
<td>0.00(30)</td>
<td>4.10^{-5}(0.3)</td>
<td>0.00(30)</td>
<td>4.10^{-5}(0.3)</td>
</tr>
<tr>
<td>$f_0^{(5)}$</td>
<td>1.42(53)</td>
<td>1.49(66)</td>
<td>0.00(1.0)</td>
<td>0.70(73)</td>
<td>0.00(1.0)</td>
<td>0.12(82)</td>
<td>0.00(1.0)</td>
<td>0.12(82)</td>
</tr>
<tr>
<td>$f_0^{(6)}$</td>
<td>-0.02(1.0)</td>
<td>0.02(1.0)</td>
<td>0.00(1.0)</td>
<td>0.07(10)</td>
<td>0.00(1.0)</td>
<td>-0.02(99)</td>
<td>0.00(1.0)</td>
<td>-0.02(99)</td>
</tr>
<tr>
<td>$f_0^{(7)}$</td>
<td>0.0009(1.0)</td>
<td>-0.0003(1.0)</td>
<td>0.00(1.0)</td>
<td>0.0002(1.0)</td>
<td>0.00(1.0)</td>
<td>3.10^{-5}(1.0)</td>
<td>0.00(1.0)</td>
<td>3.10^{-5}(1.0)</td>
</tr>
<tr>
<td>$f_0^{(8)}$</td>
<td>-0.001(0.3)</td>
<td>0.02(30)</td>
<td>0.00(30)</td>
<td>-0.10(24)</td>
<td>0.00(30)</td>
<td>-0.05(22)</td>
<td>0.00(30)</td>
<td>0.03(24)</td>
</tr>
<tr>
<td>$f_0^{(9)}$</td>
<td>0.009(0.3)</td>
<td>-0.0003(0.3)</td>
<td>0.00(30)</td>
<td>-0.0002(0.3)</td>
<td>0.00(30)</td>
<td>5.10^{-5}(0.3)</td>
<td>0.00(30)</td>
<td>5.10^{-5}(0.3)</td>
</tr>
<tr>
<td>$f_0^{(10)}$</td>
<td>0.1(1.0)</td>
<td>-0.31(44)</td>
<td>0.0(1.0)</td>
<td>-0.17(38)</td>
<td>0.0(1.0)</td>
<td>-0.19(40)</td>
<td>0.0(1.0)</td>
<td>-0.12(89)</td>
</tr>
<tr>
<td>$f_0^{(11)}$</td>
<td>0.0003(1.0)</td>
<td>0.1(1.0)</td>
<td>0.0(1.0)</td>
<td>-0.77(85)</td>
<td>0.0(1.0)</td>
<td>-0.12(89)</td>
<td>0.0(1.0)</td>
<td>5.10^{-5}(1.0)</td>
</tr>
<tr>
<td>$f_0^{(12)}$</td>
<td>0.04(1.0)</td>
<td>-0.002(1.0)</td>
<td>0.0(1.0)</td>
<td>0.0004(1.0)</td>
<td>0.0(1.0)</td>
<td>5.10^{-5}(1.0)</td>
<td>0.0(1.0)</td>
<td>5.10^{-5}(1.0)</td>
</tr>
</tbody>
</table>
TABLE XVII. Group II priors and fit results for the parameters in the modified z-expansion for the ratio of the form factors for the $B_s \to D_s \ell \nu$ and $B \to D \ell \nu$ decays.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prior $[B_s \to D_s \ell \nu]$</th>
<th>Fit result $[B_s \to D_s \ell \nu]$</th>
<th>Prior $[B \to D \ell \nu]$</th>
<th>Fit result $[B \to D \ell \nu]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$aM_{B(s)}$</td>
<td>3.23019(25)</td>
<td>3.23017(25)</td>
<td>3.18937(62)</td>
<td>3.18933(62)</td>
</tr>
<tr>
<td></td>
<td>3.26781(33)</td>
<td>3.26782(33)</td>
<td>3.23194(88)</td>
<td>3.23211(87)</td>
</tr>
<tr>
<td></td>
<td>3.23575(38)</td>
<td>3.23578(38)</td>
<td>3.21199(77)</td>
<td>3.21193(77)</td>
</tr>
<tr>
<td></td>
<td>2.30906(26)</td>
<td>2.30905(26)</td>
<td>2.28120(49)</td>
<td>2.28117(48)</td>
</tr>
<tr>
<td></td>
<td>2.30122(16)</td>
<td>2.30122(16)</td>
<td>2.28102(40)</td>
<td>2.28112(40)</td>
</tr>
<tr>
<td>$aE_{D(s)}(0, 0, 0)$</td>
<td>1.18750(15)</td>
<td>1.18750(15)</td>
<td>1.13904(97)</td>
<td>1.13927(84)</td>
</tr>
<tr>
<td></td>
<td>1.20126(21)</td>
<td>1.20126(20)</td>
<td>1.16001(73)</td>
<td>1.16026(71)</td>
</tr>
<tr>
<td></td>
<td>1.19031(24)</td>
<td>1.19026(24)</td>
<td>1.16339(54)</td>
<td>1.16333(54)</td>
</tr>
<tr>
<td></td>
<td>0.84675(12)</td>
<td>0.84674(10)</td>
<td>0.81448(35)</td>
<td>0.81444(35)</td>
</tr>
<tr>
<td></td>
<td>0.84419(10)</td>
<td>0.84421(10)</td>
<td>0.81995(27)</td>
<td>0.82005(26)</td>
</tr>
<tr>
<td>$aE_{D(s)}(1, 0, 0)$</td>
<td>1.21497(19)</td>
<td>1.21505(19)</td>
<td>1.16821(10)</td>
<td>1.16794(90)</td>
</tr>
<tr>
<td></td>
<td>1.24055(30)</td>
<td>1.24076(28)</td>
<td>1.19896(99)</td>
<td>1.19915(94)</td>
</tr>
<tr>
<td></td>
<td>1.23055(35)</td>
<td>1.23058(31)</td>
<td>1.20399(76)</td>
<td>1.20448(69)</td>
</tr>
<tr>
<td></td>
<td>0.87579(16)</td>
<td>0.87580(15)</td>
<td>0.84377(56)</td>
<td>0.84399(50)</td>
</tr>
<tr>
<td></td>
<td>0.87353(16)</td>
<td>0.87344(15)</td>
<td>0.85102(40)</td>
<td>0.85086(38)</td>
</tr>
<tr>
<td>$aE_{D(s)}(1, 1, 0)$</td>
<td>1.24264(19)</td>
<td>1.24275(19)</td>
<td>1.19863(85)</td>
<td>1.19853(82)</td>
</tr>
<tr>
<td></td>
<td>1.27942(29)</td>
<td>1.27953(27)</td>
<td>1.24099(87)</td>
<td>1.23987(83)</td>
</tr>
<tr>
<td></td>
<td>1.26974(35)</td>
<td>1.26951(32)</td>
<td>1.24146(78)</td>
<td>1.24171(72)</td>
</tr>
<tr>
<td></td>
<td>0.90397(16)</td>
<td>0.90398(15)</td>
<td>0.87274(56)</td>
<td>0.87267(52)</td>
</tr>
<tr>
<td></td>
<td>0.90144(16)</td>
<td>0.90146(15)</td>
<td>0.87943(38)</td>
<td>0.87950(36)</td>
</tr>
<tr>
<td>$aE_{D(s)}(1, 1, 1)$</td>
<td>1.26908(22)</td>
<td>1.26908(22)</td>
<td>1.22850(85)</td>
<td>1.22833(83)</td>
</tr>
<tr>
<td></td>
<td>1.31755(46)</td>
<td>1.31734(40)</td>
<td>1.27838(93)</td>
<td>1.27815(91)</td>
</tr>
<tr>
<td></td>
<td>1.30708(48)</td>
<td>1.30751(42)</td>
<td>1.28312(97)</td>
<td>1.28316(90)</td>
</tr>
<tr>
<td></td>
<td>0.93126(24)</td>
<td>0.93126(24)</td>
<td>0.89996(74)</td>
<td>0.90037(66)</td>
</tr>
<tr>
<td></td>
<td>0.92873(24)</td>
<td>0.92879(20)</td>
<td>0.90647(50)</td>
<td>0.90645(47)</td>
</tr>
</tbody>
</table>
TABLE XVIII. Shared (Group II and III) priors and fit results for the parameters in the modified z-expansion for the ratio of the form factors for the $B_s \to D_s \ell \nu$ and $B \to D \ell \nu$ decays. These priors are common to both fits to the $B_s \to D_s \ell \nu$ and $B \to D \ell \nu$ decays, which are fitted in the same script to account for correlations between form factor results. Values for Group III priors are given in GeV.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prior</th>
<th>Fit result</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1/a</td>
<td>2.6470(30)</td>
<td>2.6474(30)</td>
</tr>
<tr>
<td></td>
<td>2.6180(30)</td>
<td>2.6174(30)</td>
</tr>
<tr>
<td></td>
<td>2.6440(30)</td>
<td>2.6442(30)</td>
</tr>
<tr>
<td></td>
<td>3.6990(30)</td>
<td>3.6990(30)</td>
</tr>
<tr>
<td></td>
<td>3.7120(40)</td>
<td>3.7121(39)</td>
</tr>
<tr>
<td>$1 + m_{\parallel}$</td>
<td>1.000(30)</td>
<td>0.998(30)</td>
</tr>
<tr>
<td>$1 + m_{\perp}$</td>
<td>1.000(30)</td>
<td>1.003(30)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Prior (GeV)</th>
<th>Fit result (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>0.3132(23)</td>
<td>0.3130(23)</td>
</tr>
<tr>
<td>$m_{B_s}^{\text{phys}}$</td>
<td>0.6858(40)</td>
<td>0.6858(40)</td>
</tr>
<tr>
<td>$m_{D_s}^{\text{phys}}$</td>
<td>0.13500000(60)</td>
<td>0.13500000(60)</td>
</tr>
<tr>
<td>$m_{K_s}^{\text{phys}}$</td>
<td>5.36679(23)</td>
<td>5.36679(23)</td>
</tr>
<tr>
<td>m_{D}^{phys}</td>
<td>1.96830(10)</td>
<td>1.96830(10)</td>
</tr>
<tr>
<td>m_{K}^{phys}</td>
<td>0.4957(20)</td>
<td>0.4957(20)</td>
</tr>
<tr>
<td>m_{B}^{phys}</td>
<td>5.27941(17)</td>
<td>5.27942(17)</td>
</tr>
<tr>
<td>$m_{D_s}^{\text{phys}}$</td>
<td>1.86690(40)</td>
<td>1.86690(40)</td>
</tr>
<tr>
<td>M_+</td>
<td>6.3300(90)</td>
<td>6.3300(90)</td>
</tr>
<tr>
<td>M_0</td>
<td>6.42(10)</td>
<td>6.42(10)</td>
</tr>
</tbody>
</table>