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ABSTRACT  

  

Human impacts on the Chesapeake Bay through increased nutrient run-off as a 
result of land-use change, urbanization, and industrialization, have resulted in a 
degradation of water quality over the last half-century. These direct impacts, 
compounded with human-induced climate changes such as warming, rising sea-level, and 
changes in precipitation, have elevated the conversation surrounding the future of water 
quality in the Bay. The overall goal of this dissertation project is to use a combination of 
models and data to better understand and quantify the impact of changes in nutrient 
loads and climate on water quality in the Chesapeake Bay. This research achieves that 
goal in three parts.  

First, a set of eight water quality models is used to establish a model mean and 
assess model skill. All models were found to exhibit similar skill in resolving dissolved 
oxygen concentrations as well as a number of dissolved oxygen-influencing variables 
(temperature, salinity, stratification, chlorophyll and nitrate) and the model mean 
exhibited the highest individual skill. The location of stratification within the water 
column was found to be a limiting factor in the models’ ability to adequately simulate 
habitat compression resulting from low-oxygen conditions.   

Second, two of the previous models underwent the regulatory Chesapeake Bay 
pollution diet mandated by the Environmental Protection Agency. Both models exhibited 
a similar relative improvement in dissolved oxygen concentrations as a result of the 
reduction of nutrients stipulated in the pollution diet. A Confidence Index was developed 
to identify the locations of the Bay where the models are in agreement and disagreement 
regarding the impacts of the pollution diet. The models were least certain in the deep part 
of the upper main stem of the Bay and the uncertainty primarily stemmed from the post-
processing methodology.  

Finally, by projecting the impacts of climate change in 2050 on the Bay, the 
potential success of the pollution diet in light of future projections for air temperature, sea 
level, and precipitation was examined. While a changing climate will reduce the ability of 
the nutrient reduction to improve oxygen concentrations, that effect is trumped by the 
improvements in dissolved oxygen stemming from the pollution diet itself. However, 
climate change still has the potential to cause the current level of nutrient reduction to be 
inadequate. This is primarily due to the fact that low-oxygen conditions are predicted to 
start one week earlier, on average, in the future, with the primary changes resulting from 
the increase in temperature.   

Overall, this research lends an increased degree of confidence in the water quality 
modeling of the potential impact of the Chesapeake Bay pollution diet. This research also 
establishes the efficacy of utilizing a multiple model approach to examining projected 
changes in water quality while establishing that the pollution diet trumps the impact from 
climate change. This work will lead directly to advances in scientific understanding of the 
response of water quality, ecosystem health, and ecological resilience to the impacts of 
nutrient reduction and climate change. 
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1. INTRODUCTION 

1.1 Motivation 
Anthropogenic impacts, primarily in the form of excess nutrients derived from 

fertilizers, sewage, and storm water runoff, have resulted in the degradation of coastal 

water quality throughout much of the world (Diaz and Rosenberg, 2008; Rabalais et al., 

2010). In the Chesapeake Bay, anthropogenic impacts have specifically resulted in 

decreased oxygen levels and increased volumes of low-oxygen waters, particularly 

exacerbated since the mid-20th century (Cooper and Brush, 1991; Boesch et al., 2001; 

Hagy et al., 2004). The increased volume of low-oxygen waters has negatively affected 

the health of the Chesapeake Bay ecosystem and economy (BRFP, 2004; Nelson, 2014). 

In an effort to restore the Bay’s water quality to acceptable levels under the Clean Water 

Act, the six states and Washington, D.C. that make up the Chesapeake Bay watershed 

established a pollution diet for the region that is primarily focused on increasing 

dissolved oxygen (DO) concentrations in the waters of the central portion of the Bay 

(Keisman and Shenk, 2013).  

The emphasis on DO in determining water quality has developed due to the 

observed global proliferation of hypoxic events both spatially and temporally in the 

world’s coastal oceans (Diaz, 2001; Gooday et al., 2009). Hypoxic waters lack sufficient 

oxygen levels required for oxygen-dependent aquatic organisms to survive. While there is 

not a strict numerical definition, it is widely accepted that hypoxia is reached when DO 

concentrations fall below ~30% saturation, or 2 mg L-1. Even though hypoxia may not be 

reached until DO concentrations decrease to these levels, many species can incur 

negative health impacts at concentrations as high as 5 mg L-1 (Vaquer-Sunyer and Duarte, 

2008; Portner and Lanning, 2009).  

The Bay’s hypoxic waters are primarily caused by anthropogenic impacts such as 

land-use change, industrialization, and urbanization that have dramatically increased the 

input of nutrients to the Bay, driving increased primary production (Harding and Perry, 

1997; Kemp et al., 2005). This increased primary production results in elevated organic 

matter throughout the water column that is decomposed by DO-utilizing microorganisms 

and bacteria. The resulting hypoxic events in the Bay can be intensely episodic (Kemp et 
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al., 2009) and cause deleterious harm to commercially and ecologically valuable fish, 

crabs, and shellfish in the adult and larval stages (Keister et al., 2000; Breitburg, 2002; 

Ekau et al., 2010; Buchheister et al., 2013).  

The efforts to clean up the Bay, established by the pollution diet, are estimated to 

cost in the tens of billions of dollars (Nelson, 2014). With such high potential costs, it is 

critical that the science behind the pollution diet be well founded and constrained as best 

as possible. As the regulation developed to clean up the Chesapeake Bay was predicated 

on an environmental modeling framework (USEPA, 2010), it is important that scientists 

removed from the regulatory process critically analyze the findings. In that vein, this 

research focuses on the estuarine water quality-modeling portion of the pollution diet in 

an effort to assess model capabilities, analyze confidence in projections, and evaluate 

those projections in light of a changing climate.  

 

1.2 The Chesapeake Bay TMDL  

The pollution diet developed to improve water quality in the Chesapeake Bay is 

called the 2010 Chesapeake Bay Total Maximum Daily Load (TMDL), which limits the 

loads of nitrogen, phosphorus, and sediment delivered to the Bay from the watershed. 

The science behind TMDLs in general is relatively young, with the Environmental 

Protection Agency (EPA) first drafting TMDL regulations in 1992, for the purpose of 

ensuring compliance with the Clean Water Act (CWA; Keisman and Shenk, 2013). In the 

Chesapeake Bay, the development of the TMDL was initiated in 2000 and formally 

implemented in 2010 as the largest and most complex TMDL system in the nation 

(USEPA, 2010). TMDL levels were set using a coupled watershed-estuarine modeling 

system developed and maintained by the EPA’s Chesapeake Bay Program (CBP), 

together with an extensive set of CBP monitoring data. Historical observations from the 

CBP monitoring program, beginning in 1984 and continuing through today, serve as the 

basis for the regulatory model’s calibrations.  

Since 1983, when the first Bay agreement was signed, the Chesapeake Bay 

community has worked to remediate the declining health of the Bay (Batiuk et al., 2013). 

Despite the efforts of the restoration community, Bay health did not adequately improve 
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in accordance with the CWA’s goal that all waters of the United States be fishable and 

swimmable. In order to force the entire watershed to act to increase Bay health, a TMDL 

for the Chesapeake Bay was proposed and work began on its planning in 2000 (USEPA, 

2010). Finally, in 2009, President Obama issued Executive Order 13508: Chesapeake 

Bay Protection and Restoration (Executive Order No. 13508, 2009). That Executive 

Order mandated that the federal government, under the leadership of the EPA, take the 

lead in the restoration of the Bay and its watershed. The mandate gave the EPA the 

backing, both legally and ceremoniously, that it needed to fully endorse and impose the 

regulatory Chesapeake Bay TMDL in accordance with the Clean Water Act.  

Under the CWA, the EPA only has the authority to order a set of TMDLs if the 

individual states within the watershed have not adequately addressed the environmental 

issue. The purview of the EPA within the CWA to implement specific functions of a 

TMDL is very broad and resulted in a 2013 court ruling (American Farm Bureau 

Federation et al., v. United States Environmental Protection Agency, 2013) where the 

judge rejected all three of the plaintiffs’ charges and held that (1) the EPA did have 

jurisdiction to set specific load allocations, (2) the EPA did allow adequate public 

comment, and (3) that within the modeling efforts conducted by the EPA to set TMDL 

levels, the EPA was granted deference. The deference finding granted by the court is 

based on the plaintiff’s inability to satisfactorily prove harm from the EPA’s selection of 

methods and monitoring data used in the modeling process that resulted in the specific 

TMDLs. By granting deference, Judge Rambo effectively punted the question of the 

scientific validity of the Chesapeake Bay TMDL’s development because the court did not 

have the expertise to verify the EPA’s methods.  

Following the decision, the Farm Bureau appealed the District Court’s ruling and 

was supported on the appeal by 20 states outside of the Chesapeake Bay watershed. The 

states were primarily concerned with the potential for the Chesapeake Bay TMDL to 

serve as a blueprint for other locations, such as the Mississippi River watershed. In July 

2015, the Third Circuit upheld the District Court’s decision to allow the EPA to move 

forward with TMDL implementation (American Farm Bureau Federation et al., v. 

United States Environmental Protection Agency, 2015). Soon after, the Farm Bureau 

looked to the Supreme Court in hopes that the nation’s highest court would accept their 
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petition for the case to be relitigated. In February 2016, the Court denied the Farm 

Bureau’s petition, effectively affirming the decisions of the lower courts.   

While the TMDL has effectively withstood a barrage of lawsuits attempting to 

pick holes in the regulatory procedure and discredit the science, it is not safe for 

perpetuity. It is certain that the interests most negatively affected by the regulation will 

continue to fight against its implementation. In light of that, it is incumbent on the 

scientific community to continue to utilize transparency and the most current scientific 

techniques and understanding to ensure that the scientific basis of the regulation is on 

sound footing.  

 

1.3 The Role of Multiple Models 

As the EPA and CBP continue to uphold the pollution diet in the courts of law 

and public opinion, the use of multiple models has entered the discussion as a potential 

way to address future questions of confidence in the modeled scenario predictions used 

for TMDL development. In early 2012, the CBP requested that the Scientific and 

Technical Advisory Committee (STAC) conduct two workshops on Multiple Models in 

Management. The goal of these meetings was to discuss the utilization of a multiple 

model approach when evaluating the recovery of the Chesapeake Bay system in order to 

enhance overall confidence in model projections and to better define model uncertainty 

(Friedrichs et al., 2012; Weller et al., 2013).  

While the use of multiple models in decision-making may be relatively new to the 

EPA and CBP, the Intergovernmental Panel on Climate Change (IPCC) and the National 

Weather Service (NWS) are already utilizing multiple models in order to contextualize 

their projections.  The IPCC uses their set of models to establish a degree of certainty for 

each projection. The IPCC discusses uncertainty with a qualitative “Confidence Scale” 

and a quantitative “Likelihood Scale” (Mastrandrea et al., 2010). Both of these scales are 

meant to describe the level of agreement between models, evidence, and scientific 

understanding in relation to any given environmental projection. The NWS utilizes model 

ensembles in hurricane predictions to inform a “consensus forecast” (NWS, 2009). 

Depending on the situation, an NWS model ensemble may be composed of multiple 
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models projecting identical variables over a given timeframe, or of a single model that 

has been run multiple times with different initial conditions or model parameters. The 

NWS also utilizes a “corrected” consensus technique that weights the output of different 

models to account for model biases since not all models are developed to examine the 

same processes (NWS, 2009). The methods used by the IPCC and NWS in working with 

multiple models can serve as frameworks for utilizing multiple models in a regulatory 

context for the EPA in the future. 

As environmental policies continue to be developed, it is necessary that past 

policies be re-evaluated with improved technology and understanding, both of which can 

be addressed with the use of multiple models. Ultimately, a better understanding of 

uncertainty by examining the results of multiple models will allow the CBP to discuss the 

potential effectiveness of TMDL implementation with the public and individual 

stakeholders while also being able to better defend the methods and science behind 

individual nutrient allocations. To do this, the following research utilizes the expertise of 

water quality modelers throughout the Chesapeake Bay modeling community to assess 

how the different models perform across multiple variables in order to establish a range 

of capabilities. Using the information garnered from those multiple models, this research 

compares where, when, and why two of the models agree and disagree on the potential 

impact of the TMDL in an effort to assess confidence in the ability of the regulation to 

meet its goals. Additionally, this research explores the impact that climate change will 

have on the trajectory of Chesapeake Bay water quality under the current TMDL. The 

results of the project allow for an in-depth examination of the limitations of current water 

quality models in terms of management application, how multiple models can be used to 

establish a range of confidence in a regulatory setting, and why the establishment of a 

pollution diet for today must consider the climate impacts of tomorrow. 

 

1.4 Dissertation Motivating Questions and Structure 

This study explores the use of water quality models in management by asking three 

fundamental questions: 
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• What are the current limitations of Chesapeake Bay water quality models in terms 

of modeling low-oxygen waters? 

• What is our confidence in the modeling of the water quality portion of the 

Chesapeake Bay TMDL? 

• How might climate change affect the efficacy of the Chesapeake Bay TMDL? 

 

 Chapter 2 evaluates the strengths and weaknesses of eight Bay water quality 

models of varying complexity, model structure, and model design in terms of their ability 

to simulate water column oxygen dynamics, as well as the variables thought to be the 

main drivers of dissolved oxygen variability. The skill of a model mean was compared to 

the skill of the individual models and the difference in skill between the complex and 

more simplistic models was also analyzed. An additional analysis of observations led to 

the identification of a key variable that the models are poorly resolving, limiting their 

effectiveness for management decisions involving habitat compression.  

 Chapter 3 utilizes two of the models from Chapter 2 to assess confidence in the 

water quality modeling of the Chesapeake Bay TMDL. Both models were forced by 

similar base and nutrient reduction scenarios and subsequently underwent the same post-

processing analysis used to initially establish the TMDL. Model results were then 

compared in terms of absolute and relatively changes in Bay dissolved oxygen, as well as 

the similarity in time and place of water quality standards. A Confidence Index was 

developed to identify locations in the Bay where the models were in highest agreement 

(high confidence) and lowest agreement (low confidence).   

 Chapter 4 takes one of the models from Chapter 3 to examine the potential impact 

changes in climate may have on the TMDL to adequately improve water quality 

conditions in terms of dissolved oxygen. Changes in temperature, sea level rise, and 

precipitation (river flow) for a 2050 time horizon were examined in order to identify the 

absolute and relative impacts of each projected change. To understand the difference 

between a reduced nutrient future and a business as usual future, climate change impacts 

were evaluated with both the TMDL and present day nutrient loading conditions.  
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 Chapter 5 explores the role multiple models are, can, and should play in 

regulatory policies like the TMDL while establishing the complexities and limitations 

involved in such an endeavor.    
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2. CHALLENGES ASSOCIATED WITH MODELING LOW-

OXYGEN WATERS IN CHESAPEAKE BAY: A MULTIPLE 

MODEL COMPARISON 
 

Key Points 

• There is no statistical difference between the ability of simple and complex 

models to simulate the mean and monthly variability of bottom dissolved oxygen.  

• Model skill for dissolved oxygen is greater than that of the variables generally 

considered to drive DO variability.  

• To better simulate habitat compression due to hypoxia, the ability of models to 

simulate the mixed layer depth must be improved.  

• The mean of a set of models is more skilled than any individual model across a 

broad suite of variables.  
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Abstract  
As three-dimensional (3-D) aquatic ecosystem models are used more frequently 

for operational water quality forecasts and ecological management decisions, it is 

important to understand the relative strengths and limitations of existing 3-D models of 

varying spatial resolution and biogeochemical complexity. To this end, 2-year 

simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been 

statistically compared to each other and to historical monitoring data. Results show that 

although models have difficulty resolving the variables typically thought to be the main 

drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight 

models have significant skill in reproducing the mean and seasonal variability of 

dissolved oxygen. In addition, models with constant net respiration rates independent of 

nutrient supply and temperature reproduced observed dissolved oxygen concentrations 

about as well as much more complex, nutrient-dependent biogeochemical models. This 

finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake 

Bay, which may be possible with very simple oxygen parameterizations, in contrast to the 

more complex full biogeochemical models required for scenario-based forecasting. 

However, models have difficulty simulating correct density and oxygen mixed layer 

depths, which are important ecologically in terms of habitat compression. Observations 

indicate a much stronger correlation between the depths of the top of the pycnocline and 

oxycline than between their maximum vertical gradients, highlighting the importance of 

the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when 

low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus 

depend more on the ability of models to reproduce the correct mean and variability of the 

depth of the physically driven surface mixed layer than the precise magnitude of the 

vertical density gradient.  
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2.1 Introduction 
Since the middle of the last century, anthropogenic impacts have dramatically 

decreased water quality throughout the Chesapeake Bay (Boesch et al., 2001), one of the 

largest estuaries in North America. Land-use change along with the industrialization and 

urbanization of the Chesapeake Bay watershed have caused dramatic increases in nutrient 

inputs to the bay (Kemp et al., 2005), spurring additional primary production and 

phytoplankton abundance (Harding Jr. and Perry, 1997). Because increased primary 

production leads to more organic matter throughout the water column that is eventually 

decomposed by bacteria, these increased nutrient inputs to the bay have led to a 

corresponding decrease in dissolved oxygen (DO) concentrations (Hagy et al., 2004). 

Hypoxia, generally defined as the condition in which DO concentrations are below 2 mg 

L-1, usually initiates seasonally in the northern portion of the bay and expands southward 

as summer develops (Kemp et al., 2009; Testa and Kemp, 2014). Although hypoxia in the 

Chesapeake Bay has likely existed since European colonization (Cooper and Brush, 

1991, 1993), recent studies have highlighted an accelerated rise in the number and spatial 

extent of hypoxic, as well as anoxic (DO concentrations <0.2 mg L-1), events in the bay 

since the 1950s, primarily attributed to increased anthropogenic nutrient input (Hagy et 

al., 2004; Kemp et al., 2005; Gilbert et al., 2010). These impacts are likely to be 

exacerbated by future climate change (Najjar et al., 2010; Meire et al., 2013; Harding Jr. 

et al., 2015).  

Interest in the ecological impacts of reduced DO concentrations has been elevated 

due to the observed proliferation of hypoxic events in the world’s coastal oceans, creating 

vast dead zone areas that compress suitable habitats for many marine species (Diaz, 2001; 

Diaz and Rosenberg, 2008; Pierson et al., 2009). Low-DO waters can greatly impact the 

abundance and health of important ecological species, potentially resulting in suffocation 

and major kills of fish, crabs, and shellfish (Breitburg, 2002; Ekau et al., 2010; Levin et 

al., 2009). While the presence of DO concentrations < 2 mg L-1 have been shown to 

decrease the abundance of fish larvae (Keister et al., 2000), some species can incur 

negative health impacts and modify their behavior at significantly higher DO 

concentrations (Vaquer-Sunyer and Duarte, 2008). DO concentrations of ~ 4 mg L-1 have 

been found to compress demersal fish habitat as fish seek out more oxygenated waters 
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(Buchheister et al., 2013). Zooplankton, a crucial food source for valuable species, have 

also been found to exhibit changes in distribution and predation when subject to large 

volumes of low-DO water, potentially leading to further impacts along the food chain 

(Breitburg et al., 1997; Pierson et al., 2009). Invertebrates have similarly been found to 

alter their behavior under low-DO conditions (Riedel et al., 2014). In the Chesapeake 

Bay, multiple regulated fish species, such as striped bass and American shad, require 

oxygen restoration targets as high as 5 mg L-1 (USEPA, 2010). The greatest impact of 

low DO concentrations spatially will depend on the specific living resource; however, 

temporally, late spring to early fall is of most concern. As a result of the significant 

ecological importance of oxygen on living resources in the bay, DO concentrations are 

used as a primary indicator in assessing water quality for Chesapeake Bay regulations 

(Keisman and Shenk, 2013).  

Improving the health of the Chesapeake Bay has become a priority for the 

Environmental Protection Agency (EPA) along with the six states and Washington, DC 

that make up the bay watershed (Fig. 2.1), and together they have committed to utilizing 

a suite of regulatory models to inform their management decisions (USEPA, 2010). The 

Chesapeake Bay Program (CBP), a regional partnership that has led and directed the 

restoration of the Chesapeake Bay since 1983, has undertaken an extensive modeling 

effort of the bay (Cerco and Cole, 1993; Cerco et al., 2002; Cerco and Noel, 2004, 2013). 

This modeling system is being used by the CBP to estimate the aggregate effect of 

changes in management practices, including land use, atmospheric deposition, animal 

populations, and fertilizer and manure application. Recently, the modeling system has 

been used to conduct scenario simulations to assess management actions needed to 

achieve desired bay water quality standards (USEPA, 2010). Ultimately this model was 

used to establish a regulatory set of total maximum daily loads of nutrients and sediment 

delivered from the watershed, with the goal of significantly improving water quality 

throughout the bay (USEPA, 2010).  

Many 3-D hydrodynamic-oxygen models of varying complexity stemming from 

the academic research community have also been used to simulate DO concentrations 

throughout the Chesapeake Bay (Scully, 2010, 2013; Hong and Shen, 2013; Feng et al., 

2015; Testa et al., 2014; Y. Li et al., 2015). Bever et al. (2013) specifically demonstrated 
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that multiple models of varying complexity are able to generate skillful estimates of 

hypoxic volume in the bay. Some of these models are being used in the bay to simulate 

short-term and/or seasonal forecasts of DO conditions. Furthermore, some models are 

also being used to generate scenario forecasts, or projections, that assess the impact of 

changes in management practices on estuarine DO concentrations, in some cases taking 

into account the impacts of future changes in climate.  

As ecosystem and water quality models are increasingly used for operational 

forecasts as well as scenario-based management decisions by the regulatory and 

academic research communities, it is important to understand the relative strengths and 

limitations of existing models of varying complexity. The ability to discern which 

variables must be most accurately simulated in order to adequately reproduce the 

temporal and spatial variability of bay oxygen concentrations is a necessary prerequisite 

for fully understanding how volumes of low-DO water are initiated and sustained within 

water quality models. The utilization of multiple models can also inform projections by 

providing independent confidence bounds for management decisions. To those ends, the 

over-arching goals of this research are to compare the relative skill of various 3-D 

Chesapeake Bay models characterized by different levels of biogeochemical complexity 

and spatial resolution, to better understand factors limiting their ability to reproduce 

observed DO distributions, and to suggest approaches for the continued improvement of 

these models.  

 

2.2 Methods  

2.2.1 Participating Chesapeake Bay models 

Eight 3-D models were evaluated in this study (Table 2.1), each of which includes 

hydrodynamic and DO components. Among the eight models, there are four different 

hydrodynamic base models. Models B, C, D, F, and G utilize the Regional Ocean 

Modeling System (ROMS; Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008) 

that employs a structured grid with sigma layers in the vertical dimension. Specifically, 

Models B, C, and F use a ROMS implementation developed for the Chesapeake Bay 

based on Xu et al. (2012; ChesROMS). Model D employs a ROMS implementation for 

the Chesapeake Bay based on M. Li et al. (2005), while Model G uses the ROMS-based 
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Chesapeake Bay Operational Forecast System (CBOFS; Lanerolle et al., 2011). Models 

A, E, and H each use a different hydrodynamic base model: the Curvilinear 

Hydrodynamics in Three Dimensions model (CH3D; Cerco et al., 2010), the Finite-  

Volume Community Ocean Model (FVCOM; Jiang and Xia, 2016), and the 

Hydrodynamic Eutrophication Model – Environmental Fluid Dynamics Code (EFDC; 

Park et al., 1995; Hong and Shen, 2012; Du and Shen, 2015), respectively. The only 

model that employs a non-sigma vertical grid is Model A and the only model utilizing an 

unstructured horizontal grid is Model E. While Model E contains 10 sigma vertical 

layers, all of the other sigma grids use 20 layers. All of the grids vary in terms of their 

horizontal resolution, with Models A and G utilizing the highest resolution horizontal 

grids.  

These four hydrodynamic models are coupled to five different models used to 

simulate DO (Table 2.1). Models A, B, C, D, and E utilize full biogeochemical models 

that include various combinations of oxygen, phytoplankton, zooplankton, and multiple 

inorganic and organic nutrients as state variables. Specifically, Models A and E employ a 

version of the Integrated Compartment Model (ICM; Cerco et al., 2010; Jiang et al., 

2015), Model B uses the Estuarine Carbon Biogeochemistry model (ECB; Feng et al., 

2015), Model C uses the Biogeochemistry model (BGC; Brown et al., 2013), and Model 

D uses the Row–Column AESOP model (RCA; Testa et al., 2014). In terms of food web 

complexity the models vary considerably: Models B and C employ a single 

phytoplankton group whereas Model D uses two phytoplankton groups, Model E uses 

three, and Model A, the most complex of the participating models, uses five.  

In contrast to the full biogeochemical models discussed above (Models A through 

E), Models F, G, and H represent oxygen dynamics as simply as possible and therefore 

do not utilize a full biogeochemical component. Rather, the models impose a biological 

oxygen consumption rate that is model-specific, but constant in both space and time. This 

component is referred to as a constant-respiration model (CRM). In this model, DO is 

introduced to the estuary via the river and ocean boundaries and is set to saturation at the 

estuarine surface. This constant-respiration oxygen parameterization (Scully, 2010) is 

simplistic, yet has been shown to adequately represent Chesapeake Bay oxygen dynamics 

(Scully, 2010, 2013; Bever et al., 2013).  
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The major difference in forcing between the eight model implementations is that 

Models A and B use riverine input derived from watershed models, whereas Models C– 

H used the measured flow from United States Geological Survey gauging stations, 

extrapolated using various techniques. Model A utilized the CBP’s regulatory watershed 

model (Shenk and Linker, 2013), while Model B utilized the Dynamic Land Ecosystem 

Model (Yang et al., 2015a, b; Tian et al., 2015). At the open boundary with the Atlantic 

Ocean, Models B, C, D, F, G, and H utilize a sub-tidal elevation extrapolated from tidal 

stations on either side of the open boundary. Model E uses the TPXO tidal model, while 

Model A uses a mix of observational and model forcing (Cerco et al., 2010). While 

Model B utilizes wind forcing based on observations from the Thomas Point Light, 

Models C through H use wind estimates from the North American Regional Reanalysis 

(NARR).  

The eight models used in this analysis have been developed for a variety of 

purposes. Model A is a governmental regulatory model developed by the CBP that has 

been extensively calibrated specifically to examine water quality issues in the 

Chesapeake Bay (Cerco and Cole, 1993; Cerco and Noel, 2004, 2013; Cerco et al., 2010) 

and has been used in the development of the 2010 Chesapeake Bay Total Maximum 

Daily Load (USEPA, 2010). The National Oceanic and Atmospheric Administration 

employs the hydrodynamic component of Model F for operational forecasts of a variety 

of physical estuarine parameters for the Chesapeake Bay (http: 

//www.tidesandcurrents.noaa.gov/ofs/cbofs/cbofs.html). The other six models are 

academic models used in diverse research efforts focused on the Chesapeake Bay but not 

necessarily specifically on DO dynamics.  

Finally, a ninth model is calculated as the mean of the results from the eight 

models described above, and is referred to here as Model Mean, or Model M.  

 

2.2.2 Available Chesapeake Bay observations 

 Model simulations were compared to cruise data from the CBP for 2004 and 2005 

from 13 stations along the main stem of the bay (Table 2.2, Fig. 2.2). The years 2004 and 

2005 were selected to represent relatively wet and average years, respectively, and the 13 

stations were chosen as they have been found to offer optimal estimates of bay-wide 
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hypoxic volume (Bever et al., 2013). Stations were sampled on up to 34 cruises over the 

2 years (Table 2.2), generally twice a month from April to August and once a month for 

the remainder of the year. Observational data can be downloaded from the CBP Water 

Quality Database (http://www.chesapeakebay.net/data/ 

downloads/cbpwaterqualitydatabase1984present). Variables downloaded from the CBP 

website and used in this study were temperature, salinity, DO, nitrate + nitrite (hereafter 

abbreviated as “nitrate”), and chlorophyll a (hereafter abbreviated as “chlorophyll”). For 

most cruises, observations of temperature, salinity, and DO were made at roughly 1 m 

intervals throughout the water column, whereas observations of chlorophyll and nitrate 

were generally made only at the surface, bottom, and sometimes one or two mid-water 

column locations. For further information on available water quality observations, please 

see USEPA (2012). While these observations were publicly available for model 

assessment during calibration of all of the models, they represent a very small subset of 

the 30 years of EPA observations across over 100 bay stations. The models compared 

here were calibrated based on access to the larger data set and for conditions in the bay in 

general, not specifically for the 13 stations and 2 years considered here.  

 

2.2.3 Calculation of stratification and mixed layer depth 

Stratification of the density and oxygen fields was examined to identify the 

maximum gradient of the pycnocline and oxycline as well as the depth of the top of the 

pycnocline and oxycline. In open ocean studies, the depth of the top of stratification is 

commonly referred to as the mixed layer depth (MLD), although this term is less 

frequently used in the estuarine literature. As the research presented here distinguishes 

between the depths of the top of the pycnocline and that of the oxycline, these will be 

referred to respectively as the density (ρ) mixed layer depth (MLDρ) and the oxygen 

mixed layer depth (MLDo). Density was calculated via a classical density formula that is 

also utilized by the CBP for use in the Chesapeake Bay (Fofonoff and Millard, 1983; 

USEPA, 2004) and is a function of temperature and salinity.  

The CBP defines the top and bottom of stratification in order to distinguish 

individual designated use areas for water quality management purposes (USEPA, 2004). 

They suggest that the top of the pycnocline be defined as the shallowest occurrence of a 
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density gradient of 0.1 kg m-4 or greater as resolved by CBP profile observations, which 

are typically spaced at 0.5–2 m depth intervals. If density gradients throughout the water 

column are less than 0.1 kg m-4, they define the water to be unstratified. The 0.1 kg m-4 

threshold definition is designed to identify any initiation of stratification that may serve 

to cut off vertical mixing from a nearly perfectly well-mixed layer.  

While the CBP definition described above delineates between designated use 

boundaries according to density, our research focuses on the relationship between the 

pycnocline and oxycline, requiring an alternate definition that can be applied to both the 

density and oxygen distributions. In addition, the CBP definition often generates 

estimates for the depth of the top of the pycnocline that are too shallow compared to the 

maximum depth of surface mixing (Fig. 2.3). As a result, a percentage threshold criterion 

was developed that identifies the bottom of the reasonably well-mixed layer, rather than 

perfectly mixed layer, and is used in this analysis. The percentage threshold method 

defines a density or DO profile as being stratified if a change of 10% of the difference 

between the profile’s maximum and minimum values occurs within a single meter (Fig. 

2.3). For example, if the maximum DO concentration throughout the water column on an 

individual sampling date is 10 mg L-1 and the minimum concentration is 1 mg L-1, 

stratification is defined to be present if a difference of 0.9 mg L-1 is present within 1 m. 

As recommended by the CBP, the uppermost meter of the water column is not considered 

(USEPA, 2004). The mixed layer depth is therefore defined as the shallowest level 

(below 1 m depth) where stratification is identified. The minimum stratification criterion 

utilized in this analysis requiring a profile to pass the 10% threshold also ensures that 

observations where very little stratification exists do not bias the stratification results 

while also allowing for a single criterion to be used across multiple stratification 

variables.  

 

2.2.4 Model skill metrics 

Simulations of the Chesapeake Bay from the eight models described above were 

statistically compared to historical monitoring data using a variety of skill metrics 

including root-mean squared difference (RMSD), bias, standard deviation, and 

correlation coefficient. These metrics are illustrated on Taylor and target diagrams 
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(Taylor, 2001; Hofmann et al., 2008; Jolliff et al., 2009), which offer a compact way of 

assessing model skill by displaying a number of different skill metrics. Target diagrams 

illustrate the bias and total RMSD of model output, which Taylor diagrams do not. Taylor 

diagrams include quantitative information on the standard deviations and correlations 

between the model output and the observations, which target diagrams do not. Both 

diagrams, however, represent unbiased RMSD, sometimes called “centered-pattern 

RMSD”. On target diagrams, a model symbol above the horizontal axis overestimates the 

mean of the observations and a model symbol to the right of the vertical axis 

overestimates the variability of the observations. (See Hofmann et al. (2008) and Jolliff et 

al. (2009) for a more detailed description of these diagrams.) On Taylor diagrams, a 

model symbol lying on the horizontal axis exactly correlates to the observations and a 

model symbol further from the origin than the observation symbol overestimates the 

standard deviation of the observations. (See Taylor (2001) for a more detailed description 

of these diagrams.)  

Taylor and target diagrams presented here are normalized to the standard 

deviation of the observations, allowing multiple variables be represented on the same 

plot. This also conveniently allows the unit circle on a target diagram to represent the 

skill of a model defined as the mean of the observations. In effect, this means that if a 

model falls within the unit circle, it exhibits a skill that is greater than the skill obtained if 

one were to simply use the mean of the observations. The Taylor and target plots are 

either temporal (displaying model skill at a single station over the study period) or spatial 

(displaying model skill during a single month over the entire set of study stations). In 

addition, summary diagrams are presented which combine both temporal (examining the 

seasonal changes at each individual station) and spatial (examining differences across the 

bay during an individual month) variability.  

Model skill was assessed using the hourly model output (daily for CH3D-ICM 

chlorophyll and nitrate) that was nearest in time to that of the observation and from the 

grid cell that encompassed the observation location. For months with two observations, 

each observation was individually matched to the model output and the skill statistics 

from those comparisons were averaged for that month. The native horizontal resolution 

and bathymetry of the individual model grids was preserved in the comparison so as not 
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to bias the analysis through varying interpolation methodologies. For stratification 

variables, the models and observations were interpolated to a 1 m vertical grid that 

extended only as deep as the individual models’ bathymetry or deepest observation in 

order to preserve the differences in bathymetric grids while allowing for a direct 

comparison of the observations to the models. Model–data comparisons at the bottom of 

the water column were not necessarily based on the same depths, since in many cases the 

modeled bathymetry was shallower (or at times, deeper) than the deepest data point at a 

given station. In order to avoid issues with extrapolation and/or grid stretching, data at the 

bottom of the water column were always compared with model estimates from the 

deepest grid cell provided by each particular model. Model–data comparisons for 

stratification and mixed layer depths only included stations and times for which 

stratification was defined to exist in both the observed and simulated fields.  

 

2.3 Results 

An analysis of model skill of the combined temporal and spatial variability of DO 

at the surface and bottom of the water column, as well as at the observed MLDo, 

indicates that all models, regardless of biogeochemical complexity or spatial resolution, 

exhibit a high degree of skill in reproducing observed DO (Fig. 2.4). Specifically, all 

models produce DO concentrations at the surface and bottom that have a normalized total 

RMSD less than 1. The same is true for nearly all models for DO at the observed MLDO. 

However, most models underestimate observed DO both at the surface and at the MLDo 

(Fig. 2.4a). The correlation between the observed and modeled DO is relatively constant 

with depth (Fig. 2.4b), though on average slightly higher at the bottom (0.85) than at the 

surface (0.80). Further, on average, the models simulate DO at the surface and bottom 

better than they do at the MLDo. No statistical difference exists between the skill of 

models that utilize a full biogeochemical component and those that utilize the simple 

constant-respiration oxygen parameterization. Based on an analysis of variance 

(ANOVA) comparing the full biogeochemical models to the CRM models, the two model 

types do not perform differently in terms of their ability to reproduce the combined 

temporal and spatial variability of bottom DO as measured by total RMSD (p = 0.48). 
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Overall, Model M (the mean of the eight models) consistently performs better than any 

individual model across all depths examined (Fig. 2.4).  

The monthly temporal variability of bottom DO at each station over the 2 years 

studied is resolved similarly well by all of the models (Fig. 2.5a), but the models have 

difficulty simulating spatial DO variability during each month (Fig. 2.5b). Due to the 

stations chosen for this analysis (Fig. 2.2), the spatial variability being examined here is 

essentially the north to south variability. Most models exhibit a latitudinal gradient with 

respect to their skill in reproducing the temporal variability of bottom DO, with models 

overestimating DO at the more northern stations (Fig. 2.5a). Some models differ in their 

ability to reproduce summer (May–September) DO concentrations and winter (October–

April) DO concentrations (Fig. 2.5b). Models B, F, and G all distinctively overestimate 

mean DO in the summer compared to the winter. In contrast, Models A and C perform 

similarly well in both seasons (Fig. 2.5b). In addition, all three constant respiration 

models, as well as Models D and E, substantially underestimate DO at several stations in 

the winter.  

All eight models generally resolve the pycnocline and oxycline with similar skill 

(Fig. 2.6). All models consistently underestimate the mean and standard deviation of the 

maximum strength of stratification within the pycnocline and oxycline, defined herein as 

the maximum vertical gradients of density and oxygen (Fig. 2.6a). All models, except for 

Model A (see Sect. 2.4.2), also underestimate the mixed layer depth, regardless of 

whether it is computed in terms of density or oxygen. (Note that these model symbols in 

Fig. 2.6a are located above the y-axis despite this negative bias in MLD because the 

vertical coordinate system is oriented upwards.) Thus, the models are producing 

stratification that is both weaker than observed and higher (shallower) in the water 

column. The correlation coefficient for these metrics is low, ranging 0.1– 0.6, and 

indicates that all models are missing the majority of variability associated with the 

magnitude and location of the pycnocline and oxycline (Fig. 2.6b). However, there is 

slightly more consistency and better correlation coefficients among the models for the 

strength of stratification than the depth of the mixed layers.  

All eight models are also characterized by similar skill in representing the 

temporal and spatial variability of density stratification and MLDρ (Fig. 2.7). There is a 
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latitudinal difference in skill of the models in reproducing the magnitude of the 

pycnocline and MLDρ, with model skill generally lower at the northern stations (Fig. 

2.7a). Contrary to the pattern shown for bottom DO (Fig. 2.5b), none of the models 

exhibit a significant seasonal pattern between summer and winter in reproducing spatial 

variability of dρ/dz or MLDρ (Fig. 2.7b). However, Model A differentiates itself from the 

rest of the models in its pattern of skill at reproducing the spatial and temporal variability 

of the MLDρ (see Sect. 2.4.2). Temporal and spatial patterns for oxycline stratification 

(dO/dz) and MLDo closely match those of dρ /dz and MLDρ (not shown).  

All eight models reproduce the variability of bottom DO better than the variables 

that are generally thought of as being the primary drivers of hypoxic conditions, 

including stratification (Fig. 2.6), salinity, chlorophyll, and nitrate (Fig. 2.8, Table 2.3). 

However, all models reproduce patterns in temperature across the bay and through time 

better than any of the other variables in this model comparison (Fig. 2.8). All eight 

models, as well as the Model Mean, are characterized by very low bias in modeled 

temperature, and correlation coefficients of approximately 0.99; this high skill results 

from the very strong and predictable seasonal temperature variability. Even though the 

five models with full biogeochemical components (Models A, B, C, D, E) are 

characterized by large differences in their mechanistic approaches to modeling nitrate and 

chlorophyll, they produce similar total RMSDs for all of the variables examined at both 

the surface and the bottom (Table 2.3).  

The mean of the eight models (Model M) has a higher model skill (lower RMSD) 

than any individual model across nearly every variable examined (Table 2.3). In addition, 

for nearly all observations at all stations, the 95% confidence interval of all model 

hindcasts encapsulates the observed bottom DO concentration (Fig. 2.9), even though any 

individual model may overestimate or underestimate observed DO. Models generally fall 

into greater agreement during the summer, when DO is low, and into lesser agreement in 

the winter when DO is replete. While this study does not allow for a true interannual 

comparison, it is interesting that at station CB4.1C the model ensemble closely matches 

the timing of the drawdown of DO in the spring of 2004 (Fig. 2.9), whereas it produces a 

summer rather than spring initiation of hypoxic conditions in 2005. In addition, the model 

ensemble produces a premature relaxing of hypoxic conditions for both years at this 
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observation station.  

In order to better understand the impact of stratification on DO concentrations 

throughout the water column, the relationship between the observed pycnocline strength 

and MLDρ were compared to the observed oxycline strength and MLDo. Observations 

from 1998 to 2006 demonstrate that while there is not a strong correlation between the 

strengths of the pycnocline and oxycline, there is a very strong correlation between 

MLDρ and MLDo (Fig. 2.10). Depending on the criteria used for defining the existence 

of stratification (see Sect. 2.2.3), the correlation of the pycnocline and oxycline strengths 

range r2 = 0.18–0.26 and the correlations of MLDρ and MLDo range r2 = 0.51–0.82 

(Table 2.4). Furthermore, correlation of the relationship between the MLDρ and MLDo is 

stronger for more severe stratification (Table 2.4). The relationship between the two 

mixed layer depths is biased towards the MLDO being located slightly deeper in the 

water column than the MLDρ. As the cut-off criteria for the existence of stratification 

becomes more stringent, the relationship becomes closer to 1:1.  

 

2.4 Discussion 

2.4.1 How does the skill of various hydrodynamically-based DO models compare? 

- In examining the eight 3-D models in this study, there is not a statistical 

difference between the ability of simple and complex models to simulate the mean 

and monthly variability of bottom DO; in addition, models with higher spatial 

resolution do not necessarily produce better estimates of DO.  

 
Models currently simulating hypoxia throughout Chesapeake Bay compute 

oxygen concentrations in essentially two distinct ways: they either utilize a simple 

constant respiration model or a full biogeochemical model. In this study, the relative skill 

of both types of models is compared. Specifically, in examining results of the comparison 

between five biogeochemical models (A, B, C, D, E) and three simplistic constant 

respiration models (F, G, H), the two groups of models performed statistically similar in 

their skill of reproducing bottom DO concentrations (Fig. 2.3, Table 2.3). These results 

support those of Bever et al. (2013) who compared three constant respiration models with 
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the CBP regulatory model (Model A) and similarly found that all four of the models were 

equally skillful in terms of reproducing the seasonal variability in bottom DO throughout 

the bay in 2004 and 2005. Consistent with the results of Scully (2013), this result implies 

that the seasonal variability of DO in the Chesapeake Bay is primarily dependent on 

underlying hydrodynamic mechanisms which are nearly identical for all eight models, 

rather than on aspects related to the biogeochemical cycling which vary dramatically 

between models and in fact are constant in three of the eight models. It should be noted, 

however, that the 2 years studied here were relatively wet years and an analysis of dry 

years may offer different results.  

Many previous studies have examined the costs and benefits of adding complexity 

to biogeochemical models. For example, increasing biogeochemical complexity has been 

found to improve skill in some biogeochemical data assimilative parameter optimization 

studies (Friedrichs et al., 2006, 2007; Lehmann et al., 2009; Bagniewski et al., 2011; 

Ward et al., 2013; Xiao and Friedrichs, 2014). The additional parameters associated with 

increased complexity generally provide more parameters that are available for additional 

tuning and subsequent improved model–data agreement. This is in contrast to the results 

of this analysis demonstrating that increased biogeochemical complexity does not 

necessarily improve model–data agreement. In this case, the increase in model 

complexity has likely outpaced the ability of the researchers to fully tune the model to the 

available observations. However, even past studies that have invoked formal parameter 

optimization methodologies, such as genetic algorithms and variational adjoint methods 

(Friedrichs et al., 2007; Ward et al., 2010; Xiao and Friedrichs, 2014), have found that 

under certain conditions, adding too much complexity does not necessarily improve 

model skill and in fact can decrease model skill and portability, primarily due to artifacts 

resulting from overtuning. This mirrors findings from the larger ecosystem modeling 

community where the best-fit models are often those with intermediate complexity 

(Fulton et al., 2003).  

In this study, horizontal grid resolution differed significantly between model 

implementations, with the most highly resolved grid (Model G) including more than 9 

times more grid cells than the lower resolution grids (Table 2.1). A certain degree of 

resolution is clearly required to successfully simulate dynamic processes, and a model 
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with 8–10 km resolution will not be able to correctly simulate the hydrodynamic 

processes within the bay (Feng et al., 2015). However, an increase in horizontal grid 

resolution from ~1.8 to ~0.6 km, which results in a run-time change of a factor of 9, or 

possibly of 27 if the time step is accordingly decreased by a factor of 3, does not 

necessarily result in a significant improvement in simulation skill of either stratification 

or bottom oxygen. Although not shown here, additional sensitivity experiments with 

Model G revealed that doubling the vertical resolution of this model had no significant 

effect on the model’s ability to resolve the depth of stratification or the maximum 

magnitude of stratification. Thus, when selecting the optimal model resolution for a 

simulation, it is critical to weigh the advantages of increased resolution with the increased 

time required for simulation. With a given level of computational resources, fewer 

sensitivity experiments can be conducted with a model using a more highly resolved grid.  

Accurately simulating the observed spatial variability of DO (Fig. 2.4b) was a 

greater challenge than simulating the temporal variability of DO (Fig. 2.4a) for all eight 

models participating in this intercomparison. This is especially true in the winter months 

when the vast majority of the bay is oxygen replete and the models have difficulty 

representing the observed variability from station to station. The majority of the models 

tend to slightly overestimate mean bottom DO in the summer whereas multiple models 

(e.g., Models D, E, F, and G) exhibit a strong negative bias during January and/or 

February of 2005, primarily at stations in the middle to southern portion of the bay’s deep 

channel. Interestingly, increased biological complexity and higher grid resolution do not 

completely resolve this issue, as this is true for models utilizing full biogeochemical 

models (Models D, E) as well as those using highly resolved model grids (Model G). 

This is likely due to the ephemeral nature of the biological divers of DO.  

The strong performance of the constant respiration models implies that these 

models may be excellent candidates for providing short-term bottom oxygen forecasts. 

The high DO skill of the CRM models primarily results from the fact that seasonal 

variations in physical processes (primarily wind mixing and temperature) play a 

dominant role in controlling the seasonal cycle of oxygen (Scully, 2013). Because the 

underlying hydrodynamic models all use similar physical forcing, the constant respiration 

models are able to simulate the seasonal cycle of DO with similar skill as the more 
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complex biogeochemical models. As a result, these simple models that are easier to tune 

and require less in the way of computational resources than full biogeochemical models, 

may be efficiently used to produce short-term (on the order of days) DO forecasts. On the 

contrary, the more complex full biogeochemical models will be necessary for scenario-

based and long-term (on the order of months to years) forecasting which requires that 

models respond to prescribed changes in the biogeochemical environment, such as 

increased rates of nutrient loading due to changes in land use, land cover, and/or climate.  

 

2.4.2 How does model skill of DO compare to that of the primary drivers of DO 

variability? 

- Overall, model DO skill is greater than that of the variables generally considered 

to drive DO variability, such as stratification, salinity, mixed layer depth, 

chlorophyll, and nitrate; only modeled temperature has higher skill than modeled 

DO.  

 
Since dissolved oxygen concentrations in the Chesapeake Bay are controlled by 

physical processes (e.g., advection, wind mixing, heating/cooling, and stratification), as 

well as biological processes (e.g., photosynthesis and respiration), it is critical to 

understand the skill of the models in terms of how well they reproduce the many factors 

influencing oxygen concentrations. As expected, the five models containing a specific 

biogeochemical model component had more difficulty simulating the observed 

chlorophyll and nitrate concentrations than the physical variables (temperature and 

salinity), both at the surface (Table 2.3) and the bottom (Fig. 2.8). Replicating the correct 

location, magnitude, and timing of phytoplankton blooms and nutrient cycling is a 

complex issue, and as a result, these features are generally not well simulated in the 

models. While the models generally simulate the total amount of chlorophyll adequately, 

it is more uniformly spatially distributed in the models rather than in patchy blooms as in 

nature, leading to the underestimation of chlorophyll variability across all models. 

Although all models produced a relatively high correlation between observed and 

modeled temperature and salinity (Fig. 2.8), the correlation coefficients for chlorophyll 

and nitrate were much lower. The correlations for observed vs. modeled DO was more 
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similar to that of the physical variables (temperature, salinity) than the biological 

variables (chlorophyll and nitrate), highlighting that the seasonal variability in bottom 

DO is regulated more by physical than biological factors. This also explains the success 

of the constant respiration models, which by definition contain no biological variability 

yet reproduce DO variability nearly as well as the most complex biogeochemical models.  

In this study, model skill was also considerably higher for bottom oxygen than it 

was for the vertical gradient of stratification and mixed layer depths (Figs. 2.6, 2.8). The 

underestimation of the vertical gradient across all models is largely due to the numerical 

diffusion that characterizes all of these hydrodynamic models, but may also be partially 

due to an underestimation of the winds or a lack of diffuse freshwater input around the 

bay. Even though the models all underestimated the strength of stratification (Figs. 2.4, 

2.6), modeled stratification in summer was strong enough to prevent mixing with the 

relatively well-oxygenated surface waters. This result suggests, somewhat surprisingly, 

that simulating the correct vertical gradient of stratification is not absolutely necessary for 

skillful bottom DO simulations. Models need only simulate enough stratification to 

effectively cut off vertical mixing in order to develop an isolated bottom layer that can 

then experience a draw down in oxygen via respiration. In addition, the models must also 

correctly simulate the horizontal advection of oxygen (Scully, 2013; Y. Li et al., 2015). 

The fact that bottom DO is simulated so well by the eight models analyzed here suggests 

that not only is the advection of oxygen well represented in the models but also the 

strength of stratification, i.e., the maximum vertical gradients of density and oxygen, 

produced by these models is sufficient. Thus, although novel and somewhat unexpected, 

these results are not contradictory to previous studies demonstrating the importance 

stratification plays in initiating summer hypoxia in the Chesapeake Bay (Murphy et al., 

2011).  

Model skill in terms of reproducing observed mixed layer depths was likewise 

much lower than model skill of reproducing observed oxygen concentrations. All models, 

except Model A, produced mixed layer depths (MLDo and MLDρ) that were generally 

too shallow in the water column (Fig. 2.6a). Note that Model A is a regulatory model that 

has been used for many years by the Chesapeake Bay Program, and has thus undergone 

more extensive calibration aimed at matching the mean salinity and oxygen 
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characteristics of the bay (Cerco and Cole, 1993). Furthermore, Model A employs a z 

grid that matches the bathymetry in trench areas better than the sigma grids used by the 

other models. Although Model A produced mixed layer depths that were generally in the 

correct location within the water column (Fig. 2.6a), they were too variable (Fig. 2.6b). 

This variability may partly be a result of the 1.5 m z grid employed by Model A causing 

large jumps between vertical grid cells and hence resulting in overestimates of MLD 

variability. All other models use sigma grids typically with more highly resolved vertical 

resolution at the depth of maximum stratification.  

The two variables for which the models have greatest skill are DO and 

temperature (Fig. 2.8). This is because oxygen variability is driven primarily by seasonal 

variability in physical processes such as solubility and wind mixing and to a lesser degree 

by variability in oxygen consumption (Scully, 2013). As a result, the models using a 

constant mean respiration rate produce as realistic hypoxia simulations as the 

biogeochemically complex models. Observations clearly show this strong seasonal 

variability in bottom DO (Fig. 2.11a) and, to a slightly lesser extent, clear seasonal 

variability in DO at the bottom of the bottom of the oxygen mixed layer (MLDo; Fig. 

2.11b). However, a seasonal cycle is not manifested in the MLDo itself (Fig. 2.11c). The 

lack of such a strong seasonal cycle in the observed mixed layer depths makes this a more 

difficult variable for the models to simulate. As a result, the models can relatively 

skillfully simulate the combined spatial and temporal variability of DO while 

simultaneously missing the MLDo.  

 

2.4.3 Why is it important for DO models to simulate the MLDo correctly? 

- Most of the aerobic habitat in the bay during the summer is located above the 

MLDo, thus it is critical for living resource managers to use models that 

accurately simulate this variable.  

 

On average, the models miss the observed depth of the MLDo by 3.4 m, which 

equates to roughly a 60% error in the modeled mixed layer depths. While the models 

have difficulty simulating the MLDo throughout the entire year (Figs. 2.6, 2.7b), the 
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summer months are when the mismatch has the greatest potential to impact the available 

habitat for oxygen-dependent species. Each year during this time period low-oxygen 

waters occupy nearly the entire water column below the mixed layer. At station CB4.1C, 

a representative mesohaline deep trough station, the contours of low-oxygen (5 mg L-1) 

and hypoxic (2 mg L-1) waters are located just below the MLDo from late spring until late 

fall (Fig. 2.12). The severe depletion of oxygen below the mixed layer compresses the 

habitable space at this station to roughly 10 m (from a maximum of 32 m) during the 

annual low-oxygen event.  

The impact of habitat compression can be substantial, as many bay species require 

DO concentrations well above the traditional hypoxic threshold (USEPA, 2010). While 

not all of the main stem stations develop hypoxic water each year, most mesohaline 

stations experience a dramatic drawdown of oxygen to levels during the summer that 

effectively remove a large portion of the bay from habitable space (Murphy et al., 2011; 

Schlenger et al., 2013). Studies have shown that some species modify their behavior 

based on the oxycline depth, which acts to constrict the habitable space in the water 

column (Prince and Goodyear, 2006; Pierson et al., 2009; Elliott et al., 2013). Since 

species can be negatively impacted by low-DO concentrations as high as 5 mg L-1 

(Breitburg, 2002; Vaquer-Sunyer and Duarte, 2008; USEPA, 2010), the location of the 

oxycline is not only important for habitat compression in the summer months but can also 

be important in the winter months when an occasional lack of vertical mixing can 

substantially decrease bottom DO concentrations. Furthermore, in order to accurately 

estimate hypoxic volume, models must correctly simulate the depth of the mixed layer, 

since the MLDo closely follows the depth of the 2 mg L-1 contour.  

 

2.4.4 How can DO simulations in the Bay be improved for management of water 

quality and living resources? 

- To better simulate DO conditions and summer habitat compression due to low-

DO water, simulations of the depth of the top of the pycnocline (MLDρ) must be 

improved.  
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Although the suite of models examined reproduce DO concentrations relatively 

well overall (Fig. 2.4), the models typically overestimate summer habitat compression by 

producing low-DO concentrations too high in the water column (Fig. 2.6). Observations 

from the Chesapeake Bay Program show a strong correlation between the depths of the 

oxygen and density-defined mixed layers (Fig. 2.10b). The models analyzed here also 

clearly exhibit a close relationship between their skill in simulating the depths of the 

oxygen and density-defined mixed layers (Fig. 2.6). These strong relationships between 

the depths of the oxygen and density-defined mixed layers result from the fact that the 

pycnocline represents the physical barrier that leads to the development of the oxycline. 

Therefore, the inability of the models to accurately simulate habitat compression is an 

artifact of their lack of skill in simulating the depth of the density-defined mixed layer. In 

contrast, the strength of density stratification is not well correlated to the strength of 

oxygen stratification. This is because a relative wide range of intensities of density 

stratification is still sufficient to cut off vertical mixing, leading to the observed draw-

down in bottom DO. Thus, even though all models underestimate the strength of the 

pycnocline, they still produce enough stratification to greatly reduce mixing. The results 

from this paper thus indicate that to further improve DO simulations and better estimate 

summertime habitat compression, it is even more critical for models to accurately 

simulate the depth of the top of the pycnocline than to accurately simulate the absolute 

strength of the pycnocline.  

 

2.4.5 What is the utility of the multi-model ensemble and Model Mean? 

- The multi-model ensemble approach allows for the development of a model 

mean, which taken as its own model, is the most skilled model when examining 

the combined suite of variables analyzed in this study.  

 

The model skill assessment presented here demonstrates that the average of all 

eight models, or five models in the case of chlorophyll and nitrate, does better than any 

individual model if looking across the suite of variables analyzed. This finding is similar 

to that of other studies that examined the value of the Model Mean from a multi-model 

ensemble (e.g., Gneiting and Raftery, 2005; Hagedorn et al., 2005). While the concept of 
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using a multi-model ensemble has been most extensively employed by atmospheric, 

climatic, and global circulation modelers, such as the Intergovernmental Panel on 

Climate Change (e.g., Collins et al., 2013), the tool’s utility for aquatic ecosystem 

modeling is gaining traction (Meier et al., 2012; Trolle et al., 2014; Janssen et al., 2015). 

As models are increasingly used in regulatory decisions regarding aquatic ecosystems, a 

cohort of similarly skilled models can be used to help inform a set of confidence bounds 

around an environmental forecast. Due to the restrictions placed on models used in 

regulatory actions, utilization of a multi-model ensemble may not be realistic for all 

environmental and resource managers; however, multiple models can be integrated into 

the decision-making process even when the ultimate decision must be based on a single 

model. For example, a confidence interval plot could help identify where regulatory 

model output might be acting out of sync with other skilled water quality models of the 

same system, thereby informing managers of the potential shortfalls associated with the 

regulatory model. Furthermore, if the models tend to be predicting similar DO 

concentrations, a cohort of models could enhance the confidence in regulatory decisions 

based on a single regulatory model (Friedrichs et al., 2012; Weller et al., 2013). 

Comparing multiple models can also help inform how to better improve models in the 

future, as this study has aimed to do.  

 

2.5 Conclusions 

All models analyzed here exhibited a high degree of skill in simulating dissolved 

oxygen concentrations within the main stem of the Chesapeake Bay in 2 years 

corresponding to relatively wet and average years. Their high skill results from the fact 

that physical processes (e.g., solubility, wind-mixing, and advection) exert a first order 

influence on the seasonal cycle of oxygen. As a result, the models’ ability to reproduce 

dissolved oxygen concentrations is independent of the complexity of the biogeochemical 

parameterizations: the simplest constant respiration models were found to reproduce 

observed oxygen concentrations as well as the most biologically complex models. 

Essentially, all models are equally capable of respiring most of the available oxygen in 

the lower water column during summer.  
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This study also suggests that for use as management tools for water quality and 

living resources, it is more critical for these models to adequately resolve the depth of the 

mixed layer than the absolute strength of stratification (as long as modeled stratification 

is strong enough to limit vertical mixing). This is critical because observations show that 

during warmer months, oxygen-depleted water fills the water column to where 

stratification limits further mixing, which effectively cuts off waters below the mixed 

layer for use by the majority of the Chesapeake Bay’s most recognized and valued living 

resources. These results furthermore suggest that modelers should focus their efforts on 

improving the hydrodynamics of their models in an effort to improve simulations of 

mixed layer depth dynamics and variability.  

These findings have significant ramifications for short-term bottom DO forecasts, 

which may be successful with very simple oxygen parameterizations embedded in 

hydrodynamic models. In contrast, scenario-based water quality forecasts are likely to 

benefit from more complex models, which must adequately reproduce the longer-term 

response of the oxygen field to changes in nutrient and organic matter loads. This study 

also helps to demonstrate how multiple community models from governmental agencies 

and academic institutions may be used together to provide a model mean and a set of 

confidence bounds for regulatory model results that could be used to inform management 

decisions.  
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Tables 

Table 2.1: Model characteristics. 
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Table 2.2: Characteristics of observation stations (from USEPA, 2012). 
 
Station Latitude Longitude Station Depth # of Cruises 

CB3.2 39.1634 N 76.3063 W 12.1 m 34 
CB3.3C 38.9951 N 76.3597 W 24.3 m 34 

CB4.1C 38.8251 N 76.3997 W 32.3 m 34 

CB4.2C 38.6448 N 76.4177 W 27.2 m 34 

CB4.3C 38.5565 N 76.4347 W 26.9 m 34 

CB4.4 38.4132 N 76.3430 W 30.3 m 34 

CB5.1 38.3185 N 76.2930 W 34.1 m 34 

CB5.2 38.13678N 76.2280 W 30.6 m 34 

CB5.4 37.8001 N 76.1747 W 31.1 m 26 

CB6.2 37.4868 N 76.1563 W 10.5 m 30 

CB6.4 37.2365 N 76.2080 W 10.2 m 29 

CB7.1 37.6835 N 75.9897 W 20.9 m 27 

LE2.3 38.0215 N 76.3477 W 20.1 m 34 
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Table 2.3: Mean and standard deviation (STD) of observations and total normalized 
RMSD for each model.  
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Table 2.4: Pycnocline and oxycline correlation statistics (all correlations have p-values 
<< 0.01). 
 

Stratification 
Threshold 
Percentage 

Max dρ/dz  
vs. 

Max dO/dz 

MLDρ  
vs.  

MLDO 

Profiles  
with 

Stratification 
10% 0.18 0.51 1613 
15% 0.22 0.59 1303 
20% 0.22 0.70 916 
25% 0.26 0.82 575 
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Figures 

 
 

 
 
 
Figure 2.1: Map of the Chesapeake Bay and its watershed.  
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Figure 2.2: Location of the CBP Water Quality Monitoring stations used in this study.  
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Figure 2.3: Density and dissolved oxygen profiles for a mid-Bay station (CB4.1C) on (a) 
January 13, 2004 and (b) June 14, 2005, comparing the 0.1 kg m-4 stratification definition 
used by the CBO (MLDCBP) with the 10% threshold definitions used here for density 
(MLDρ) and oxygen (MLDO).  
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Figure 2.4: Normalized summary (a) target and (b) Taylor diagrams illustrating model 
skill of dissolved oxygen at the surface, MLDO, and bottom for 13 Chesapeake Bay 
stations in 2004-2005. The “x” represents the skill of a model that perfectly reproduces 
the observations. The dotted, dashed-dot, and dashed lines on the Taylor diagram 
represent lines of constant standard deviation, correlation coefficient, and unbiased 
RMSD, respectively.  
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Figure 2.5: Normalized target diagrams for Models A-H demonstrating the (a) temporal 
and (b) spatial skill in resolving the variability of bottom dissolved oxygen 
concentrations. In (a), the individual dots represent the 12 stations along the main stem of 
the Chesapeake Bay. In (b), the dots represent the 24 months of 2004-2005 and are 
delineated by color: red = summer (May – September) and blue = winter (October – 
April).  
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Figure 2.6: Normalized summary (a) target and (b) Taylor diagram illustrating model 
skill of MLDρ, and MLDO, max dρ/dz, and max dO/dz at 13 Chesapeake Bay stations for 
2004-2005. The “x” represents the skill of a model that perfectly reproduces the 
observations.  Since RMSD of stratification is only computed at stations where both the 
observations and model exhibit stratification, the Model Mean is not calculable for these 
variables. 
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Figure 2.7: Normalized target diagrams for Models A-H demonstrating the (a) temporal 
and (b) spatial skill in resolving the variability of the strength of density stratification 
(circles) and the depth of pycnocline initiation (diamonds). In (a), the individual dots 
represent the 13 stations along the main stem of the Chesapeake Bay. In (b), the dots 
represent the 24 months of 2004-2005 and are delineated by color: red = summer (May-
September) and blue = winter (October-April). 
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Figure 2.8: Normalized summary (a) target and (b) Taylor diagram illustrating model 
skill of bottom temperature, salinity, chlorophyll, nitrate, and dissolved oxygen at 13 
Chesapeake Bay stations for 2004-2005. The “x” represents the skill of a model that 
perfectly reproduces the observations. 
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Figure 2.9: Time series of bottom dissolved concentrations for station CB4.1C. Red dots 
represent the 34 observations made during 2004-2005. Grey lines are the individual 
model simulations. The dark blue line represents the model mean while the cyan line 
represents the 95% confidence interval of the model simulations. 
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Figure 2.10: Scatter plots comparing observations of (a) the strengths of stratification of 
the pycnocline and oxycline and (b) the oxygen- and density-defined mixed layer depths. 
Size of the circles is proportional to the number of observations. Observations are from 
1998-2006 at the 13 Chesapeake Bay stations shown in Figure 2. 
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Figure 2.11: Time series of observations at Station CB4.1C from 2003 – 2006 for (a) 
bottom dissolved oxygen, (b) dissolved oxygen at the MLDO, and (c) MLDO. 
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Figure 2.11: Time series of observations of dissolved oxygen and MLDO contours at 
Station CB4.1C for 2004 and 2005. 
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3. EVALUATING CONFIDENCE IN THE IMPACT OF 

REGULATORY NUTRIENT REDUCTION ON 

CHESAPEAKE BAY WATER QAULITY 
 

Key Points 

• Two estuarine water quality models simulate a similar relative improvement in 

dissolved oxygen as a result of nutrient reduction.  

• The models predict very similar levels of water quality standards attainment 

throughout most of the Bay.  

• The greatest uncertainty in the impact of nutrient reduction on the attainment of 

water quality standards is generally in those areas with historically large hypoxic 

issues.  

• The regressions derived form the raw model output are the greatest source of 

uncertainty in the process of evaluating water quality standards attainment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 64 

Abstract 
Excess nutrients derived from anthropogenic activity have resulted in the 

degradation of coastal water quality and an increase in low-oxygen events worldwide. In 

an effort to curb these impacts and restore water quality in the Chesapeake Bay, a Total 

Maximum Daily Load (TMDL) of nutrients and sediment has been established based on a 

framework of regulatory standards and models. This research aims to evaluate the 

uncertainty in projected changes in water quality resulting from TMDL implementation 

by applying the methodology used to establish the regulatory loads to two models: one 

developed and utilized in an academic research setting, and one developed for use in the 

regulatory process. Results of this comparison demonstrate that although the two models 

differ structurally and in biogeochemical complexity, they project a similar relative 

improvement in water quality along the mainstem of the Chesapeake Bay and the lower 

reaches of the tributaries. Furthermore, the models largely agree on the attainment of 

regulatory water quality standards as a result of nutrient reduction, while also establishing 

that meeting water quality standards is relatively independent of hydrologic conditions. 

By developing a Confidence Index, this research identifies the locations and causes of 

greatest uncertainty in modeled projections of water quality. Although there are specific 

locations and times where the models disagree, overall this research lends an increased 

degree of confidence in the appropriateness of the TMDL levels and in the general impact 

nutrient reductions will have on Chesapeake Bay water quality under current 

environmental conditions.  
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3.1 Introduction 
Degraded coastal water quality as a result of anthropogenic nutrient enrichment 

can have a large negative impact on local economies (Rabotyagov et al. 2014). Low-

oxygen events have been linked to declines in catch of commercially valuable species, 

biodiversity, and ecosystem value (Diaz 2001; Rabalais and Turner 2001; Brietburg et al. 

2009; Buchheister et al. 2013). These impacts can eventually lead to regulatory action by 

the affected communities in an effort to restore water quality to a sustainable standard. 

Governments have worked across state, territory, and country lines to address water 

quality issues in areas such as the Baltic Sea (HELCOM 2007), the Black Sea (BSC 

2009), the Gulf of Mexico (HTF 2011), and the Chesapeake Bay (USEPA 2010a). The 

regulatory response can take many forms but commonly involves the reduction of 

nutrients derived from agriculture practices, wastewater treatment, and urban runoff in an 

effort to improve water quality and the associated positive externalities. The regulatory 

structure used to define the level of nutrient reduction is often referred to as a Total 

Maximum Daily Load (TMDL), which sets the maximum level of pollutant delivery a 

particular jurisdiction can deliver to a waterway.   

As the largest estuary in the United States with a watershed supporting a growing 

population of over 17 million people, the Chesapeake Bay is particularly prone to water 

quality degradation as a result of human activity. The Bay has experienced decreased 

dissolved oxygen (DO) concentrations and a degradation of other water quality metrics 

over the last 200 years with degradation amplifying since the 1950s (Cooper and Brush 

1993; Curtin et al. 2001; Hagy et al. 2004). Increased volumes of low-oxygen waters in 

the Bay (Bever et al. 2013) have had a negative effect on the health of the Bay ecosystem 

and economy (Phillips and McGee 2014). Volumes of low-DO water compress fish 

habitat and impact the catch per unit effort across the Bay (Buchheister et al. 2013). Blue 

crab harvest in the Bay is also negatively affected by low-DO conditions (Mistiaen et al. 

2003).  

In the 1980’s nutrient pollutants such as phosphorus and nitrogen were identified 

as the main sources of the Bay’s water quality issues (USEPA 1982; USEPA 1983). 

Multiple efforts by state, federal, and private partners to restore the Bay eventually 

resulted in the 2010 Chesapeake Bay TMDL, the largest and most complex TMDL in the 
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United States to date (USEPA 2010a). Under the authority of the Clean Water Act 

Section 303(d), the TMDL established location-specific mandated pollutant reductions 

throughout the six states and Washington, D.C. that make up the Chesapeake Bay 

watershed (Fig. 3.1). The specific level of reduction was set to ensure that water quality 

standards as defined by the Environmental Protection Agency (EPA) would be eventually 

met. The timeline instituted by the regulation mandates that all pollutant reduction efforts 

be in place by 2025 and that a mid-point assessment be conducted in 2017 (USEPA 

2010a). 

 The Chesapeake Bay Program (CBP) under the authority of the EPA established 

allocations of mandated nutrient load reductions by utilizing a complex modeling system, 

including an airshed model, watershed model, and estuarine water quality model (USEPA 

2010a). Much of the focus of the research in developing the Bay TMDL was on the 

complex watershed modeling system, as that was the model that would indicate how 

much reduction each section of the watershed would have to incur. However, the CBP 

has also had a long history of estuarine water quality modeling in the Chesapeake Bay. 

The model currently used by the CBP for estuarine water quality modeling was first 

developed in 1983 and has been continually in use and undergone frequent updates 

(Cerco et al. 2010).  

 Recently, many other governmental and academic groups have also committed 

themselves to modeling the Chesapeake Bay as exemplified by the Chesapeake 

Community Modeling Program (http://ches.communitymodeling.org/). The combination 

of multiple marine science institutions and robust observational datasets as a result of the 

EPA’s extensive water quality monitoring of the Bay 

(http://www.chesapeakebay.net/data/downloads/cbp_water_quality_database_1984_prese

nt) has provided the research community with the means necessary for interdisciplinary 

modeling of the Bay ecosystem. Studies examining the relative strengths of various 

modeling strategies and methods have increased the caliber of Bay water quality 

modeling and understanding (e.g., Bever et al. 2013; Chapter 2). From relatively simple 

water quality models (e.g., Hong and Shen 2013; Lake and Brush 2015; Li et al., 2015; 

Scully 2016) to more complex coupled circulation-biogeochemical models (e.g., Xu and 

Hood 2006; Testa et al. 2014; Feng et al. 2015; Xia and Jiang 2016) to ecosystem models 



 67 

that incorporate higher trophic levels (e.g., Ihde et al. 2016), the Chesapeake Bay 

research community has committed to furthering our understanding of the Bay ecosystem 

as a whole and Bay water quality in particular.  

The research presented here harnesses the strength of the governmental and 

academic research on Chesapeake Bay water quality modeling to evaluate the uncertainty 

in projections of changes in water quality resulting from regulatory nutrient reduction. 

Regulations aimed at improving the water quality of the Chesapeake Bay are estimated to 

cost in the tens of billions of dollars (Nelson 2014). With such astounding potential costs, 

it is crucial for regulatory efforts to be targeted and successful. It is also critical that the 

uncertainties associated with projected future conditions be well characterized and 

quantified. This research utilizes a comparison of two model simulations for the 

Chesapeake Bay to evaluate confidence in the impact of regulatory nutrient reduction on 

water quality. In this context, low uncertainty, or high confidence, does not mean that 

water quality standards will be met; rather, it means that both models agree on the impact 

of nutrient reductions on water quality regardless of whether or not the standards 

themselves are met.   

 

3.2 Modeling methodology 

In this study, simulations from two water quality models were assessed and 

compared; one model was developed and used in a regulatory context, hereafter referred 

to as the Regulatory Model, and the other was used in an academic research context, 

hereafter referred to as the Academic Model. Both models were forced by the same 

nutrient scenarios and underwent the same model skill assessment. To facilitate model 

comparisons, the Academic Model output was vertically mapped to the grid of the 

Regulatory Model. Where the Regulatory Model grid depths were deeper (shallower) 

than those of the Academic Model, the Academic Model output profiles were linearly 

stretched (compressed) to match those of the Regulatory Model output. 
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3.2.1 Water quality models 

3.2.1.1 Regulatory Model: CH3D-ICM 

The CBP’s water quality and sediment transport model, the Curvilinear 

Hydrodynamics in Three Dimensions – Integrated Compartment Model (CH3D-ICM; 

Cerco et al. 2010), is a coupled hydrodynamic-biogeochemical model used to help set 

regulatory policies for the Chesapeake Bay TMDL. The model employs a curvilinear 

boundary-fitted horizontal grid consisting of 11,604 horizontal cells with an average wet 

cell resolution of 1 km and a 1.52 m vertical z-grid. The ecological component of the 

model uses 24 state variables throughout the water column that interact with a complete 

sediment diagenesis module. CH3D-ICM has been extensively calibrated for the 

Chesapeake Bay and has been in use and development since the 1980s (Johnson et al. 

1993). Model output was provided by the CBP and is from the version of the model used 

in the development of the TMDL. 

 

3.2.1.2 Academic Model: ChesROMS-ECB 

The Chesapeake Bay Regional Ocean Modeling System – Estuarine Carbon 

Biogeochemistry model (ChesROMS-ECB; Feng et al. 2015) is a coupled circulation-

biogeochemical model based on the Regional Ocean Modeling System (ROMS; 

Shchepetkin and McWilliams 2005) with the specific model domain and curvilinear 

horizontal grid based on the Chesapeake Bay modeling community’s ChesROMS model 

(Xu et al. 2012). The vertical framework follows a sigma-grid with 20 layers and a 

stretching parameter that condenses the grid at the air-water and sediment-water 

interfaces while expanding it mid-water column. The average wet cell resolution inside 

the Bay for the Academic Model (1.7 km) is larger than that of the Regulatory Model and 

also employs a more smoothed bathymetry. The differences in bathymetry are most 

apparent on the shoals and mouth of the Bay where the Academic Model is generally 

shallower than the Regulatory Model and true bathymetry. Another difference between 

the two water quality models is the locations at which watershed loads are delivered to 

the Bay. In the Regulatory Model, watershed loads are input continually along the entire 

land-water interface. While efforts are underway to improve the Academic Model 
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boundary so that it can also receive watershed loads along the entire land-water interface, 

it currently only receives loads at ten major rivers (Feng et al. 2015).  

The biogeochemical component of the Academic Model is modified from Fennel 

et al. (2006), Druon et al. (2010), and Hofmann et al. (2011) in order to be specifically 

applicable for estuarine applications (Feng et al. 2015). These modifications include the 

addition of an inorganic suspended solids state variable, water column denitrification, 

oxygen limitation of nitrification, and a new parameterization for light attenuation that is 

a function of suspended particulate matter and salinity (as a proxy for colored dissolved 

organic matter; Xu et al. 2005). The biogeochemical component of the Academic Model 

is mid-complexity relative to other less complex models that do not employ a full 

biogeochemical component but have been shown to adequately simulate seasonal DO 

dynamics in the Chesapeake Bay utilizing a parameterized constant oxygen consumption 

rate (Scully 2010; Bever et al. 2013; Chapter 2) and more complex models such as the 

Regulatory Model (Cerco et al. 2010).  

While the TMDL mandates the reduction of nitrogen, phosphorus, and sediment, 

the Academic Model used in this study does not include phosphorus. While not including 

phosphorus may be a limitation for realistically simulating marine nutrient cycles, the 

Academic Model has been calibrated with nitrogen as the only nutrient available for 

biologic uptake and is able to successfully simulate DO variability especially in the deep 

mid-Bay during the hypoxic summer season (Feng et al. 2015; Chapter 2), since this time 

and region is more limited by nitrogen than by phosphorous (Testa et al. 2014).  

 

3.2.2 Nutrient forcing 

3.2.2.1 CBP Watershed Model (WSM) inputs 

To ensure consistency between model runs, both models were forced at the land-

water interface by the CBP regulatory watershed model version 5.3.2 (WSM; Shenk and 

Linker 2013). This is the version used in the development of the TMDL. The WSM, 

based on Hydrologic Simulation Program – Fortran (HSPF), utilizes multiple components 

to simulate land use, river flow, and the loading of nutrients and sediment to the Bay and 

has been in continual development with the input of multiple stakeholders since 1982 

(Linker et al. 2002; Shenk and Linker 2013). The WSM was used in establishing the Bay 
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TMDL by developing and running multiple nutrient and sediment load reduction 

scenarios. Once an appropriate level of reduction was established, the WSM was used to 

allocate the requisite location-specific reductions required by each jurisdiction throughout 

the watershed (Shenk and Linker 2013).  

 A transfer of variables was required from the WSM to both water quality models 

as the watershed and estuarine models express organic nutrient constituents differently. 

To match the relative contribution of the organic nitrogen constituents in the Academic 

Model (refractory dissolved organic nitrogen, semi-labile dissolved organic nitrogen, and 

particulate organic nitrogen) to the WSM (lysed freshwater phytoplankton nitrogen, total 

refractory organic nitrogen, and the biological oxygen demand from organic nitrogen), 

the components from the watershed were divided up and input as the necessary 

components to the estuary. To achieve this, the refractory dissolved organic nitrogen was 

set to be 20% of the total refractory organic nitrogen, the semi-labile dissolved organic 

nitrogen was the total biological oxygen demand from organic nitrogen and 80% of the 

phytoplankton nitrogen, and the particulate organic nitrogen was 80% of the refractory 

organic nitrogen and 20% of the phytoplankton nitrogen. These assumptions are 

consistent with the partitioning used in the development of the Academic Model (Feng et 

al. 2015).  

 

3.2.2.2 Standard run and TMDL-WIP scenario 

Two WSM nutrient load scenarios were applied to both estuarine models used in 

this study. The first was the calibration scenario for the WSM, which the CBP used as a 

baseline for the TMDL. This scenario represents a realistic simulation of the observed 

watershed loads for 1991-2000. Estuarine model results utilizing the WSM calibration 

scenario will hereafter be referred to as the “standard run.” The second was the TMDL 

Watershed Implementation Plan (WIP) nutrient reduction scenario. This scenario 

assumes all nutrient reduction strategies as prescribed by the WIP have been 

implemented, and is very similar to the actual scenario used to establish the TMDL. 

Estuarine model results utilizing the WSM WIP nutrient reduction scenario will hereafter 

be referred to as the “TMDL-WIP scenario.” Specific information on the nutrient 

reduction loads can be found in Shenk and Linker (2013) and include a percent reduction 
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from the study period average of 33% for total nitrogen, 27% for total phosphorus, and 

27% for sediment across the entire watershed.   

The 2010 TMDL was the first instance where atmospheric nitrogen deposition 

was included in an agreement to improve water quality of the Bay. Direct atmospheric 

nitrogen deposition for both models is derived from the CBP airshed model, which 

combines output from the Community Multiscale Air Quality model (CMAQ) for dry 

deposition and a regression model for wet deposition (Linker et al. 2013a). The TMDL 

allocates a maximum annual direct deposition of 7.1 million kg N to the tidal waters of 

the Bay (USEPA 2010a; Linker et al. 2013a). This maximum allowable loading 

represents a 30% reduction of direct atmospheric nitrogen deposition from the study 

period average. To keep the atmospheric nitrogen deposition loads consistent between the 

models, the 30% reduction in direct deposition was also applied to the Academic Model 

during the nutrient reduction scenario.  

The impact of the TMDL-WIP reduced nutrient scenario is compared for both 

estuarine models by examining the absolute as well as relative changes in DO 

concentrations spatially and temporally. By dividing the absolute change by the 

concentration from the standard run, the relative change in DO concentration as a result 

of the TMDL-WIP scenario is determined. This relative change in DO allows for a 

comparison of the impact of nutrient reduction between the models. 

 

3.2.3 Model skill metrics 

Before comparing the impact of nutrient reductions on the DO concentrations 

from the two models, it is critical to compare their relative skill when they are both 

forced by the same realistic watershed inputs, i.e. the standard runs. The Academic and 

Regulatory Models have been previously shown to exhibit similar skill in simulating 

seasonal DO concentrations along the main-stem of the Bay in 2004 and 2005 (Chapter 

2). Here, the skill assessment of these models is extended to include a longer time frame 

(1991-2000) and a larger variety of stations encompassing both the main stem and the 

lower portions of the major tributaries of the Bay (Fig. 3.1, Table 3.1). Model skill is 

statistically compared via target and Taylor diagrams (Taylor 2001; Hofmann et al. 2008; 

Jolliff et al. 2009). Target diagrams allow for a comparison of the total root-mean squared 
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difference (RMSD), bias, and unbiased RMSD on a single diagram. Taylor diagrams 

similarly offer information on the unbiased RMSD, but additionally include quantitative 

information on the standard deviations and correlations between the model output and 

observations. Both diagrams are normalized to the standard deviation of the observations 

in order to facilitate plotting multiple variables on the same diagram. The normalization 

of the target diagram allows the unit circle to represent the skill of a model as defined by 

the mean of the observations. (See Hofmann et al. (2008) and Joliff et al. (2009) for a 

more detailed description of target diagrams and Taylor (2001) for a more detailed 

description of Taylor diagrams.) Full methods for the comparison follow Chapter 2.  

 

3.3 CBP procedure for assessing attainment of water quality standards  

3.3.1 Designated uses 

The CBP evaluates water quality for multiple habitats across the Bay and its 

tributaries (Tango and Batiuk 2013). These habitats are termed “designated uses” by the 

CBP and are characterized by ecological use (USEPA 2003; USEPA 2010b). Each 

designated use (Fig. 3.2) has a specific mandated minimum DO criterion, otherwise 

known as a DO “Water Quality Standard” (Table 3.2). Because of the importance of 

seasonal differences in DO, the TMDL specifies different Water Quality Standards 

(WQS) for the summer (June – September) and non-summer (October – May) seasons. 

During the non-summer, Open Water encompasses the entire water column. During the 

summer, the Open Water designation incorporates all surface water environments across 

the Bay and extends down to the bottom of the mixed surface layer, if there is one. The 

Deep Water designated use represents the summer transitional zone of the water column 

that is influenced by the pycnocline, incorporating all water below the well-mixed surface 

layer and above the well-mixed deep layer. The Deep Channel designated use 

encompasses the deep summer waters of the main stem trench and deep tributaries where 

physical characteristics limit the elevation of DO concentrations regardless of controls on 

water quality during the summer months. The depths delineating each designated use are 

defined by the observed physical characteristics for each month and are therefore non-

uniform across time and space. The migratory fish spawning and nursery designated use 
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and the shallow-water Bay grass designated use were not individually evaluated in this 

study because they follow the Open Water DO criteria for the summer months. 

 

3.3.2 TMDL regulatory protocol for determining attainment of water quality 

standards 

To examine whether nutrient reductions will result in DO WQS being met, i.e. 

attained, the output from the standard run and TMDL-WIP scenario of both estuarine 

models underwent the published process for identifying attainment of WQS as 

established by the EPA and CBP (USEPA 2010a). While a brief synopsis of the 

methodology is below, a more complete documentation of this process can be found in 

the Supplemental Material for this manuscript and throughout the Chesapeake Bay 

TMDL literature (USEPA 2010a; Linker et al. 2013b; Tango and Batiuk 2013).   

 The TMDL regulations were not based off the absolute DO concentrations 

simulated by the models; rather, the regulations use the change in DO between the 

standard run and TMDL-WIP scenario. To quantify the change in DO due to the nutrient 

reduction at a specific location and specific time, the hourly output for each month at 

each vertical cell at each station for the standard and scenario runs were regressed against 

each other (Fig. 3.3). (Also see USEPA Appendix H 2010). The resulting linear 

regression was used to create a scenario-modified dataset by inputting an actual observed 

DO concentration from 1991-2000 into the regression equation as the independent 

variable and obtaining a projected DO concentration as a result of the nutrient reduction 

scenario. By utilizing this regression method, the errors in the true predictive capabilities 

of the models are minimized since the models are not being used to predict an explicit 

future DO concentration, but rather they are predicting the relative change in DO 

concentrations that can be expected as a result of decreased nutrient availability.  

 Once the regressions were applied and the set of future “observations” were 

generated, the CBP applied a stoplight analysis to identify the percent time and space that 

the volume of water in question met or exceeded the mandated WQS. This process uses 

the CBP Interpolator (USEPA 2012) to interpolate scenario-modified DO concentrations 

throughout the Bay. The regulations were designed with the flexibility to allow water 
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quality levels to exceed minimum standards, i.e. fail, for a specific percent time and space 

while still being granted an overall passing grade based on a cumulative distribution 

function reference curve (USEPA 2010b; Tango and Batiuk 2013). In the stoplight 

analysis, green represents the percent time and space that WQS are met, yellow 

represents the percent time and space that WQS are not met but are still within the buffer 

allowed by the individual reference curve, and red represents the percent time and space 

that WQS are not met and are beyond the buffer. Therefore, while all three colors are 

utilized in the stoplight analysis, only red signifies a segment that has failed, or exceeded, 

the regulatory standards. All percentages are rounded to the nearest whole percent and an 

exceedance of 1% red is deemed allowable due to impacts from rounding and 

computational uncertainty. Furthermore, in order to account for the fact that some 

locations in the Bay might exhibit low DO concentrations even under pristine conditions, 

an extra allowance was given in specific cases (Table 3.3). These extra allowances, 

defined as “variances,” are allocated at the state level and therefore the stoplight analyses 

presented here do not include the variances that have been granted; however their 

significance will be considered in the Discussion. 

 

3.3.3 Study period (1991-2000) and critical period (1993-1995) 

The Chesapeake Bay TMDL was established using a 10-year hydrologic study 

period from 1991-2000 (USEPA 2010a; Linker et al. 2013b). This study period was 

chosen because it characterized a representative 10-year variability of freshwater flow 

and was fully encompassed within the 1985-2005 period for which model results were 

available. Within the 10-year study period, the 3-year critical period of 1993-1995 was 

used as the basis for the TMDL assessment. These three years were selected based on 

being representative of a relatively high-flow period, because higher stream flow has 

been found to result in larger nutrient fluxes from the watershed and ultimately worse 

water quality conditions (Murphy et al. 2011). Whereas the study period encompasses 

1991-2000, the majority of the research presented in this study is focused on the three-

year critical period (1993-1995) that was used in the TMDL regulations. (Note that 

although the Regulatory Model was specifically calibrated for the ten-year study period 

(Cerco et al. 2010; Cerco and Noel 2013), the Academic Model (Feng et al. 2015) was 
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calibrated for 2001-2005.) In order to explore the impact of the choice of 3-year period 

on projected water quality, the results of every 3-year period between 1991-2000 (8 total 

periods) were put through the regulatory WQS protocol. 

 

3.4 New methodology for assessing confidence in WQS attainment: the 

Confidence Index (CI) 

To evaluate the degree of uncertainty in the projected impact of nutrient 

reductions on water quality, a confidence index (CI) is introduced, which incorporates 

multiple forms of information regarding how similarly the models react to nutrient 

reduction for each segment of the Bay. Specifically, the CI is the average of three metrics 

of similarity that are each given a fractional percent similarity score with a score of 1.0 

representing perfect similarity between the model results. A score of 0.0 is different for 

each metric and is defined as the level at which a dissimilarity of the models would be 

concerning. Assessing confidence at the segment level allows for an easily digestible 

framework for visualizing the metric.  

The first metric included in the CI is the average similarity of the stoplight 

analysis for 1993-1995 for the designated uses in each segment, hereafter referred to as 

the designated use metric. The similarity of the two models is calculated as the total 

percent identical between the two stoplight analyses. For example, if the Regulatory 

Model for a given segment and a given designated use results in a stoplight analysis of 

85% green, 10% yellow, 5% red, and the Academic Model is 83% green, 8% yellow, 9% 

red, then there is a 96% similarity between the two models (83% + 8% + 5% = 96%). For 

some segments the average of all four designated uses was calculated, but for shallow 

segments, like CB1TF, the average was calculated only from the two Open Water 

designated uses (summer and non-summer). A score of 0.0 for the designated use metric 

was set at 75% similarity and a score of 1.0 is given for 100% similarity. 

The second metric included in the CI is the similarity in the impact of the 3-year 

critical period across all designated uses that pertain to any given segment, hereafter 

referred to as the critical period metric. In order to explore the similarity between the 

models’ stoplight analyses as a result of the choice of 3-year period, every 3-year period 
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between 1991-2000 (8 total periods) were put through the regulatory WQS protocol. This 

essentially changes the baseline hydrologic conditions used in the assessment. For ease in 

examining across multiple segments, the percent exceedance, or red stoplight, for each 

segment was weighted by the total volume of the specific designated use in question for 

that segment and then all of the segments for a given designated use were added together. 

Using this method, even though a model may exhibit a large exceedance of 20% in the 

Deep Water for a relatively small segment like the Patapsco (PATMH), if the rest of the 

segments display no exceedance, then the total exceedance for Deep Water will be much 

less that 20%. To establish the similarity between the two models, the average 

exceedance value (red) for each segment across the eight potential 3-year periods was 

calculated for each model. A score of 0.0 for the critical period metric was set at a 

difference in average exceedance between the two models of 2% since a difference of 

that amount would determine whether or not a segment was in attainment. 

The last metric is taken from the average similarity of three sub-metrics that are 

generated as part of the regressions used to determine attainment of WQS: the correlation 

(r), y-intercept, and slope. This metric is hereafter referred to as the regression statistic 

metric. A score of 1.0 represents a perfect match in correlation, y-intercept, and slope, 

while a score of 0.0 was set at 0.5 for the correlation metric, 2.0 for the y-intercept 

metric, and 1.0 for the slope metric. These values were chosen because they represent 

values that would denote a fundamental dissimilarity between the model results. The 

regression statistic is only based on the summer regressions, as that is when the models 

are most different. Finally, the full CI is then computed as the average of the three 

metrics for each segment (Table 3.1). 

 

3.5 Results 

3.5.1 Model-data comparison of the standard run for both estuarine models 

Before comparing the two models in terms of how they respond to nutrient 

reductions, it is important to assess the overall skill of both models. Although both 

models have been previously found to have similar skill along the main stem for 2004-

2005 (Chapter 2), it is important to assess skill for the time period used in this analysis 
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(1991-2000) and expand that analysis beyond the deep mainstem observation stations to 

incorporate the lower tributary segments.  

Both models exhibit a similar level of skill across 25 observation stations (Fig. 

3.1) and 10 years (1991-2000) for temperature, salinity, and DO despite differences in 

model structures, model complexity, and calibration years. In terms of both total RMSD 

(Fig. 3.4a) and correlation (Fig. 3.4b), the models perform very similarly: they both 

perform best in terms of temperature, then salinity, then DO, and then stratification. Both 

models also exhibit a slightly higher degree of skill at the surface relative to the bottom 

for all variables. The one exception is for DO: the Regulatory Model performs slightly 

better at the bottom (lower bias and higher correlation) than at the surface. In contrast, the 

Academic Model tends to overestimate mean DO at both the surface and bottom and thus 

the Academic Model generally produces DO concentrations that are slightly higher than 

those generated by the Regulatory Model and the observations.  

In terms of stratification (defined as maximum dS/dz), both models similarly 

underestimate the mean (strength) and variability (variation of strength) while also 

having a poor correlation with the observations (r = 0.4). Although the Academic Model 

places the location of maximum stratification too high in the water column (positive bias) 

whereas the Regulatory Model simulates the correct mean location, the total RMSD for 

the magnitude and depth of stratification, i.e. the distance from the center of the target 

diagram to the green symbols (Fig. 3.4a), is roughly 1.0 for both models. 

 

3.5.2 Comparison of the standard runs versus the TMDL-WIP scenarios 

When the TMDL-WIP nutrient reduction scenario is applied to both models for 

1993-1995, they produce similar changes in summer DO concentrations; however, 

especially at the bottom, the relative changes are more similar than the absolute changes 

(Fig. 3.5).  Although throughout most of the Bay the nutrient reductions result in 

decreases in surface DO for both models, at the northernmost stations the models 

simulate an increase in surface DO. Whereas the Academic Model simulates slightly 

larger decreases in the southern half of the Bay compared to the Regulatory Model, the 

relative change in DO between the models (Fig. 3.5e-f), defined as the change in DO 
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divided by the DO concentration in the standard run, is extremely similar across the 

entire Bay surface.  

At the bottom, the TMDL-WIP nutrient reduction scenarios result in the absolute 

increase in summer DO in the Academic Model being higher than the Regulatory Model 

along the central main stem (Fig. 3.5c,d); however again the relative increase is 

remarkably similar in magnitude between the two models (Fig. 3.5g-h). The differences 

in relative impact between the models is accentuated in some of the tributaries where the 

Academic Model generally produces small relative changes in summer bottom DO while 

the Regulatory Model simulates relatively large increases. This is most evident in the 

Chester River (CHSMH in Fig. 3.1) and Eastern Bay (EASMH in Fig. 3.1) where the 

Regulatory Model simulates a large relative increase in DO of ~160% while the 

Academic Model simulates a modest relative increase of ~5%.   

The nutrient reduction scenarios cause both models to exhibit a larger increase in 

DO concentrations during the summer than in the winter (Fig. 3.6). During the summer in 

the mesohaline main stem (CB3MH and CB4MH), the Academic Model simulates a 

slightly larger increase in bottom DO (Fig. 3.6a) than the Regulatory Model (Fig. 3.6b); 

however, the difference between the two standard runs (Fig. 3.6c; black line) is larger 

than the difference between their changes in DO (Fig. 3.6c; orange line). In other words, 

the change in DO simulated by the Academic Model is more similar to that of the 

Regulatory Model than the absolute DO concentration of the Academic Model is to that 

of the Regulatory Model. 

 

3.5.3 Comparison of water quality standard attainment for both models 

When the results of the model simulations are put through the CBP protocol for 

determining whether or not WQS would be met with the TMDL-WIP nutrient reduction, 

the two models both predict surprisingly similar results (Table 3.4; Fig. 3.7). With 0% red 

in the stoplight analysis for Open Water Summer and Open Water Non-Summer, both 

models simulate a complete attainment of WQS in these habitats. While the Open Water 

Non-Summer was widely in attainment before nutrient reduction, the Open Water 

Summer designated use was not. The models begin to diverge in Deep Water where the 

percent agreement in the stoplight analysis falls below 95% for four of the segments. In 
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only two of these segments do the models disagree on percent non-attainment (red) by 

>1%. Differences are larger in the Deep Channel waters where four of the eight segments 

disagree by >1%. In general, the greatest differences occur in the mid-Bay main stem and 

mid-Bay tributaries.  

A further examination of the Deep Water and Deep Channel results highlights that 

while the model simulations of WQS attainment differ most in these portions of the water 

column, the increase in WQS attainment compared to the 1993 – 1995 levels is still quite 

similar between the models (Fig. 3.8). Based on observations from 1993 – 1995, all Deep 

Channel and the majority of Deep Water volumes were out of attainment with many 

segments exhibiting substantial percentages of red (Fig. 3.8a,d). In the Deep Channel, 

both models simulate a considerable reduction in non-attainment (Fig. 3.8e,f). In the 

Deep Water, the pattern of non-attainment diverges between the models particularly in 

the tributaries with the Academic Model generating non-attainment in the Rappahannock 

and Patuxent Rivers and the Regulatory Model generating non-attainment in the Patapsco 

and Chester Rivers (Fig. 3.8b,c). Both models identify issues in the Eastern Bay. Along 

the main stem, the non-attainment simulated in the Academic Model is isolated to 

CB4MH. In the Regulatory Model, the non-attainment spans the entire mid-Bay from 

CB3MH to CB5MH. Overall, however, both models simulate a dramatic improvement in 

WQS attainment compared to the 1993 – 1995 levels (Fig. 3.8b,c compared to Fig. 3.8a; 

Fig. 3.8e,f compared to 3.Fig. 8d) and many of the differences between the models are 

due to non-attainments of << 1%.  

 

3.5.4 Comparison of the impact of 3-year period 

The two models behaved similarly across all eight 3-year periods examined, with 

both models exhibiting higher non-attainment of WQS during wet periods (Fig. 3.9). As 

was seen for the 1993 – 1995 period (Fig. 3.7, 3.8), the Deep Water generally exhibits the 

largest percent non-attainment for both models regardless of which years are examined. 

Deep-water non-attainment in the Academic Model is below ~0.4% for each time period 

examined except for 1996 – 1998. This corresponds to a 3-year period of prolonged high 

flows. While the Regulatory Model also simulates the highest percent Deep Water non-

attainment for 1996 – 1998, it is not as large of a difference between that time period and 
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the other wet periods (1993 – 1995, 1994 – 1996) as is seen for the Academic Model. 

Non-attainment in the Deep Channel for the Academic Model is also particularly high in 

1996 – 1998, resulting in one of the few instances where the Academic Model exhibits 

greater non-attainment than the Regulatory Model. However, even considering the 

variability of non-attainment, the non-attainment for any given designated use across all 

eight potential time periods for both models does not go above 1.6% non-attainment and 

averages much less than 1.0% non-attainment. As a result, while there is variability 

between the 3-year periods, the specific time period chosen does not have a major impact 

on the total non-attainment.  

 

3.5.5 Examination of Confidence Index 

Calculation of the Confidence Index (CI), based on the three similarity metrics 

described in the previous section, reveals a high degree of confidence for the majority of 

Bay segments (Table 3.5, Fig. 3.10). Exceptions include the Chester River (CHSMH), 

which received a negative score in the critical period metric, the Eastern Bay (EASMH), 

which has the lowest degree of similarity in the regression statistics metric, and the 

central mid-Bay (CB4MH), which scored low for all three metrics. Across the rest of the 

Bay, the two models are very similar for the three metrics examined (CI > 0.75) lending a 

high degree of confidence in their projections of whether or not WQS are attained. The 

CI for Mobjack Bay (MOBPH), Pocomoke Sound (POCMH), lower James River 

(JMSPH), Potomac River (POTMH), tidal fresh main stem (CB1TF), Patuxent River 

(PAXMH), and Tangier Sound (TANMH) are particularly high, leading to a high 

confidence in these WQS attainment projections. Overall, the models are most similar in 

terms of the designated use metric, exhibit the largest spread among scores in the critical 

period metric, and produce the lowest average score in the regression statistics metric.  
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3.6 Discussion 

3.6.1 How do Chesapeake Bay models compare in terms of how nutrient reduction 

impact DO concentrations? 

- The Academic Model simulates a larger absolute improvement in DO compared 

to the Regulatory Model, but both models simulate a similar relative improvement 

in DO.  

 

Along the main stem of the Chesapeake Bay, the Academic Model simulates a 

higher summer absolute increase in bottom DO as a result of nutrient reduction than the 

Regulatory Model. This difference continues up the water column, attenuating to the 

surface where the models perform quite similarly. The difference in the absolute change 

in bottom DO between the models is potentially due to the positive bias of DO 

concentrations in the Academic Model, differences in parameter tuning, and the relative 

simplicity of the water column biogeochemistry in the Academic Model compared to the 

Regulatory Model. At the surface, the decreased input of nutrients causes both models to 

predict a decrease in DO. This decrease in DO is a result of decreased production in the 

surface layer of the water column and is consistent with other modeling studies exploring 

the impact of nutrients on water quality (e.g. Testa et al., 2014). The prediction of both 

models of an increase in DO at the surface for the northern-most stations is likely a result 

of the decrease in sediment in the TMDL-WIP scenario, which alleviates light limitation 

on production. This area has the highest turbidity, and consequently benefits most from 

the reduction in sediment delivered to the Bay.  

 While the models disagree somewhat on the absolute change in bottom DO as a 

result of the nutrient reductions, they are surprisingly similar in terms of the relative 

change in DO at the bottom and throughout the water column. The only important 

difference between their simulated relative changes in DO is in the middle of the main 

stem of the Bay at depth, where the magnitude of the relative change is similar between 

the models but the Regulatory Model places the maximum impact further north than does 

the Academic Model. This has important ramifications for the assessment of water 
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quality standards since the Regulatory Model simulates the greatest impact in segment 

CB3MH, while the Academic Model places the largest impact squarely in CB4MH. 

 

3.6.2 How do Chesapeake Bay models compare in terms of whether nutrient 

reductions will lead to the desired attainment of water quality? 

- The models predict very similar levels of water quality standards attainment 

throughout most of the Bay, with all but one segment exhibiting a >90% 

similarity between the models. Furthermore, the impact of different baseline 

hydrologic conditions as a result of the choice of 3-year study period did not 

significantly impact the overall attainment of water quality standards for either 

model.  

 

Water quality observations from 1993 – 1995 demonstrate that there were large 

areas throughout the Deep Channel and Deep Water of the Bay where water quality 

standards were not being met (Fig. 3.8). Both models predict that the vast majority of 

those exceedances will be alleviated once the TMDL-WIP nutrient reduction is in place. 

The two segments where the models disagree most are CB4MH and CHSMH (Table 3.4, 

Fig. 3.7). The former is a direct result of the spatial dissimilarity in where the largest 

relative impact of the nutrient reduction is located. Since the Regulatory Model simulates 

its largest impact in CB3MH, CB4MH does not pass the WQS attainment as it does for 

the Academic Model, which simulates the largest impact in CB4MH. In the Chester 

River (CHSMH), the Regulatory Model predicts that even with the required nutrient load 

reductions in place, 16% of the Deep Channel will not meet the required water quality 

levels, whereas the Academic Model is fully in attainment. This is potentially due to both 

a mischaracterization in the Regulatory Model of oxygen concentrations in the lateral 

freshwater flow entering the Chester River as well as the bathymetric grid of the 

Academic Model being far too shallow along the central river channel. The Regulatory 

Model issue in the Chester River has been identified and is currently being remedied (C. 

Cerco, pers. comm.) and both models are currently being used in a shallow water study of 

the Chester River to improve simulations (Friedrichs et al. 2012). 
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 The difference between the model results (Fig. 3.7, Table 3.4) is exaggerated in 

terms of the true attainment of WQS because the similarity comparison is evaluated 

across green, yellow, and red, while the actual TMDL combines green and yellow 

together as the passing grade and only the red is identified as exceedance, or non-

attainment. Because a large fraction of the stoplight results are green, small differences in 

percent similarity can have important ramifications. Examining only the red columns, 

there are only two segments where the models disagree by more than two percent: 

CB4MH and CHSMH.  

In order for water quality levels to pass the regulatory minimums as mandated by 

the TMDL regulation, all areas must pass the WQS with no exceedances. To account for 

some numerical errors in calculating the volumes and percent space and time of 

attainment, the TMDL allows for a 1% buffer for all segments and all designated uses. 

Therefore, a stoplight analysis that exhibits 1% or less of “red” can still be considered in 

attainment. Unfortunately, even with the 1% rule, some segments and designated uses 

still do not meet WQS for both models. In the development of the TMDL, the Regulatory 

Model was tested using progressively stringent nutrient reduction scenarios to explore 

just how much of a potential impact nutrient reductions could have. In some segments, 

the model never went to full attainment even with aggressive nutrient reductions. Since 

all of the problem segments were located in the Maryland portion of the Bay, Maryland 

was able to account for these segments that would not fall into traditional attainment by 

allotting a “variance.” The variances (Table 3.3) are defined by Maryland state regulation 

rather than in the TMDL regulation and only impact those segments identified as unable 

to meet WQS with the mandated nutrient reduction. The regulation states that the 

variances must be reviewed every three years as the modeling and understanding of the 

ecosystem are continually improving.  

 Only in the CB3MH Deep Water does the Academic Model require a variance in 

order to fall within attainment. The Regulatory Model, on the other hand, requires 

variances in five of the segments/designated uses. As discussed previously, the Chester 

River (CHSMH) is a special case that is currently being studied by the CBP. However, 

the iteration of the Regulatory Model used in this analysis results in the CHSMH Deep 

Water falling out of attainment even with the variance. The difference in whether or not 
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the models need the variances to meet WQS is important to note. The results of the 

Academic Model potentially indicate that some of the variances are the result of 

modeling artifacts and not the environment. This is critical to note, since the WQS are 

biologically based and exceedances of 16% or even 7%, as allowed by the variances, 

could prove biologically detrimental considering there are many important Bay species 

unable to tolerate low-DO conditions (USEPA 2003). 

While there are differences between the models as to the level of WQS 

attainment, neither model exhibited a large sensitivity to the choice of study period when 

examining non-attainment relative to the entire volume of a designated use. The EPA 

underwent a complex process to identify the best 3-year period on which to base the 

hydrologic conditions of the TMDL. While there are certainly individual segments that 

exhibit sensitivity to 3-year period, the research performed in this study (Fig. 3.9) 

indicates that when looking at an entire designated use, the models are relatively 

insensitive to the baseline hydrologic conditions in terms of attainment of WQS. In most 

cases, both models simulate an exceedance of less than 1% across entire designated uses. 

The models also similarly exhibit changes between 3-year periods with a higher percent 

exceedance in the wetter 3-year periods than in the drier ones. This is to be expected, as 

there is an observed correlation between years with high freshwater flow and years with 

large hypoxic volumes (Murphy et al. 2011) and it therefore is beneficial to use a wetter 

3-year period in an effort to employ a more conservative approach. 

 

3.6.3 Where is the location in the Bay with the greatest uncertainty in the impact of 

nutrient reduction on the desired attainment of water quality? 

- The greatest uncertainty in the impact of nutrient reduction on the attainment of 

water quality standards is in the Chester River, Eastern Bay, and upper mid-Bay 

main stem. These locations historically exhibit some of the Bay’s lowest summer 

DO concentrations.   

 

The overall goal of this research was to establish a level of confidence in the 

attainment of WQS resulting from required nutrient reductions. The Confidence Index 
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developed here offers insight into the segments where the models behave most similarly, 

i.e. where we have high relative confidence in their projection of the impact of reduced 

nutrient inputs, and where they behave least similarly, i.e. where we have relatively low 

confidence in the impact of reduced nutrient inputs.  

The two segments with the lowest CI were the Chester River and Eastern Bay, 

with both segments exhibiting some of the lowest scores for all three CI metrics. The 

Academic Model never simulated a Deep Water exceedance in the Chester River, while 

the Regulatory Model Deep Water exceedance fluctuated between 3-22% exceedance. 

This is by far the location and metric where the models were most dissimilar and is likely 

a result of deficiencies in both of the models in the Chester River.  In the Eastern Bay, the 

bathymetric grid of the Academic Model is far too shallow, which limits the development 

of a true delineation between the surface mixed layer and the bottom layer. As a result, 

the mean y-intercept of the regressions differs by 2.16 mg L-1, a substantial difference 

when examining hypoxic waters.  

The upper mid-Bay CB4MH segment exhibits the next lowest confidence. The 

low CI score for CB4MH is a result of the spatial difference in the location of maximum 

relative bottom DO increase for the two models, which impacts all three of the metrics. 

Because this difference lies at the boundary of CB4MH and CB3MH, it is possible that if 

the delineation between the two segments were slightly further south, the CI would be 

higher. This raises the question of which model, if either, is correctly simulating the 

location of greatest impact. 

 

3.6.4 Within the modeling and assessment approach, what is the source of greatest 

uncertainty in the impact of nutrient reduction on the attainment of water quality? 

- The regressions derived from the raw model output are the greatest source of 

uncertainty in the process of evaluating water quality standards attainment.  

 

Three main sources of uncertainty in estimating the impact of nutrient reduction 

on the attainment of water quality were analyzed at the segment level. The designated use 

metric evaluated the average percent similarity across the applicable designated uses for 
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each segment. The critical period metric compared the non-attainment between the 

models for each of the eight three-year periods. The regression statistic metric compared 

the average slope, y-intercept, and correlation of the regressions used in the WQS 

attainment methodology.  

The high degree of similarity between how the two models perform in the various 

designated uses and critical periods results in a relatively high degree of confidence when 

examining these two metrics. The high values for the designated use and critical period 

metrics are partially due to the fact that both metrics utilize a threshold for pass/fail 

categorization. To attempt to account for this, the designated use metric compares the 

green/yellow/red individually but since they must all add to 100%, there is only so much 

possible spread in the scores. In the critical period metric, only the red is examined but 

weighting the percent non-attainment by volume gives the large mid-Bay mainstem 

segments much more influence on the metric.  

Unlike the designated use and critical period metrics, the regression statistics 

differ considerably between the two models, thus leading to low values in this component 

of the CI. This is partially because the regression statistics do not have an upper or lower 

bound, nor do they weight segments by volume. Because the regression statistics metric 

utilizes the slope, y-intercept, and correlation, the scores are sensitive to large differences 

between the models in any one of the three sub-metrics. These large differences occur 

throughout the water column and across the Bay, but there are some locations and times 

more prone to large discrepancies between the models. The most important distinction is 

that the regression statistic scores are only for the summer months and the models are 

much more similar in terms of all three regression statistic sub-metrics during the non-

summer.  

Of the three individual sub-metrics that go into the regression statistic CI score, 

the y-intercept exhibited the greatest difference between the two models. While the 

majority of the largest discrepancies between the models in the slope and correlation 

were in deep areas that generally experience annual hypoxia that causes the normality 

assumption of the regressions to be violated, the discrepancies in the y-intercept are 

throughout the water column. While some of these large differences occur near the DO-

replete surface and therefore do not have a large impact on the pass/fail nature of the 
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stoplight analysis, there are many deeper locations where large differences in y-intercept 

(for example, > 3mg L-1) could potentially impact the stoplight analysis since the y-

intercept value is added to the observed DO in the regression. While it is difficult to 

determine isolated problems with any of the >1,100 individual regressions from a single 

model, the ability to compare regression statistics between multiple models can isolate 

the regressions that are most different between the models and thus help to identify 

problem locations and times. 

 

3.7 Summary and Conclusions 

Both the Regulatory and Academic Models analyzed in this study simulate a 

similar level of attainment of Chesapeake Bay water quality standards as a result of 

regulatory nutrient reduction. While the models differ in their simulated absolute change 

in dissolved oxygen concentrations resulting from the nutrient reduction scenario, the 

relative change in DO between the models is quite similar. Since the methodology for 

evaluating the impact of nutrient reduction is based on a relative change within each 

model between the standard run and the nutrient reduction scenario, the models can differ 

in their simulation of the absolute change in DO while still simulating a similar level of 

water quality standards attainment.  

 Although the predicted attainment of water quality standards between the models 

is similar, there are locations in the Bay where there is relatively low uncertainty (high 

confidence), and locations where there is relatively high uncertainty (low confidence) in 

these projections. The parts of the Bay where uncertainty is greatest are the Chester River 

(CHSMH) and Eastern Bay (EASMH). The area of the main stem (CB4MH) between 

Annapolis, MD and the Patuxent River is also identified as a low confidence area, albeit 

slightly higher than for the Chester River and Eastern Bay. While specific modeling 

issues can potentially explain the particularly high uncertainties in the Chester River and 

Eastern Bay, the high uncertainty in the mid-Bay main stem is primarily a result of the 

models differing in the location of greatest impact from the nutrient reduction scenario 

with the Regulatory Model placing the greatest impact slightly further north than the 

Academic Model. The greatest source of uncertainty identified in the process of 
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evaluating whether or not water quality standards will be met was the regressions derived 

from the raw model output. Although individual outlier regressions will not severely 

impair the overall analysis of water quality standard attainment, these regressions are 

critical to the methodology and their occasional lack of normality should be examined 

and modified in future updates of the TMDL.  

 Although this study identified locations and sources of uncertainty in 

estimates of the attainment of water quality resulting from nutrient reductions, overall the 

results presented here highlight that the similarities between the two sets of model results 

far outweighed the differences. This lends greater confidence in the anticipated impact of 

the regulated nutrient reduction of the Chesapeake Bay TMDL. Furthermore, the 

framework for assessing confidence in model predictions of water quality standard 

attainment, via the Confidence Index, can be expanded beyond the two models evaluated 

in this research.   

While this study utilizes a multiple model approach to evaluate confidence in 

model projections of the future, the future examined is one with similar environmental 

and climatological conditions as the present day. This leads to the question of whether or 

not these results would stand if climate change impacts were added to the analysis. 

Although this study demonstrated that the TMDL is likely to eventually produce the 

required DO improvements under the current climate, it is not clear whether the 

established nutrient loads will be adequate under near-term future climate conditions that 

include rising temperature and sea level along with changes in precipitation patterns. 

 

 

 

 

 

 

 

 

 

  



 89 

Tables 

 
Table 3.1: Observation stations and segments shown in Figure 1. Asterisk (*) indicates 
the 25 Stations used in skill assessment. 
 

Segment Stations used in CI analysis 
 

CB1TF CB1.1, CB2.1 
CB2OH *CB2.2, CB3.1 
PATMH WT5.1 
CB3MH *CB3.2, *CB3.3C 
CHSMH *ET4.2 
CB4MH *CB4.1C, *CB4.2C, *CB4.3C, *CB4.4 
EASMH *EE1.1 

CHOMH1 *EE2.1 
PAXMH LE1.1, LE1.2, *LE1.3 
CB5MH *CB5.1, *CB5.2, *CB5.3, *CB5.4 
TANMH EE3.1, *EE3.2 
POTMH RET2.4, *LE2.2, LE2.3 
POCMH *EE3.4 
RPPMH LE3.1, *LE3.2, LE3.4 
CB6PH CB6.1, *CB6.2, CB6.3, *CB6.4 
CB7PH *CB7.1, CB7.2, CB7.3, *CB7.4 
YRKPH LE4.2, *LE4.3 
MOBPH WE4.1 
JMSPH LE5.4, LE5.5 
CB8PH *CB8.1, CB8.1E 
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Table 3.2: Dissolved oxygen Water Quality Standards (WQS) by designated use 

(adapted from Tango and Batiuk, 2013). 
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Table 3.3: Variances allowed in certain Maryland segments.  

 
Designated Use Segment Variance 

Deep Water CB4MH 7% 

 PATMH 7% 

Deep Channel CB4MH 2% 

 EASMH 2% 

 CHSMH 16% 
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Table 3.4: Percent similarities (%Sim, bolded) and stoplight analysis results of green 
(%Gn), yellow (%Ye), and red (%Rd) percentages of the Regulatory Model (top, gray 
shading) and Academic Model (bottom) for 1993-1995 water quality standard 
assessment. 
 

 Deep 
Channel 

Deep 
Water 

Open Water 
Summer 

Open Water  
Non-Summer 

           %Gn %Ye %Rd           %Gn %Ye %Rd           %Gn %Ye %Rd          %Gn %Ye %Rd 
 % 

Sim 
Regulatory % 

Sim 
Regulatory % 

Sim 
Regulatory % 

Sim 
Regulatory 

Segment Academic Academic Academic Academic 

CB1TF         100 96 4 0 100 98 2 0 
      96 4 0 98 2 0 

CB2OH         99 94 6 0 100 98 2 0 
      95 5 0 98 2 0 

PATMH 100 95 5 0 94 87 13 0 100 95 5 0 100 97 3 0 
95 5 0 93 7 0 95 5 0 97 3 0 

CB3MH 96 93 7 0 99 91 9 0 100 96 4 0 100 97 3 0 
89 9 2 90 10 0 96 4 0 97 3 0 

CHSMH 79 73 11 16 91 79 18 3 100 96 4 0 100 98 2 0 
94 6 0 88 12 0 96 4 0 98 2 0 

CB4MH 95 88 9 3 94 79 16 5 99 95 5 0 99 95 5 0 
93 7 0 84 15 1 96 4 0 96 4 0 

EASMH 92 88 10 2 99 87 12 1 100 96 4 0 100 97 3 0 
96 4 0 88 12 0 96 4 0 97 3 0 

CHOMH1         99 94 6 0 100 98 2 0 
      93 7 0 98 2 0 

PAXMH     98 92 8 0 97 95 5 0 100 98 2 0 
   90 10 0 92 8 0 98 2 0 

CB5MH 99 97 3 0 94 88 11 1 100 96 4 0 99 97 3 0 
98 2 0 94 6 0 96 4 0 98 2 0 

TANMH         99 93 7 0 100 98 2 0 
      94 6 0 98 2 0 

POTMH 100 98 2 0 97 92 8 0 100 96 4 0 100 98 2 0 
98 2 0 95 5 0 96 4 0 98 2 0 

POCMH         100 96 4 0 100 98 2 0 
      96 4 0 98 2 0 

RPPMH 100 97 3 0 96 91 9 0 100 96 4 0 100 98 2 0 
97 3 0 87 13 0 96 4 0 98 2 0 

CB6PH     98 94 6 0 99 93 7 0 100 98 2 0 
   96 4 0 94 6 0 98 2 0 

CB7PH     100 96 4 0 97 90 10 0 100 98 2 0 
   96 4 0 93 7 0 98 2 0 

YRKPH     98 96 4 0 97 96 4 0 100 98 2 0 
   94 6 0 93 7 0 98 2 0 

MOBPH         99 93 7 0 100 98 2 0 
      92 8 0 98 2 0 

JMSPH         100 95 5 0 100 98 2 0 
      95 5 0 98 2 0 

CB8PH         99 96 4 0 100 98 2 0 
      95 5 0 98 2 0 
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Table 3.5: Values of the Confidence Index (CI) metrics for all 20 Bay segments. 
 
 

Segment Designated 
Use  

metric 

Critical 
Period 
metric 

Regression 
Statistics  

metric 

Confidence 
Index 

CB1TF 1 1 .47 .82 

CB2OH .98 1 .68 .89 

PATMH .94 .99 .57 .84 

CB3MH .95 .85 .69 .83 

CHSMH .70 -.34 .53 .30 

CB4MH .88 .55 .60 .68 

EASMH .91 .80 .12 .61 

CHOMH1 .98 .99 .60 .86 

PAXMH .93 .97 .71 .87 

CB5MH .92 .96 .70 .86 

TANMH .98 1 .71 .90 

POTMH .97 .99 .67 .88 

POCMH 1 1 .68 .89 

RPPMH .96 .98 .65 .86 

CB6PH .96 .99 .66 .87 

CB7PH .96 .99 .64 .86 

YRKPH .93 .68 .78 .80 

MOBPH .98 1 .75 .91 

JMSPH 1 1 .68 .89 

CB8PH .98 1 .54 .84 
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Figures 

 

 
 
Figure 3.1: Map of the Chesapeake Bay showing CBP observation stations (pink circles) 
and Bay segments (blue regions) used in this analysis (Table 1). For those segments that 
were split in half for regulatory purposes by the TMDL along the Virginia/Maryland 
border, the combined segment was utilized in this analysis.  
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Figure 3.2: Schematic of designated uses throughout the water column for (a) summer 
and (b) non-summer seasons.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 



 96 

 
 
 
 
 

 
 

 
Figure 3.3: Example regression between hourly DO from the standard run and hourly 
DO from the TMDL-WIP scenario for a single depth at a single observation station in a 
single month. Black line represents the 1:1 line; gray line represents best-fit regression. 
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Figure 3.4: (a) Target and (b) Taylor diagrams of the Regulatory and Academic Model 
demonstrating the combined spatial and temporal skill for modeled surface and bottom 
temperature, salinity, and DO, as well as maximum stratification and depth of maximum 
stratification for the 25 observation stations (Table 1). A positive bias in depth of 
stratification means the location of stratification is too high in the water column.  
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Figure 3.5: Model results at 25 observation stations illustrating the absolute difference in 
summer DO concentration (Scenario Run – Standard Run) at the surface (a, b) and 
bottom (c, d), and the relative change in DO concentration ((Scenario Run – Standard 
Run)/Standard Run) at the surface (e, f) and bottom (g, h). Regulatory Model results are 
displayed in a, c, e, and g. Academic Model results are displayed in b, d, f, and h.   
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Figure 3.6: Times series of average modeled bottom DO concentrations across main 
stem stations in CB3MH and CB4MH for (a) the Regulatory Model and (b) the Academic 
Model at a representative mid-Bay deep channel station. In (a) and (b), the black line 
represents the standard run and the blue line represents the TMDL-WIP scenario. In (c), 
the black line is the standard run of the Regulatory Model minus the standard of the 
Academic Model; the orange line is the difference between the standard run and TMDL-
WIP scenario for the Regulatory Model minus the difference between the standard run 
and TMDL-WIP scenario for the Academic Model. 
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Figure 3.7: Similarity in attainment of WQS as demonstrated by percent agreement 
between the stoplight analysis the Regulatory Model and the Academic model for the 
four designated uses: Deep Channel (a), Deep Water (b), Open Water Summer (c), Open 
Water Non-Summer (d). Colors represent the percent of agreement between the stoplight 
analyses with cyan demonstrating the highest agreement and magenta demonstrating the 
lowest agreement.  
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Figure 3.8: Pie charts showing attainment (green), attainment with buffer (yellow), and 
non-attainment (red) for the 1993-1995 observations (a, d), Regulatory Model (b, e), and 
Academic Model (c, f) for the Deep Water (a, b, c) and Deep Channel (d, e, f) designated 
uses. Size of the pies is relative to the volume of applicable water for that given segment. 
Segments coded in red exhibit a stoplight analysis of red that is greater than 0%.  
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Figure 3.9: (a) Total percent non-attainment for the Regulatory Model and the Academic 
Model for the Deep Channel, Deep Water, and Open Water Summer. (b) Monthly 
Susquehanna freshwater discharge from the CBP watershed model. Open Water Non-
Summer is in near full attainment and therefore is not shown.  
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Figure 3.10: Map of Chesapeake Bay segments color coded by Confidence Index score 
with green indicating highest confidence and red indicating lowest confidence.  
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Appendix 3A. Protocol for Assessing Attainment of Water Quality Standards 
  

The Environmental Protection Agency (EPA) and the Chesapeake Bay Program 

(CBP) have established a protocol for assessing the degree of attainment of the regulatory 

water quality standards as laid out in the Chesapeake Bay Total Maximum Daily Load 

(TMDL). While the official TMDL document (USEPA, 2010a) and the associated 

appendices outline the specific steps taken to go from the raw output of the water quality 

model to the pass/fail assessment of water quality standards, the protocol is complex and 

generalized in the text making it difficult for researchers to replicate. Further 

documentation in the Journal of the American Water Resources Association’s October 

2013 “Featured Collection on the Chesapeake Bay Total Maximum Daily Load 

Development and Application” adds necessary insight into the methodology described in 

the official TMDL document. However, even with these resources, it is still quite difficult 

to garner a general understanding of the process used to manipulate the raw model output 

to determine the potential success of the TMDL. In light of that, while the documented 

methodology below is not perfectly comprehensive, it is meant to provide a colloquial 

account of the steps necessary to complete the research presented in the accompanying 

manuscript. Steps 1-4 involve the pre-processing of model output while steps 5-7 utilize 

the assessment code developed by the CBP.  

 

1 – Standard and Scenario Runs 

 The first step is to conduct two model runs that will be compared to each other in 

order to examine the difference in dissolved oxygen (DO) concentrations between them. 

The “standard run” should use all forcing from the base period (1993-1995 for the 

TMDL).  The “scenario run” will use the same forcing as the standard run expect with a 

set nutrient reduction applied. In the TMDL, the nutrient reduction is applied to the 

nutrients derived from the watershed as well as from the airshed. For the best results in 

the following steps, it is necessary to catalogue hourly model output.  
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2 – Transfer output from native grid  

 The code currently used by the CBP in assessing the attainment of water quality 

standards (WQS) is based on the vertical grid of the Regulatory Model. While the 

potential exists for this grid and code to be updated in the future to allow for multiple 

vertical grids to be used with the code, the best way for the code to currently be used with 

model output not from the Regulatory Model is to map the raw output to the Regulatory 

Model grid. This mapping only needs to be done at the grid cells that contain the 304 

observation stations used in assessing WQS. Because the WQS are not constant with 

depth in the summer, how the output is mapped to the new grid is important to consider. 

For this study, we decided that it was best to linearly interpolate the Academic Model 

grid to the Regulatory Model grid so as to keep the integrity of the vertical profile. 

However, simply extending the bottom grid cell down or cutting the bottom grid cell(s) 

off in order to match the depth of the Regulatory Model grid is also justifiable.  

 

3 – Pull regressions 

 Once the hourly output at each station has been mapped to the Regulatory Model 

grid, the hourly output at each grid cell for the two model runs are regressed against each 

other for each month. There are 1,104 grid cells for the 304 stations. This means that for 

each month, there will be 1,104 individual regressions. It is important to note that each of 

these regressions may not be unique since some of the stations will likely fall in the same 

horizontal grid cell. While the CBP code requires an MS Excel file with 11 values (or 

columns) for each regression (or row), only the first four columns need to be populated. 

Columns 5 – 11 can be populated with zeroes. The first column identifies which cell in 

the model grid the regression is for. The Regulatory Model numbers each cell in its grid 

and that unique identifier is used to track the regressions through time. The second 

column is the slope of the Ordinary Least Squares regression found by regressing the 

hourly DO output from the standard run (X) by the scenario run (Y). The third column is 

the y-intercept of that regression. The fourth column is the correlation (r) of the 

regression. The correlation is not used in the protocol. Rather, it is simply used as a 

reference for the quality of regression.  
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4 – Format regressions 

 Before the regressions can be used in the CBP code, they need to be formatted as 

.csv files for each month. The files must be labeled in a specific format and contain all of 

the regressions for all 1,104 cells for the specific month (ex. 

1993_1_DO_regression_stats.csv). All of the monthly files should then be zipped 

together and transferred to the CBP computing network. Once this step is complete, the 

rest of the protocol is accomplished via the scripts developed by the CBP with minor 

edits required based on the individual experiment.  

 

5 – Locate scenario-modified dataset in space 

 The first step of the CBP code takes the 1104 regressions for each month and 

applies the observed value (if there was one) for that month and grid cell to the regression 

to get the scenario-modified “observation” (SMO). The SMO is essentially the DO 

concentration that the model predicts would have been observed if the nutrient reductions 

had been in place when the actual observation was taken. Therefore, the SMO is the 

simulated future DO as a result of nutrient reduction. This SMO dataset is then mapped in 

space for each month. The space between observation stations is interpolated using 

inverse distance weighting. For months with two observations (primarily during the 

summer), a straight average of the two time points is used.  

 

6 – Determine exceedance 

 The TMDL allows each segment/designated-use combination, referred to in the 

regulation as an “assessment unit”, to exceed the DO minimum criteria for a certain 

percentage of time and space. For those assessment units where sufficient observations 

were available, specific biological reference curves were used to determine how much 

space and time an assessment unit must meet WQS. Otherwise, the assessment units were 

given a 10% allowable exceedance in space and time. The exceedance is measured using 

a cumulative frequency distribution (CDF) plotting percent time versus percent space. 

The percent space that exceeds the regulatory standards is found using the interpolation 

from the previous step. The percent time is found by ranking the applicable months (for a 

summer designated use that would constitute June-September for all three study years) by 
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the percent space exceedence. From these ranks, the percent time that a given percent 

space exceedence can be expected is calculated using: Percent Time Exceedence = 

rank/(n+1). The resulting plot of Percent Space Exceeding Criteria versus Percent Time a 

Specified Space Exceeds Criteria gives the CDF for that given assessment unit. The 

assessment unit-specific curve is then compared to the allowable exceedence curve. If the 

assessment unit-specific curve falls beyond the allowable exceedence curve then the 

assessment unit is considered out of attainment of WQS. This procedure is described in 

Section 3.3 of the TMDL document (USEPA, 2010a).   

 

7 – Catalog Stoplight Analysis 

 The final step determines how much percent space/time an assessment unit meets 

the criteria (green), fails the criteria but is within the allowable exceedence (yellow), and 

fails the criteria and is beyond the allowable exceedence (red). Ideally, all assessment 

units would meet the criteria and therefore fall in the green category 100% of space/time. 

However, since the regulations allow each assessment unit to fail minimum DO standards 

for a set percent space/time, the green and yellow categories can effectively be combined 

and recognized as meeting the WQS criteria. As a result, only those assessment units that 

have a percent space/time that fall into the red category are considered out of attainment 

and fail to meet the regulatory minimums.  
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Chapter 4: 

 

The competing impacts of climate change and nutrient reduction  

on dissolved oxygen in Chesapeake Bay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
  



 116 

4. THE COMPETING IMPACTS OF CLIMATE CHANGE 
AND NUTRIENT REDUCTION ON DISSOLVED OXYGEN 
IN CHESAPEAKE BAY 
 
 

Key Points 

• Climate change will decrease dissolved oxygen conditions in the Chesapeake 

Bay, but this effect is smaller than the positive impacts resulting from mandated 

nutrient reductions 

• Climate change is expected to move the onset of hypoxia ~7 days earlier by 2050 

• Increased temperature is the strongest driver of future reductions in dissolved 

oxygen due to a combination of decreased solubility and increased biological 

oxygen demand 
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Abstract 
The Chesapeake Bay region is projected to experience changes in temperature, 

sea level, and precipitation as a result of climate change. This research uses an estuarine 

hydrodynamic-biogeochemical model along with projected changes in temperature, 

freshwater flow, and sea level rise for a 2050 scenario to explore the impact climate 

change may have on future Chesapeake Bay dissolved oxygen (DO) concentrations and 

the potential success of nutrient reductions in attaining mandated estuarine water quality 

improvements. Results indicate that warming Bay waters will decrease oxygen solubility 

year-round, while also increasing oxygen utilization via respiration and remineralization, 

primarily impacting bottom oxygen in the spring. Rising sea level will increase the 

volume of the Bay and push saline water northward. Changes in precipitation are 

projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling 

increased spring primary production. Together, these multiple climate impacts will 

negatively affect DO throughout the Chesapeake Bay and impact progress towards 

meeting water quality standards associated with the Chesapeake Bay Total Maximum 

Daily Load (TMDL). However, this research shows that the potential impacts of climate 

change will be significantly smaller than improvements in DO expected in response to 

the required nutrient reductions established by the TMDL, especially at the anoxic and 

hypoxic levels. Overall, increased temperature exhibits the strongest control on the 

change in future DO concentrations, primarily due to decreased solubility, while sea level 

rise is expected to exert a small positive impact and increased river flow is anticipated to 

exert a small negative impact.  
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4.1 Introduction 

Global climate change is projected to alter the world’s marine environments with 

coastal and estuarine systems bearing exacerbated impacts. Rising temperatures and sea 

levels, along with changes in precipitation patterns, have the potential to dramatically 

alter water quality conditions in these highly productive and increasingly human-

influenced systems (Najjar et al., 2010; Altieri and Gedan, 2015). While there are 

multiple metrics with which to evaluate water quality, dissolved oxygen (DO) 

concentrations are widely used to identify systems in distress. Large volumes of hypoxic 

water (generally considered to be waters with DO < 2 mg L-1), commonly referred to as 

dead zones, can be found in many coastal oceans and estuaries around the world (Diaz 

and Rosenberg, 2008). As the climate continues to change, it is important to evaluate the 

impact these changes will have on DO concentrations in critical coastal environments like 

the Chesapeake Bay.  

Climate change is generally predicted to have a net negative effect on DO in 

coastal waters (Meier et al., 2011; Altieri and Gedan, 2015). Higher temperatures impact 

both the timing and rates of biological functions, while potentially driving long-term 

shifts in phytoplankton composition (Winder and Sommer, 2012). Although increased 

temperature is not anticipated to have a major affect on estuarine stratification, which is 

primarily controlled by salinity in systems such as the Chesapeake Bay (Murphy et al., 

2011), the increased temperature will act to reduce the amount of oxygen a given volume 

of water can hold via decreased solubility. Sea level rise (SLR) can act to increase 

estuarine circulation (Chua and Xu, 2014), water column stratification and residence time 

(Hong and Shen, 2012), and water body volume. These impacts are possibly 

counteractive, as increasing volume and circulation can bring in high-oxygen water from 

the coastal ocean, while increased stratification inhibits downward mixing of the high-

DO water from the surface waters. In addition, over much of the mid-Atlantic region 

annual precipitation is projected to increase, with increased precipitation most likely to 

occur during the winter/spring and in the northern part of the region (Najjar et al., 2009; 

IPCC Annex I, 2013). This will deliver higher river flows and nutrient loads that fuel 

spring productivity and produce more organic matter available for summer 

decomposition (Najjar et al., 2010). Changes in nutrient loading and hydrologic 
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conditions can also alter the Bay’s phytoplankton composition, changing the biomass 

available for eventual decomposition (Harding et al., 2015). Historical reconstructions of 

the mid-Atlantic region support these future climatological projections, demonstrating 

that the largest increases in precipitation over the last century have occurred over the 

northern half of the U.S. East Coast, although this is potentially due to natural variability 

(Yang et al., 2015a; Yang et al., 2015b).  

Compounding the complicated process of projecting future water quality 

conditions are nutrient management efforts necessitated by anthropogenic pollution such 

as the Chesapeake Bay 2010 Total Maximum Daily Load (TMDL; USEPA, 2010) that 

was developed to improve water quality conditions in the Bay by decreasing nutrient and 

sediment loads. The TMDL is intended to be fully implemented by 2025 with the 

ultimate goal of reducing summer hypoxia (Keisman and Shenk, 2013). Examining the 

potential impact of climate change in light of mandated nutrient reductions is important, 

because the multiple impacts of climate change have the potential to render nutrient 

reduction levels inadequate (Altieri and Gedan, 2015).  

While much of the discussion around water quality regulations focuses on 

hypoxia (DO < 2 mg L-1), studying low-DO water that encompasses concentrations 

greater than hypoxic levels (DO concentrations up to 5 mg L-1) is also important due to 

the impact of climate change on economically important fisheries. For example, not only 

do temperature increases impact DO concentrations, but they also increase metabolic 

rates in fish. This increase causes fish to experience adverse health impacts at higher and 

higher DO concentrations (Portner and Knust, 2007; Vaquer-Sunyer and Duarte, 2011). 

Further, the TMDL mandates multiple levels of minimum DO concentrations at various 

times and locations throughout the Chesapeake Bay (USEPA, 2010; Tango and Batiuk, 

2013). While much of the regulation targets traditional hypoxia, the TMDL mandates a 

monthly mean DO ≥ 3 mg L-1 in the deep water of the Bay to protect the survival and 

recruitment of Bay anchovy eggs and larvae, and a monthly mean of DO ≥ 5 mg L-1 

above the pycnocline to protect the growth of larval, juvenile, and adult fish and shellfish 

(Tango and Batiuk, 2013).  

 This study examines the impact of climate change on oxygen concentrations in 

the Chesapeake Bay (Fig. 1) by utilizing a coupled hydrodynamic-biogeochemical model 
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that has previously been compared to other models (Chapter 2) and used to study the 

impact of the 2010 Chesapeake Bay TMDL (Chapter 3). As the TMDL stipulates a time 

horizon of 2025, this research assumes that the required nutrient management strategies 

would be in place and would be limiting nutrient delivery to their full potential by 2050. 

With that in mind, the present study employs projections of 2050 temperature, SLR, and 

watershed precipitation to examine the individual and combined impacts each variable 

has on anoxic (< 0.2 mg L-1), hypoxic (< 2 mg L-1) and low-DO (2 – 5 mg L-1) water in 

the Chesapeake Bay. This study is structured as an initial exploration of the potential 

ramifications of various climate change variables on future DO concentrations in light of 

these nutrient reduction efforts. Future studies through the Chesapeake Hypoxia Analysis 

and Modeling Program (CHAMP) will build on the results from this research to include 

sensitivity analysis and a multiple model framework. Limitations of this research that will 

need to be addressed in the future are discussed in Section 4.4.5.    

   

4.2 Methods 

4.2.1 ChesROMS-ECB 

The estuarine model is based on the Regional Ocean Modeling System (ROMS; 

Shchepetkin and McWilliams, 2005) and uses the Chesapeake Bay curvilinear horizontal 

grid (ChesROMS) of Xu et al. (2012) with an average wet cell resolution inside the Bay 

of 1.7 km. As in Feng et al. (2015), the model is configured to use the recursive 

MPDATA 3-D advection scheme for tracers, third-order upstream advection scheme for 

horizontal momentum and fourth-order centered difference for momentum in the vertical, 

with a 20-layer vertically stretched sigma grid. The Estuarine-Carbon-Biogeochemistry 

(ECB) component of the model (Feng et al., 2015) was developed originally from a 

continental shelf application (Hofmann et al., 2011), using dissolved organic matter 

cycling similar to that described in Druon et al. (2010). With only single phytoplankton 

and zooplankton classes and only one limiting nutrient (nitrogen), the ECB model is 

simpler than that employed by the Chesapeake Bay Program (Cerco et al., 2010), but is 

more complex than simple dissolved oxygen models that utilize a constant oxygen 

consumption rate (e.g. Scully, 2010; Bever et al., 2013). ChesROMS-ECB has been 
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previously shown to adequately resolve the spatial and temporal variability of key 

physical and biological variables such as temperature, salinity, nitrogen, and DO (Feng et 

al., 2015; Chapter 2; Chapter 3).  

Before using ChesROMS-ECB to determine the impact of changes in temperature 

on water quality parameters, the temperature dependence of the biogeochemical 

formulations within the model required a careful evaluation. Several biogeochemical 

formulations within ChesROMS-ECB did not previously include a dependence on 

temperature, and temperature dependence was added as part of this study (a complete list 

of model changes is provided in Appendix 4A). For example, temperature-dependence 

was introduced to the rates for maximum phytoplankton growth, zooplankton 

grazing/growth, nitrification, detrital solubilization, and detrital remineralization. All 

modifications introduce an exponential relationship between temperature and maximum 

rate, except for maximum phytoplankton growth. The function for phytoplankton growth 

is based on Lomas et al. (2002) and employs a constant growth rate below 15°C of 

2.15/day, with an exponential maximum growth curve only for temperatures above 15°C. 

Remineralization of the dissolved organic constituents previously included temperature 

dependence, but to ensure consistency, these rates were modified to match the 

Chesapeake-specific community respiration Q10 values from Lomas et al. (2002).  

In addition, two changes were made to improve the light attenuation 

parameterization in ChesROMS-ECB. First, a minimum value of 0.6/m was applied to 

the diffuse attenuation coefficient, based on model-data comparisons (Wang et al., 2009; 

Son and Wang, 2015). Second, the organic portion of the total suspended solids term in 

the light attenuation formulation of Feng et al. (2015) was multiplied by two, since 

carbon is generally considered to be half of the total weight of organic matter.  

To assess the relative skill of the revised model, the skill in reproducing water 

quality observations at 23 stations along the Bay is compared to the skill of the earlier 

version of the model used in Chapters 2 and 3. The 23 stations (Table 4.1, Fig. 4.1) are 

assigned to four regions that are functionally delineated by salinity characteristics, with 

Region A representing the oligohaline, Regions B and C representing the mesohaline 

(and generally the lowest DO concentrations), and Region D representing the polyhaline. 

The updated model retained its gross skill in terms of total root mean squared difference 
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(RMSD) compared to the version of the model evaluated in Chapter 2 and the updated 

model particularly improved in skill for bottom DO in Regions C and D, primarily due to 

the modification for calculating light attenuation as mentioned above (see Appendix 4B).  

 

4.2.2 Nutrient Scenarios  

 Consistent with Chapter 3, this study utilizes freshwater output and riverine 

nutrient concentrations from the Chesapeake Bay Program’s Watershed Model that was 

used in the development of the TMDL (Shenk and Linker, 2013). The Watershed Model 

has undergone continual improvements with the input of stakeholders from both 

government and academia since 1982 (Linker et al., 2002). It should be noted that for the 

2017 Mid-Point Assessment of the TMDL, a new version of the Watershed Model 

recently has been developed. However, to ensure comparability with Chapter 3 and to 

provide a reference for future climate change studies, this research uses model version 

5.3.2, which is the version used in the development of the 2010 TMDL. Unless otherwise 

stated, hereafter, “TMDL” refers to the specific nutrient reduction associated with the 

application of this version of the Watershed Model.  

 This research assumes that the management practices required to meet the nutrient 

reductions mandated by the Chesapeake Bay TMDL in the absence of climate change 

(Shenk and Linker, 2013) are fully realized by 2050. Because of this assumption, the 

climate change scenarios in this research are imposed on a nutrient-reduced future. 

However, a brief examination of the potential impact of climate change without nutrient 

reduction is also explored. Because the TMDL is based on a reference time period of 

1993-1995 (USEPA, 2010), these are the reference years used in this study. Fortuitously, 

this period includes both relatively wet years (1993, 1994) and a dry year (1995). 

Simulations using the TMDL reduction in nutrient concentrations are hereafter referred to 

as the TMDL scenarios while the base 1993 to 1995 simulations will hereafter be referred 

to as the Base run (Table 4.2). 
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4.2.3 2050 Climate Change Scenarios 

 A 2050 climate change time horizon was chosen because it is far enough in the 

future to assume full implementation of the TMDL could be realized (including nutrient 

transport lag effects) while also being soon enough for relatively constrained projections 

of climate change impacts. The climate change scenarios used in this research are 

primarily based on Coupled Model Intercomparison Phase 5 projections for 

Representative Concentration Pathway (RCP) 4.5, a mid-severity future climate scenario 

used in the 5th Assessment of the Intergovernmental Panel on Climate Change (IPCC), 

that projects a peak in emissions around mid-century combined with a stabilization of 

radiative forcing by 2100 (IPCC Summary, 2013). It should be noted that for 2050 

projections, studies have demonstrated that the difference between RCP scenarios is 

smaller than the spread of individual global climate models that utilize the RCP emission 

scenarios (e.g., Goberville et al., 2015). The projected regional impacts for three aspects 

of climate change (temperature, SLR, and precipitation/rivers) have been included and 

are discussed below. 

 

4.2.3.1 Temperature  

 By 2050, the Chesapeake Bay region is expected to experience air temperature 

increases greater than the global average. Specifically, the IPCC projection of median 

annual average atmospheric temperature increase for 2046-2065 relative to 1986-2005 for 

the Chesapeake Bay region is about 2°C (~0.036°C/y; IPCC Annex I, 2013), whereas the 

analogous global increase is projected to be 1.4°C (~0.025°C/y; IPCC Summary, 2013). 

Further research from the IPCC establishes that ocean warming tends to be 20 to 40% 

lower than the rate of atmospheric warming (Collins et al., 2013). As the Chesapeake Bay 

is a relatively shallow, well-mixed estuary and there has recently been an observed 

increase in the rate of Chesapeake Bay warming (Ding and Elmore, 2015), this research 

utilizes a ratio between atmospheric and ocean warming that is slightly lower than the 

open ocean range. A 1.75°C (~0.032°C/y) increase in Bay water temperature for 2050 

relative to the mid-1990s is used in this study (Table 4.2). This value is higher than 

observed Chesapeake Bay warming between 1949 and 2002 of ~1°C, or ~0.02°C/y 

(Preston, 2004). However, Preston (2004) found evidence of increased warming in the 
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late 1990s. The rate of warming used in this analysis is consistent with projected 

increases by the end of the century from downscaled global climate models (Muhling et 

al., 2017), and less than the average satellite derived rate of Bay surface water warming 

of 0.005-0.175°C/y from 1984 to 2007 (Ding and Elmore, 2015).  

 The 1.75°C water temperature increase was applied uniformly across time and 

space to biogeochemical process and oxygen solubility throughout the Bay, but the 

temperature increase was not applied to other physical properties or processes, such as 

water density gradients or meteorological forcing. Thus, increased temperature affects do 

not impact stratification or other physical dynamics of the Bay within the model. This 

approach implicitly assumes that the Bay is shallow enough that climatic warming will 

occur uniformly over time. Supporting this assumption, Preston (2004) found that the 

surface and subsurface waters of the Bay warmed at relatively similar rates, even finding 

that, on average, the subsurface waters warmed slightly faster than surface waters. In 

addition, recent trends in the intensification of early summer stratification have been 

found not to be due to water column temperature changes, but rather are primarily due to 

changes in salinity as a result of SLR and altered freshwater inputs (Murphy et al., 2011). 

The temperature increase scenario will hereafter be referred to as the TMDL+tempCC 

scenario since the increase in temperature is applied to the TMDL nutrient scenario 

(Table 4.2). 

 

4.2.3.2 Sea Level Rise (SLR) 

 The Chesapeake Bay is also expected to incur a greater increase in sea level than 

the global average, and the Bay has experienced a recent acceleration in SLR along with 

the majority of the Mid-Atlantic coast  (Sallenger et al., 2012). Boon and Mitchell (2015) 

found a roughly 0.1m increase in sea level in Norfolk, Virginia between 1993 and 2014. 

Assuming a linear extrapolation of that rate (~5mm/y), by 2050 Norfolk would expect a 

SLR of 0.3m relative to the mid-1990s. However, the linear extrapolation ignores the 

projected, and recently observed, acceleration in SLR. Incorporating anticipated 

acceleration, Boon and Mitchell (2015) estimate an average increase in SLR by 2050 of 

~0.5m (~10mm/y) in the Chesapeake Bay relative to the relative mean sea level between 

1969-2014. Using downscaled global models, Sweet et al. (2017) estimate a similar SLR 
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in the Mid-Atlantic for 2050 under an intermediate emissions scenario. Adjusted for the 

accelerated relative SLR expected in the Chesapeake Bay, this research employs a 2050 

SLR of 0.5m (~9mm/y) relative to the mid-1990s, which is consistent with recent 

regional projections (Boon and Mitchell, 2015; Sweet et al., 2017). 

Model implementation of SLR follows that of Hong and Shen (2012). The 0.5m increase 

was added to the free water surface layer at the outer boundary. The vertical grid 

stretching parameters were not altered and the simulation required less than six months 

for the Bay to equilibrate to the SLR. The SLR scenario will hereafter be referred to as 

the TMDL+slrCC scenario since the 0.5m increase is applied to the TMDL scenario 

(Table 4.2). 

 

4.2.3.3 River Flow 

The Chesapeake Bay watershed spans a range of projected precipitation changes 

with the southern portion of the watershed expected to experience a lower intensity 

change than the northern portion of the watershed, complicating projections of 

precipitation change, and as a result, river flow (Najjar et al., 2009). While precipitation 

exerts a first order control on river flow, the projected changes in river flow derived from 

a watershed model can be greatly influenced by different modeling approaches to 

evapotranspiration. The watershed model evapotranspiration used in this research is 

based off of the Hargreaves-Samani equation (Hargreaves and Samani, 1982) and 

increased stomatal resistance due to elevated CO2 was also included. The Hargreaves-

Samani equation is a simplistic representation of evapotranspiration dynamics as it only 

explicitly accounts for solar radiation and temperature while not accounting for advective 

processes and only implicitly representing relative humidity by including the difference 

in maximum and minimum temperature.  

The river flow projections used here are derived from average precipitation 

estimates from 32 Global Climate Models downscaled to a 1/8° resolution using a bias-

corrected spatial disaggregation (Reclamation, 2013) and have been run through the CBP 

Watershed Model. Projections are based on the RCP4.5 scenario and are similar to those 

being used to for the CBP climate change analysis used in the 2017 Mid-Point 

Assessment of the TMDL (CBP, pers. comm.). Table 4.3 displays the ratio of monthly 



 126 

freshwater delivery to the Bay from the Susquehanna River as calculated by the CBP 

Watershed Model for the climate change scenario relative to the Watershed Model’s base 

case. For simplicity, this same climate change discharge factor was applied to all rivers in 

ChesROMS-ECB. This is a reasonable approach given that the Susquehanna watershed 

accounts for > 80% of the Bay watershed area that drains directly to the main stem and is 

the primary source of the nutrients that drive the summer hypoxic region of the Bay 

between the Patapsco River in the north and the Rappahannock River in the south (Hagy 

et al., 2004). Overall, there is an increase in river flow applied to the model. This increase 

in river flow results in both an increase in freshwater discharge and an increase in 

nutrient delivery. The combined impact of increased freshwater flow and nutrient loads 

will hereafter be referred to as the TMDL+riverCC scenario (Table 4.2).  

 

4.2.3.4 Combined Climate Change Scenario 

 A final scenario that combines all three of the climate change impacts was run for 

both the TMDL scenario and Base run. The climate change impacts applied to the TMDL 

nutrient reductions will hereafter be referred to as the TMDL+allCC scenario, since the 

combined impact of all of the climate change variables (temperature, SLR, and rivers) 

was applied. To establish the sensitivity of these results to the assumption that the effects 

of the TMDL would be fully realized by 2050, the full set of combined climate change 

impacts were also run on the 1993-1995 Base run (Table 4.2). 

 

4.2.4 Dissolved Oxygen Analysis 

 To examine the impact climate change has on DO concentrations throughout the 

Chesapeake Bay in space and time, two metrics are addressed: hypoxic volume (HV) and 

hypoxic duration (HD). Hypoxic volume (HV) is a commonly used metric to quantify the 

amount of water that experiences a given level of DO concentration over a specific time 

(e.g. Murphy et al., 2011; Bever et al., 2013). Specifically, this study will focus on 

cumulative HV (CHV), calculated as the sum of each day’s hypoxic volume over a year 

(Bever et al., 2013). Hypoxic duration (HD) is measured in days of hypoxia with a 

volume of >1 km3. While traditional DO concentration levels of hypoxia (< 2 mg L-1) and 

anoxia (< 0.2 mg L-1) will be utilized, this research will also consider impacts of low-DO, 
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defined here as DO < 5 mg L-1. This level is consistent with the highest DO 

concentrations stipulated in the Chesapeake Bay TMDL (USEPA, 2010) and is a 

conservative upper bound on DO concentration found to initiate stress on marine fish 

(Vaquer-Sunyer and Duarte, 2008; Buchheister et al., 2013). 

 

4.3 Results 

 For bottom DO concentrations, especially in the deep main stem, the impact of 

nutrient reduction is greater than the impact of climate change. In Region B, the biggest 

differences in DO due to both nutrient reduction and climate change generally occur 

during the draw down of bottom oxygen in the spring and early summer (Fig. 4.2). The 

reduction of nutrients causes a general increase in DO concentrations, which is largest in 

spring and early summer (April to June) during the initial drawdown of oxygen. This 

impact is most obvious during 1995. In contrast, the differences in these scenarios are 

much smaller at the surface for all three years. While not shown here, the time series 

results for bottom and surface DO are similar in Regions C and D, albeit slightly 

diminished at the bottom. The entire water column in Region A, however, responds most 

similarly to the Region B surface, given the shallow well-mixed waters of the northern 

Bay. Overall, across all regions at both the surface and bottom of the water column, the 

changes in DO that result from the TMDL nutrient reduction are larger than those that 

result from the impacts of climate change.  

In examining the individual climate change factors, it is evident that the largest 

impacts from climate change are due to the increase in temperature and that the overall 

impacts are nearly additive (Fig. 4.3). As a result, the TMDL+allCC scenario is most 

similar to the TMDL+tempCC scenario with both scenarios exhibiting a decrease in 

winter/spring bottom DO in Region B of  ~0.5mg L-1 compared to the TMDL+noCC 

scenario. The individual climate change effects are largest during the summer of 1995. 

Both the TMDL+slrCC and the TMDL+riverCC scenarios have a relatively minimal 

impact on bottom DO during the wet years of 1993 and 1994; however, in the dry year of 

1995, the impact of SLR increases bottom DO during the spring and summer, while 
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changes in the rivers (increased seasonality and nutrient load) suppress DO. These two 

essentially equal and opposite effects largely cancel each other out (Fig. 4.3). 

The magnitude of the individual impacts of the climate change scenarios differed 

by region with Region A exhibiting the largest overall change (Table 4.4). The average 

change in bottom DO for Region B across the entire three-year period for a TMDL plus 

climate change scenario compared to the TMDL+noCC scenario was most positive for 

the TMDL+slrCC scenario (+0.09 mg L-1) and most negative for the TMDL+tempCC 

scenario (-0.40 mg L-1; Table 4.4). In the TMDL+allCC scenario, bottom DO decreased 

compared to the TDML+noCC run in all four regions with Region A exhibiting the 

highest total change. This is primarily due to the large negative change in the 

TMDL+slrCC scenario in Region A relative to its small (mostly positive) changes in the 

other regions. Compared to the TMDL+noCC scenario, the TMDL+allCC scenario is 

most similar to the TMDL+tempCC scenario in terms of bottom DO, particularly in 

Regions B and C. Overall, the impact of all three of the climate change scenarios is 

nearly linearly additive at the bottom of the water column (Table 4.4).   

Examining DO throughout the entire water column, results indicate that the CHV 

for all of the TMDL scenarios (both with and without climate change) is less than the 

CHV from the Base+noCC run (Fig. 4.4). This pattern holds true for all DO levels 

examined (< 0.2 mg L-1 to < 5 mg L-1). At higher DO levels (DO < 3mg L-1 to DO < 5mg 

L-1) the impact of the TMDL+tempCC scenario begins to separate from the other TMDL 

scenarios, exerting greater influence on the TMDL+allCC scenario. At each DO level, the 

CHV for the dry year (1995) is much less than for the wet years (1993 and 1994) for each 

TMDL scenario. Furthermore, the CHV for the TMDL scenarios in the wet years is 

generally higher than the CHV from the Base run for the dry year. The CHV in the 

TMDL+slrCC and TMDL+riverCC scenarios tend to track closely to the TMDL+noCC 

scenario, while the TMDL+tempCC scenario is again most similar to the TMDL+allCC 

scenario (Fig. 4.4).  

 The percent change in CHV relative to the progress, or gains, made in CHV by 

applying the TMDL nutrient reductions varies across DO level and by scenario (Fig. 4.5). 

In general, the TMDL+slrCC scenario resulted in a ~0-10% increase in the improvement 

made by the TMDL scenario (here, an increase of gains is actually a decrease in CHV) 
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across all DO levels and all years. In contrast, the TMDL+riverCC and TMDL+tempCC 

scenarios resulted in a degradation of the system, compared to the TMDL+noCC 

scenario. The TMDL+riverCC scenario consistently causes a loss of ~0-5% of the gains, 

with slightly larger losses in 1994 and 1995 at higher DO levels. The TMDL+tempCC 

scenario was the strongest function of DO level, with a relatively small loss of ~5% at the 

< 2mg L-1 level and a large ~40% loss at the < 5mg L-1 level. The combined effect of 

climate change (TMDL+allCC) was a net increase in CHV of more than 50% over the 

TMDL+noCC scenario in the wet years of 1993 and 1994 for DO < 5mg L-1.    

Both the TMDL+slrCC and TMDL+riverCC scenarios result in small (< 10%) 

changes to the improvement in CHV as a result of nutrient reduction (Fig. 4.5). In 

general, the TMDL+riverCC scenario exerts the smallest impact on bottom DO and 

CHV. The TMDL+riverCC scenario combines two separate, but linked, climate change 

impacts: increased freshwater flow (particularly in the winter) and increased nutrient 

loads (as a result of increased freshwater flow). While not shown, separate experiments 

isolating the impacts of flow and load demonstrated that the increase in nutrient load 

caused the degradation of DO concentrations in the TMDL+riverCC scenario. The 

TMDL+slrCC is the only scenario to consistently improve CHV (except for 1994 at DO 

< 5 mg L-1; Fig. 4.5). However, the improvement is not consistent across DO levels or 

hydrologic conditions.  

An increase in temperature generally maintains the greatest control on the 

TMDL+allCC scenario (Figs. 4.3, 4.4). The impact of temperature on DO in this analysis 

is due to two controls: chemical solubility and biological oxygen demand. To isolate the 

impact on DO of rising water temperature causing a decrease in oxygen solubility and an 

increase in biological oxygen demand, the differences in modeled DO computed with and 

without warming are computed considering only solubility effects and considering both 

solubility and biological oxygen demand (Fig. 4.6). Since oxygen saturation is more 

sensitive to changes in temperature at low temperatures, there is a larger change in DO as 

a result of changes in solubility during the winter even though the change in temperature 

is constant in time. Deviations from the change in DO due to solubility can be attributed 

to changes in biological oxygen demand. Overall, 65-85% of the change in DO expressed 

in the TMDL+tempCC scenario compared to the TMDL+noCC scenario is a result of 
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temperature’s impact on solubility (Table 4.5). The impact of biological oxygen demand 

is consistently negative at depth during spring and early summer, enhancing the initiation 

of hypoxic conditions (Fig. 4.6b). In general, solubility plays a slightly greater role at the 

surface than at depth, and in the northern and southern portions of the Bay than in the 

central main-stem (Table 4.5). 

In examining the number of days the Bay experiences hypoxic and low-oxygen 

conditions each year, climate change acts to reduce the positive impact of the nutrient 

reduction (Fig. 4.7). While there is a large decrease in hypoxic duration resulting from 

the nutrient reduction, the TMDL+allCC scenario demonstrates that when climate change 

is included all levels of low-DO and hypoxia initiate an average of ~7 days earlier. This 

trend is not evident in the cessation of hypoxia and low-DO with climate change not 

always causing hypoxia to last later in the year (e.g., 1994 DO < 1 mg L-1). While all 

three years exhibit a similar pattern and timeline of cessation of low-DO with < 0.2 mg L-

1 ceasing 3-4 months before < 5 mg L-1, each year is different in terms of initiation 

timing. In 1993 for the Base+noCC run, all levels of DO initiate within 2 weeks of each 

other. This timing holds true for the TMDL scenarios as well, but with anoxia lagging 

behind. In 1994 in the Base+noCC run, there is a steady progression from low-DO to 

anoxia over ~6 weeks. In the TMDL scenarios, that is extended to ~3 months. In 1995, 

the TMDL nutrient reduction results in no DO < 1 mg L-1 and significantly delays the 

onset of low-DO by up to ~3 months compared to the Base run.  

Examining a north-south transect along the main stem of the Bay for July 1st, 

1993 (Fig. 4.8a,c) and 1995 (Fig. 4.8b,d) reveals that nutrient reduction acts to compress 

the southern extent of the hypoxic zone. One similarity between all four subplots (a-d) is 

the vertical extent of the low-oxygen waters, which are capped by the pycnocline at ~ 5m 

depth. The extent and severity of anoxia and hypoxia on July 1st is much greater than the 

summer (May-September) average for both the Base+noCC run and TMDL+noCC 

scenario for both years (Fig 4.8e-h). In general, the impact of climate change is greater in 

the dry year (1995; Fig. 4.8j,l) than in the wet year (1993; Fig. 4.8i,k). The location of the 

greatest magnitude change is near the pycnocline depth (Fig. 4.8i,j) but the location of 

greatest percent change is below the pycnocline (Fig. 4.8k,l).  
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Climate change will likely cause a larger volume of the Bay to experience low-DO 

concentrations in both wet and dry years and under both the Base+allCC and 

TMDL+allCC scenarios (Fig. 4.9). While climate change does not greatly exacerbate the 

volume of the Bay that experiences anoxic and hypoxic conditions, climate change 

increases the percent of the Bay experiencing conditions of DO < 5mg L-1 by ~3-6 %, 

regardless of whether or not the TMDL nutrient reductions have occurred. Similarly, 

regardless of whether or not climate change occurs, the volume of the Bay experiencing 

low-DO under nutrient reduction is considerably lower than that in the 1993-1995 Base 

run nutrient conditions. Overall, the dry year (1995) results in roughly half as much of the 

Bay experiencing low-DO and hypoxic waters as compared to the wet years (1993, 

1994).  

 

4.4 Discussion 

4.4.1 How will climate change affect the impact of nutrient reduction on dissolved 

oxygen in the Chesapeake Bay? 

- In general, the impact of climate change will be much smaller than the impact of 

the TMDL nutrient reduction. However, the combined impacts of climate change 

will reduce the increase in DO concentrations derived from nutrient reduction 

with temperature being the strongest driver of this change.  

 

 In examining the individual and combined impacts of projected temperature, SLR, 

and river flow in 2050 on Chesapeake Bay DO concentrations, temperature exhibits a 

large negative impact, and river flow exhibits a small negative impact, while SLR 

exhibits a mixed impact depending on region but is generally positive (Figs. 4.4, 4.5; 

Table 4.4). The large impact of increased temperature on DO in light of nutrient 

reduction is consistent with other modeling research focused on the York River estuary, a 

tributary of the Chesapeake Bay (Lake and Brush, 2015). The present research 

demonstrates the importance of solubility on temperature, as the annual average impact 

of temperature on oxygen saturation outpaced the impact of temperature on biological 

functions by roughly 2:1 in the region of the Bay that experiences hypoxia. This ratio is 
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decreased to roughly 1:1 during the spring/early summer drawdown of bottom DO in the 

main stem channel. Murphy et al. (2011) similarly found that increased respiration due to 

increased temperature potentially plays a smaller role on changes in hypoxia than the 

physical and chemical changes. However, it is possible that as temperature continues to 

increase, the ratio of impact between solubility and biological oxygen demand may shift 

toward a greater influence by biological oxygen demand. This is because the additional 

impact of further reductions in solubility will decrease as temperatures continue to rise, 

while biological respiration at depth and production at the surface may continue to 

steadily increase as temperatures continue to rise.  

 Both SLR and changes in river flow exert their greatest relative impact during the 

driest year considered (1995). The increase in winter precipitation will deliver both 

increased freshwater flow and increased nutrient loads and accounts for a larger 

percentage of the overall change in DO during the dry year of 1995 because the low-flow 

conditions cause the Bay to be more sensitive to changes in freshwater flow and nutrient 

loading. SLR also exhibits its greatest influence during 1995, causing a decrease in CHV 

likely influenced by an influx of high-DO water from the shelf and an overall increase in 

Bay volume acting to reduce the unit consumption of DO per volume given a consistent 

loading of organic matter. The larger impact of SLR during dry years is consistent with a 

study from the Delaware Bay showing that high flow dampens the salinity intrusion that 

results from SLR (Ross et al., 2015) and with a study in San Francisco Bay finding that 

the impact of SLR is limited under high flow conditions (Chua and Xu, 2014).   

  

4.4.2 How will hypoxia change as a result of climate change? 

- Hypoxic and low-DO conditions can be expected to begin about one week 

earlier due to climate change, with changes in volume and extent being largest at 

the margins and at the southern extent. Significant impacts will be felt on water 

with DO concentrations in the range of 2-5mg L-1, and not only on hypoxic 

waters. 

 

The most consistent impact across all levels of low-DO waters due to climate 

change is an earlier onset of hypoxic and low-DO conditions by an average of ~7 days. 
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While an earlier onset was identified, there was no trend in the cessation of hypoxic and 

low-DO conditions with climate change sometimes causing an earlier and sometimes a 

later cessation. Furthermore, an earlier onset of conditions is projected to occur under 

both nutrient-reduced and nutrient-replete futures. The pattern of earlier onset is primarily 

due to the additive impacts of an increase in spring biological oxygen utilization at depth 

and decreased solubility, both the result of the increase in temperature (Fig. 4.6b). An 

analysis of climate change impact on DO of an estuarine tributary of the Chesapeake Bay 

similarly found that hypoxic duration is likely to be extended in the future (Lake and 

Brush, 2015). 

In terms of a change in the volume of low-DO waters, the relative impact of 

climate change increases with DO concentration (Figs. 4.4, 4.5). The loss of gains made 

by the TMDL as a result of climate change range from ~5% for DO < 0.2 mg L-1 to ~45% 

for DO < 5 mg L-1. The difference between impact at anoxic versus low-DO waters is 

accentuated during the dry year of 1995 due to the fact that the TMDL results in no 

modeled DO < 1 mg L-1 during this year (Fig. 4.7), regardless of climate change. Even 

assuming base 1995 nutrient inputs, the volume and duration of anoxia under climate 

change in 1995 is very small.  

Throughout the water column, the greatest change in DO will be at the edges of 

the low-DO and hypoxic zones, particularly at the southern and vertical extents (Fig. 4.8). 

Conversely, the smallest changes will occur in the anoxic waters where DO cannot be 

decreased further (Fig. 4.8). As hypoxia is capped by the pycnocline (Fig. 4.8a-h; Chapter 

2), the magnitude of DO change (~ 0.5 mg L-1) is not great enough to extend low-DO 

conditions to the DO-replete surface waters. Laterally, the largest changes in bottom DO 

will be in the southern extent of hypoxia and the degree of east-west compression along 

the main stem of the Bay. Such a change would be likely to detrimentally impact 

demersal fish and shellfish communities along the shallow flanks of the Bay and its 

tributaries.   
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4.4.3 How might this impact the success of the TMDL? 

- Climate change may cause the current TMDL to be insufficient to meet the 

required water quality improvements in the Chesapeake Bay. Increased duration 

of low-oxygen waters is the greatest impact at anoxic and hypoxic levels.   

 

 As discussed above, this research demonstrates that the improvements in 

Chesapeake Bay water quality due to the TMDL nutrient reductions are much greater 

than the deleterious impacts of 2050 climate change; however, results also indicate that 

by 2050 climate change will likely decrease oxygen levels and increase both hypoxic 

volume and hypoxic duration. Because some locations in the Bay barely pass TMDL 

standards and others require special allowances to meet the standards (Chapter 3), even 

these small increases in anoxic and hypoxic conditions can cause locations that 

previously passed the water quality standards to fail under a changing climate. The DO 

minima in the TMDL regulations are based on both space and time criteria. Although the 

spatial dimension may not be greatly impacted at the anoxic and hypoxic levels, this 

research suggests that the temporal dimension will be. This could cause locations in the 

Bay that are currently projected to pass the minimum standards to fail them in light of 

climate change, simply due to an extension of the hypoxic season without an expansion 

of hypoxic volume.    

 With increased temperature being the primary cause of the impact of climate 

change on DO concentrations, it is important to consider other potential impacts 

increased temperature may have on the ecosystem in the context of the success of the 

TMDL. Temperature increases in the Chesapeake Bay are anticipated to produce 

temperatures outside of previously observed extremes (Muhling et al., 2017), lending 

increased pertinence to understanding the impact of temperature changes on meeting 

water quality goals. In light of this, the impact on the TMDL of a decrease in oxygen 

concentrations due to climate change should be viewed in conjunction with the impact 

increased temperature is likely to have on the species the DO levels in the TMDL were 

predicated on. Multiple studies have established that increasing water temperature 

increases metabolic rates in fish that cause them to experience negative health impacts at 

higher DO concentrations than they do at lower temperatures (Breitburg, 2002; Portner 
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and Lanning, 2009; Lapointe et al., 2014). Due to those compounding impacts and the 

large role temperature is expected to play in regulating future DO, it may be prudent for 

the TMDL to elevate the mandated minimum DO levels in an effort to protect the target 

species. If this occurred, the impacts of climate change would likely cause a larger failure 

rate of TMDL standards than the current analysis demonstrates.   

 

4.4.4 How will climate change impact DO if the TMDL nutrient reductions are not 

met? 

- Although the relative impact of climate change is similar on a reduced nutrient 

future and a high nutrient future, the degree of interannual variability in hypoxia 

may change in a reduced versus high nutrient future due to differences in the 

responses of oxygen to fluctuations between dry and wet years.    

 

 The relative impact of climate change on a reduced nutrient versus a high nutrient 

future is similar in terms of hypoxic volume and duration. In both a low and high nutrient 

future, the percent of the Bay that experiences a given DO level is increased with climate 

change (Fig. 4.9). Further, in both cases, the impact of climate change at low-DO 

concentrations (< 5 mg L-1) is greater than that at hypoxic levels (< 2 mg L-1). In terms of 

relative change in DO along the main stem of the Bay, a high nutrient future is expected 

to experience a higher (~9-15%) change in DO concentration than a low nutrient future 

(~6-9%), with the largest changes occurring at the southern end of the hypoxic zone (Fig. 

4.8). 

The largest potential ecological difference between the two futures is in the dry 

year of 1995. In this year TMDL scenarios exhibited no anoxia in the Bay, regardless of 

whether or not climate change was occurring. This suggests that during dry years, when 

the nutrient reduction may be sufficient to alleviate anoxia, climate change impacts may 

not be large enough to overcome the hysteric or threshold level of DO initiation similar to 

what has been observed with hypoxic responses to nutrient loading (Kemp et al., 2009). It 

may seem counterintuitive, but this suggests that the interannual variability of anoxic 

conditions may be exacerbated in a future with nutrient reduction because the interannual 
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percent change in anoxic conditions will be relative to ~0% in the very dry years. 

Because of this, when climate change is added to the TMDL nutrient reductions, there is 

likely to be greater disparity in terms of anoxic volume between wet and dry years. 

Further intensifying the difference between wet and dry years is the potential impact of 

nutrient storage in the watershed during dry years that is delivered to the Bay in a 

successive wet year, amplifying hypoxia and anoxia (Lee et al., 2016). 

 

4.4.5 What are the limitations of this study and how can they be addressed in future 

work? 

- Limitations include: a single watershed and estuarine model, a single change in 

temperature, river flow, and SLR, a neglect of lag effects and 

continuous/contemporary change, no changes to meteorological forcing, a 

simplistic approach to changes in temperature and river flow. These limitations 

will be addressed via the CHAMP project.  

 

 This research is a first look at the potential impacts that changes in climate may 

have on the efficacy of nutrient reduction efforts in the Chesapeake Bay. While this first 

order look identified that climate change has the potential to negatively impact DO 

concentrations and limit the effectiveness of current nutrient reduction regulations, more 

robust examinations of the problem are needed in order to adequately aid in the 

regulatory decision making process going forward. With that in mind, this section 

addresses some of the limitations of this research. Many of these limitations will be 

addressed by a new multiple model project called the Chesapeake Hypoxia Analysis and 

Modeling Program (CHAMP). The utilization of a multiple model approach to assessing 

the interactions of climate change and nutrient reduction will greatly enhance 

understanding of the potential future water quality conditions of the Chesapeake Bay and 

provide information to enhance management decisions.  

As the present research has identified increased temperature as the largest 

contributor to changes in DO, future efforts should work to incorporate the impact of 

increased air temperature and changes in meteorological forcing on the air-sea interface 
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and Bay hydrodynamics. However, caution should be exercised when relying on 

increased air temperature to increase the temperature of the Bay as there is evidence that 

the current rates of Bay warming can not be fully explained by the observed increase in 

regional air temperature (Ding and Elmore, 2015). The increased complexity can also be 

applied to the simulated changes in river flow derived from a watershed model. While the 

presented research utilized changes in monthly river flow applied to hydrologic 

conditions in 1993-1995, projections of future precipitation indicate changes in storm 

intensification and extreme events that could have dramatic effects on nutrient delivery to 

the Bay (Sinha et al., 2017).  

 Due to the uncertainty in projected changes in temperature, river flow, and SLR, 

constraining the sensitivity of DO to multiple levels of climatic changes will be 

important. This research establishes that the increase in temperature has the strongest 

control on DO, but that does not mean that DO concentrations are most sensitive to the 

bounds of potential 2050 temperature changes. While the high computational expense of 

running multiple sensitivity tests through complex coupled hydrodynamic-

biogeochemical models can be prohibitive, establishing a range of uncertainty is critical 

to informed adaptive management decision-making.  

The limitations that will be some of the most difficult to address are both related 

to timing. The first is that the present research assumes a discontinuity between the 

reduction or nutrients and the changes in climate. This is an unrealistic assumption due to 

the fact that nutrient reduction and climate change are occurring and will continue to 

occur contemporaneously. These changes are also not immediate but manifest over time 

in a continuously evolving environment. The second is that the current approach simply 

identifies the potential ramifications of climate change on nutrient reduction efforts but 

does not establish a timeline for the water quality changes as a result of nutrient reduction 

to occur. This means that climate change has the potential to further limit the 

effectiveness of nutrient reduction efforts because the impacts of climate change may be 

more immediate than the impacts of nutrient reduction. 
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4.5 Conclusions 

 Overall, the most striking result of this research is that the potential impact of 

climate change in 2050 is much smaller than the impact of the previously planned TMDL 

nutrient reductions, particularly at anoxic and hypoxic levels. However, the decrease in 

DO concentrations resulting from the combined impacts of climate change may cause 

portions of the Bay that are currently expected to meet water quality standards under the 

TMDL, to fail them. At the most stringent DO standards, this is primarily due to an 

increase in hypoxic duration rather than hypoxic volume, as under climate change, the 

onset of hypoxic conditions is projected to initiate ~7 days earlier on average across all 

DO concentrations 0.2 – 5 mg L-1.  

 Changes in DO as a result of the increase in temperature dominate the combined 

climate change impact. While the influence of solubility on DO concentrations is the 

primary control on decreased DO throughout the year, the impact of increased biologic 

oxygen demand is most prevalent at depth in the spring to early summer, contributing to 

the initiation of hypoxic conditions. The impact of temperature is likely to affect low-

oxygen tolerance of higher trophic levels as well by increasing metabolic rates, making 

species less tolerant at higher DO levels. This may result in the DO minimums mandated 

in the TMDL to be insufficiently able to protect key species even if the goals are met.  

 Both sea level rise and changes in river flow exert a greater influence on change 

in DO during dry, low-river flow years. Changes in river flow are likely to deliver higher 

freshwater flows during the winter and spring that will both deliver higher nutrient loads 

and increase estuarine circulation. These two effects act to impact DO concentrations 

oppositely, with higher loads stimulating increased primary productivity and increased 

estuarine circulation delivering more oxygen-rich ocean water: however, the impact of 

increased loads out competes greater circulation. Sea level rise exerts the only 

consistently positive impact of climate change on DO concentrations, increasing the 

effectiveness of the TMDL nutrient reductions by ~5%. However, this positive impact is 

undermined overall by the large negative impact of temperature.  

 The relative effects of climate change are similar whether the DO concentrations 

stipulated in the TMDL are achieved or not. In both cases, there is a slight increase in 

anoxic conditions, and the relative impact of climate change intensifies up to DO 
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concentrations < 5 mg L-1. The impact of the TMDL on dry years is accentuated 

compared to the business as usual dry years due to the greater moderating influence sea 

level rise exerts during low-flow conditions. This results in anoxic and hypoxic 

conditions to be depressed with nutrient reduction plus climate change in the dry year of 

1995, but not when climate change is combined with no nutrient reduction.  

Overall, this study demonstrates that climate change has the potential to limit the 

effectiveness of the TMDL. However, those impacts are not likely to exacerbate hypoxic 

conditions beyond what they were before TMDL implementation. In the assessment of 

the relative impact of contemporary anthropogenic nutrient and future climatic influences 

on DO concentrations in Chesapeake Bay, it is evident that the reduction of nutrients 

plays a greater role. Given that this analysis only considers a 2050 time horizon and 

climate impacts are expected to intensify with time, it is critical to continue to examine 

how the Bay may evolve in the future.  
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Tables 

Table 4.1 Characteristics of observation stations.  
 

Station Latitude 
(oN) 

Longitude 
(oW) 

Station 
Depth (m) 

Region 

CB1.1 39.54794 -76.08481 6.1 A 
CB2.1 39.44149 -76.02599 6.3 A 
CB2.2 39.34873 -76.17579 12.4 A 
CB3.1 39.2495 -76.2405 13 A 
CB3.2 39.16369 -76.30631 12.1 B 

CB3.3C 38.99596 -76.35967 24.3 B 
CB4.1C 38.82593 -76.39945 32.2 B 
CB4.2C 38.64618 -76.42127 27.2 B 
CB4.3C 38.55505 -76.42794 26.9 B 
CB4.4 38.41457 -76.34565 30.3 B 
CB5.1 38.3187 -76.29215 34.1 C 
CB5.2 38.13705 -76.22787 30.6 C 
CB5.3 37.91011 -76.17137 26.9 C 
CB5.4 37.80013 -76.17466 31.1 C 
CB5.5 37.6918 -76.18967 17 C 
CB6.1 37.58847 -76.16216 12.5 D 
CB6.2 37.4868 -76.15633 10.5 D 
CB6.3 37.41153 -76.15966 11.3 D 
CB6.4 37.23653 -76.20799 10.2 D 
CB7.1 37.68346 -75.98966 20.9 D 
CB7.2 37.41153 -76.07966 20.2 D 
CB7.3 37.11681 -76.12521 13.6 D 
CB7.4 36.9957 -76.02048 14.2 D 
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Table 4.2 List of run and scenario names.  
 

Name Nutrients Climate Change 
Base+noCC Realistic 1993 – 1995 conditions None 
TMDL+noCC TMDL nutrient reductions None 
TMDL+riverCC TMDL nutrient reductions Rivers only (Table 4.3) 
TMDL+tempCC TMDL nutrient reductions 1.75°C increase 
TMDL+slrCC TMDL nutrient reductions 0.5m increase in sea level 
TMDL+allCC TMDL nutrient reductions All three above changes 
Base+allCC Realistic 1993 – 1995 conditions All three above changes  
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Table 4.3 Monthly in freshwater flow entering the Bay used for the TMDL+riverCC, 
TMDL+allCC, and Base+allCC scenarios.  
 
 
 

Month Freshwater 
change 
factor* 

January 1.165 
February 1.168 

March 1.035 
April 0.964 
May 1.034 
June 1.015 
July 0.965 

August 1.042 
September 0.986 

October 0.984 
November 1.093 
December 1.158 

 
*Fractional change factor = freshwater inputs in 2050 divided by freshwater inputs in 
Base run 
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Table 4.4 Average change in bottom DO (mg L-1) relative to the TMDL+noCC run for 
each scenario and region.  
 
 
 

Scenario Region A Region B Region C Region D 
TMDL+allCC -0.58 -0.37 -0.44 -0.44 
TMDL+slrCC -0.21 0.09 0.04 -0.04 
TMDL+riverCC -0.01 -0.05 -0.03 -0.01 
TMDL+tempCC -0.36 -0.40 -0.44 -0.38 
Additive impact of 
slrCC+riverCC+tempCC 

 
-0.58 

 
-0.36 

 
-0.43 

 
-0.43 
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Table 4.5 Percent* of 3-year average bottom DO change as a result of the temperature 
experiment due to solubility for each region at the surface and bottom of the water 
column. 
 

Region Surface Bottom 
A 75% 75% 
B 72% 66% 
C 77% 69% 
D 85% 79% 

 
 
*Percent calculated as the expected change in bottom DO as predicted by solubility 
divided by the modeled change in bottom DO.  
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Figures 

 
 

 
 
Figure 4.1 Map of the Chesapeake Bay with stations (Table 4.1) identified by region, 
based primarily on salinity. A: oligohaline, B & C: upper & lower mesohaline (with 
lowest observed DO concentrations), D: polyhaline.   
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Figure 4.2 Time series of a 7-day running mean of surface and bottom oxygen 
concentrations computed for the average of six stations in the Chesapeake Bay upper 
mesohaline main stem (Region B; Table 4.1).  
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Figure 4.3 Time series of a 7-day running mean of difference in bottom oxygen 
concentrations between the TMDL climate change and TMDL+noCC scenarios 
computed for the average of six stations in the Chesapeake Bay upper mesohaline main 
stem (Region B; Table 4.1).  
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Figure 4.4 Cumulative hypoxic volume for six ranges of DO concentrations, for each of 
the study years.   
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Figure 4.5 Percent change due to climate change, relative to the improvement in CHV 
between the TMDL+noCC scenario and Base+noCC run. Percent change in CHV gain is 
defined as: (TMDL+xx – TMDL+noCC)/(TMDL+noCC – Base run+noCC)).  
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Figure 4.6 DO differences due to climate change (between the TMDL+noCC and 
TMDL+tempCC scenarios) averaged for the six stations in Region B (Fig. 4.1; Table 4.1) 
for the (a) surface, and (b) bottom of the water column. The black lines are the average 
change expected if only solubility was impacted by an increase in temperature. The red 
lines are the modeled change in DO as a result of the increase in temperature affecting 
both solubility and biological oxygen demand.  
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Figure 4.7 Bars showing duration of hypoxic volume ( > 1km3) at each DO level for the 
Base+noCC run and the TMDL+noCC and TMDL+allCC nutrient scenarios.  
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Figure 4.8 Along-Bay transects, with the Susquehanna River in the north and Bay mouth 
in the south, of DO of the Base+noCC run and TMDL+noCC scenario for July 1, 1993 
(a,c) and July 1, 1995 (b,d), average summer (May-Sept) DO for 1993 (e,g) and 1995 
(f,h), the difference in average summer DO between the TMDL+noCC and 
TMDL+allCC scenarios (i,j), and the percent difference in average summer DO between 
the TMDL+noCC and TMDL+allCC scenarios (k,l)..   
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Figure 4.9 Percent of the entire Bay that experiences a given DO level during 1993 (a), 
1994 (b), and 1995 (c).  
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Appendix 4.A Modified ChesROMS-ECB Equations 

 
Modifications of biological functions from the model version published in Feng et al. 
(2015) are presented below. Temperature dependence was added to the zooplankton 
maximum growth rate, the remineralization rates of large and small detritus, and the 
phytoplankton growth rate at temperatures above 20°C. The maximum rate of 
nitrification, the temperature dependency on remineralization of semi-labile DON, and 
the remineralization rate of DOC at 0°C were also modified to fit with current 
understanding.  
 
 
 
Symbol Description Feng et al. (2015) Chapter 4 Units 

gmax 
*Zooplankton maximum 
growth rate 0.3 0.05*e0.0742*T d-1 

nmax 
Maximum rate of 
nitrification 0.05 0.2 d-1 

!!! *Remineralization of large 
detritus 0.2 0.05*e0.0742*T d-1 

!!! *Remineralization of small 
detritus 0.2 0.05*e0.0742*T d-1 

! !"# !" 
*Temperature dependency 
remineralization of semi-
labile DON 

0.07 0.0742 (°C)-1 

!!! 	 Remineralization rate of  
DOC at 0 °C 0.003835 0.008 d-1 

!! ^Phytoplankton growth rate 2.15 <20°C, 2.15 
T ≥20°C, 1.81 + e0.16*T-4.27 

d-1 

 
 
*Community respiration and zooplankton grazing temperature dependent functions are 

based on a Q10 of 2.1 (Lomas et al., 2002)  
 
^Phytoplankton growth rate at low temperatures (T < 20°C) is constant with higher 

temperatures following a rate based on Lomas et al. (2002) with a Q10 from 20°C to 
40°C of 2.18.  
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Appendix 4.B Model skill assessment.  

 
A skill assessment of the model is presented below. Skill was assessed via total RMSD 
(Table 4B.1), normalized target diagrams (Joliff et al., 2009), and time series analysis. 
Model results are compared to observational data from the Chesapeake Bay Program 
Water Quality Database (http://www.chesapeakebay.net/data/ 
downloads/cbpwaterqualitydatabase1984present). For the total RMSD and target 
diagrams, the model results were compared to monthly/bi-monthly observations at 
the stations and regions shown in Figure 4.1. For the time series comparison, the 
model results were compared to the mean historical observations from (1985-
2014). Model is also compared to the pervious iteration of the model evaluated in Irby et 
al., 2016 (Fig. 4B.1).  
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Table 4B.1 Total RMSD (and observational mean) of the present model and the model 
version used in Chapter 2 and Chapter 3. 
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Figure 4B.1 Target diagram comparing the skill of the ChesROMS-ECB model version 
used in Chapters 2 and 3 to the one used in the present study. Statistics combine the 
spatial and temporal variability across 23 stations (Table 4.1) for 1993-1995.  
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Figure 4B.2 As in Figure 4B.1, but by Region and for surface and bottom temperature.  
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Figure 4B.3 As in Figure 4B.2, but for surface and bottom salinity. 
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Figure 4B.4 As in Figure 4B.2, but for surface and bottom dissolved oxygen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 161 

 
 

 
Figure 4B.5 As in Figure 4B.2, but for surface and bottom nitrate. 
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Figure 4B.6 Time series of a 7-day moving mean of temperature at the surface (blue) and 
bottom (red) with the associated 25th-75th percentiles of the climatological observations 
(1985-2014) for the surface (blue shading) and bottom (red shading) for the four regions 
(A, B, C, D) in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temperature 
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Figure 4B.7 As in Figure 4B.6, except for salinity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Salinity 
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Figure 4B.8 As in Figure 4B.6, except for dissolved oxygen.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dissolved Oxygen 
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Figure 4B.9 As in Figure 4B.6, except for ammonium.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ammonium 
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Figure 4B.10 As in Figure 4B.6, except for nitrate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nitrate 
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5.1 Introduction 

 The Chesapeake Bay Total Maximum Daily Load (TMDL) is touted as the most 

extensive and complex TMDL in the nation (Batiuk et al., 2013). While projected costs 

run in the tens of billions of dollars (BRFP, 2004; Nelson, 2014), the associated positive 

impacts on the environment, industry, and health are projected to easily compensate for 

the costs (BRFP, 2004; CBF, 2014). The complexity of the endeavor combined with the 

high upfront, concentrated costs and the even higher long term, disperse benefits make it 

critical that the TMDL is positioned for success. A large part of the responsibility for that 

success falls on the science at the foundation of the regulation as well as the regional 

partnership responsible for the TMDL, the Chesapeake Bay Program (CBP).   

 As with many environmental regulations, the Chesapeake Bay TMDL has 

endured an intense and lengthy set of legal battles, primarily at the hand of the American 

Farm Bureau. In 2016, the Supreme Court denied the Farm Bureau’s petition to the court, 

effectively affirming the decision of the lower courts that in part granted deference to the 

science conducted by the CBP in developing the TMDL (American Farm Bureau 

Federation et al., v. United States Environmental Protection Agency, 2013; American 

Farm Bureau Federation et al., v. United States Environmental Protection Agency, 

2015). With the courts upholding the scientific basis of the regulation, the CBP continues 

to work towards ensuring the use of the best science available.  

 To address the need to ensure that the science behind the TMDL is the best 

available, in early 2012, the Environmental Protection Agency’s (EPA) director of the 

CBP asked its Science and Technical Advisory Committee (STAC) to explore the 

possibility and efficacy of utilizing a multiple model approach in the TMDL. Out of this 

request grew two workshops on multiple models (Friedrichs et al, 2012; Weller et al., 

2013), a shallow water multiple modeling pilot research project (USEPA, 2013), and 

much of the catalyst for this dissertation. In this context, a multiple model approach 

encompasses a variety of ways to utilize the information from more than one model or 

modeling system, such as multi-model ensembles, model inter-comparisons, and modular 

community modeling. The Chesapeake Bay research community is uniquely poised to 

take up such a charge with multiple academic institutions focused on Bay research, as 
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well as the resources of scientists involved with the Chesapeake Community Modeling 

Program (http://ches.communitymodeling.org/).  

As the CBP continues to take advantage of the large group of academic research 

scientists throughout the Chesapeake Bay region, it is important to not keep the academic 

scientists behind closed doors and to allow them to be fully integrated as stakeholders. A 

2016 study by the Pew Research Center (PRC, 2016) found that scientists were one of the 

groups most trusted to act in the public interest, with 76% of respondents stating that they 

have “a great deal” or “a fair amount” of confidence in their actions. This is in stark 

contrast to elected officials at only 27% and business leaders at 41%. While the CBP 

scientists themselves are non-partisan civil servants, their position as government 

employees may affect the public’s perception of their work. Furthermore, while 75% of 

Americans think that protecting the environment is a major role of government, only 59% 

think that the government is doing a good job at protecting the environment (PRC, 

2015a). This makes it clear that public buy-in can be enhanced with the visible 

incorporation of widely trusted academic research scientists. 

This process works both ways as only 27% of scientists polled by the American 

Association for the Advancement of Science (AAAS) think that the best science guides 

regulations on clean air and water (PRC, 2015). If the scientists do not trust the efficacy 

of a regulation purportedly based on science, how can the public be expected to buy in? 

While it is certainly true that the best scientific advice can often make for lousy 

regulatory policy without the incorporation of political acumen, the political spin does 

not have to denigrate the scientific basis. Incorporating scientists as stakeholders along 

the entire process can help ensure the scientific foundation is not lost as the policy is 

developed while also helping the scientific community understand the role their science 

plays in regulatory policy.     

 In the end, the Chesapeake Bay TMDL is a good case study in the value of 

utilizing an academic research community to enhance the scientific basis and public 

understanding of a complex, costly, and contentious environmental regulation. One way 

to do this is through the incorporation of a multiple modeling system that leads to 

increased scientific confidence, stakeholder engagement, and regulation effectiveness. 
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Fortunately, the CBP is readily looking for ways to enhance the TMDL through multiple 

models and the rest of this chapter examines the basic questions behind such a task. 

 

5.2 Why is creating a TMDL for Chesapeake Bay so difficult? 

 Even prior to the incorporation of multiple models, formulating a regulation to 

clean up the Chesapeake Bay is immensely complex. The issues arise primarily due to 

three aspects of the problem: location, impacts, and time. The Bay’s watershed is 14 

times larger than the Bay itself and extends from New York to Virginia encompassing a 

population of more than 18 million people and land uses from major metropolitan centers 

like Washington, D.C., to the forested mountains of the Shenandoah National Park. 

Impacts from activity in the watershed have the potential to make their way to the Bay 

via the vast network of upland streams and waterways that eventually connect to the 

Bay’s large tributary rivers. Additionally, these human impacts have been occurring in 

the watershed for hundreds of years and intensified with colonization and then 

industrialization (Cooper and Brush, 1993). These three aspects combine to create an 

issue that is vast in size, complicated in origin, and compounded over time. As a result, it 

is not hard to understand why solving the problem with a single regulation and in a 

relatively short time frame is so challenging.  

 The concept of regulating pollution that is coming from a large watershed 

encompassing six states but that is delivered to a Bay that only two of those states border, 

forces a whole host of government, industry, and resident stakeholders into the equation, 

each with a different sense of responsibility and motivation for action (or inaction). 

Further, not all pollutants are equal in terms of both source and type, and distance from 

the Bay itself also plays a role. For source, excess nitrogen in a forested area will impact 

downstream waters differently than the same amount of nitrogen applied in an urban or 

suburban setting. For type, phytoplankton preferentially utilize ammonium as a nutrient 

source relative to nitrate, but both are considered a pollutant in the TMDL. Therefore, 

with these two impacts combined, ammonium applied to a farm in upstate New York will 

impact the Bay much differently than nitrate applied to a golf course in southern Virginia.  
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 A further logistical and scientific complication is that the goal of the TMDL is not 

singular. While the primary end goal is to increase dissolved oxygen concentrations 

(Keisman and Shenk, 2013), the TMDL also contains minimum water quality standards 

aimed at limiting chlorophyll a concentrations and increasing water clarity. All three of 

these water quality metrics are ecologically linked, but they manifest themselves in 

different locations of the Bay, at different times of the year, and are controlled by 

different mechanisms.  

 As with any regulation, there are costs incurred in compliance. Part of the issue 

with the Chesapeake Bay TMDL is that the costs are so high and fall on particular 

industries such as agriculture and local government entities like municipal wastewater 

facilities. While it is projected that the high upfront costs will be more than offset by the 

long-term benefits (BRFP, 2004; CBF, 2014), resources and methods to alleviate the 

costs are necessary (CBC, 2012; Nelson, 2014). In an attempt to increase opportunities to 

share the costs of TMDL implementation, the regulation allowed for nutrient trading 

markets to be adopted by the individual states. While the current markets are likely too 

restrictive to be truly economically viable options, it is possible for the states to open up 

the market-based system in the future (Nelson, 2014).  

 Further complicating the TMDL is the evaluation of progress made towards the 

goal of increasing water quality. It is critically important for the CBP to define and track 

progress, and they do that in a variety of different ways via their new Chesapeake 

Progress initiative (http://www.chesapeakeprogress.com/). Chesapeake Progress is 

technically focused on progress towards meeting the goals listed in the 2014 Chesapeake 

Bay Watershed Agreement, an agreement signed by the watershed states that commits to 

broader goals than just the reduction of nutrients and sediment in the TMDL. These goals 

include metrics, such as the size of the blue crab stock, that will be aided by successful 

attainment of the water quality standards in the TMDL, but they also go further and 

include issues such as environmental literacy. The transparency and attempt at 

communicating tangible effects that is offered by Chesapeake Progress is good for the 

TMDL, but many of the metrics that are used to show progress are fundamentally 

affected by water quality.  
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Breaking it down as simply as possible, the fundamental goal of the TMDL is to 

reduce nutrient inputs in an effort to improve water quality. Therefore, measuring 

progress in water quality itself is critically important for the TMDL. On the surface, 

measuring both sides of the equation should be relatively simple since we have already 

established that the amount of nutrients entering the Bay is too high and water quality is 

too low, while also establishing the requisite amount of nutrients that would lead to an 

acceptable level of water quality. Unfortunately, simply because the before and after have 

been identified (albeit with some uncertainty), it does not mean that the incremental steps 

from beginning to end are easy to resolve. There are four fundamental reasons for this: 

interannual variability, lag-time, changing futures, and adaptive management.  

 In terms of simply measuring progress each year of either nutrients delivered to 

the Bay or the water quality of the Bay itself, the issue of interannual variability is 

difficult to overcome. Each year, the University of Maryland Center for Environmental 

Science publishes a report card for overall ecosystem health of the Bay 

(https://ecoreportcard.org/report-cards/chesapeake-bay/). The report card gives grades to 

different portions of the Bay while also offering an overall grade for the health of the Bay 

for that individual year. One would hope that the actions taken to reduce nutrient inputs 

to the Bay since the TMDL was implemented in 2010 would be manifested in that report 

card with an overall trend of better grades each year. However, environmental and 

climate differences between years can easily mask a trend of progress. For example, 

Chapters 3 and 4 established that years with wet winters experience worse water quality 

conditions in the subsequent summer than dry winters. So if 2010 was relatively dry 

while 2016 was relatively wet, one could reasonably expect that the grade in 2010 would 

be higher than in 2016 even if multiple management practices to reduce nutrient runoff 

had been implemented in the interim years.  

 Compounded with interannual variability is the issue of lag-time in response to 

nutrient reduction. The idea that the Bay may not immediately respond to actions taken in 

the watershed is based on the fact that at any given time, water quality in the Bay is a 

consequence of contemporary human impacts, but also the history of past human impacts 

throughout the watershed (STAC, 2013). For example, Staver and Brinsfield (1998) 

found that after the incorporation of a cover crop in Maryland, shallow groundwater 
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nitrate concentrations dropped after a 2-3 year lag but did not reach maximum reduction 

until ~10 years after application. As mentioned earlier, human impacts have greatly 

degraded the health of the Bay since industrialization (Cooper and Brush, 1993). As a 

result, some of those impacts have stored up in the sediment of the watershed and slowly 

find their way into the Bay via mechanisms such as groundwater, land-use changes, 

erosion, and major storm events.  

 Changing futures also involves a time component, but instead of issues of the past 

impacting the present, changing futures involve the present catching up with the future. 

This primarily plays out in the context of climate change. The TMDL was developed for 

implementation in 2010 based on conditions from 1993 to 1995. As a result, the TMDL 

states that if the mandated nutrient reductions take place, then the water quality of the 

Bay will eventually meet minimum standards assuming that the environmental conditions 

in the future are similar to those experienced in the 1990s. Climate change, as was seen in 

Chapter 4, invalidates this assumption. Land-use change also falls into the changing 

futures category. It is not difficult to assume that urbanization and the resulting pattern of 

land-use in the watershed in 2050 will be different from what it was in 1993. Adequately 

accounting for how the climate and the use of land have and will change in the future is 

necessary for identifying contemporary progress towards meeting water quality 

standards.  

 Lastly, the incorporation of adaptive management further complicates identifying 

progress. Adaptive management can take many forms, but the CBP concisely defines 

their approach to adaptive management as “learning by doing” 

(http://www.chesapeakebay.net/about/how/management). The primary purpose behind 

adaptive management is that science is not definitive but that should not stop policy 

makers from making decisions based on current, sound scientific evidence. Rather, 

policies should be formulated and implemented that are adaptable so that as scientific 

understanding evolves, the regulation can evolve with it. While the CBP has committed 

to working towards an adaptive management framework, the structure of a regulation like 

the TMDL makes this difficult because in a truly adaptive management system each 

iteration of new knowledge has the potential to change the nutrient reduction necessary to 
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achieve the water quality goal. This makes building stakeholder confidence difficult since 

there is the potential that nutrient limits may change.  

 The fact that adaptive management is challenging in a regulation like the TMDL 

should not dissuade the CBP and partner states and agencies from moving towards an 

adaptive management framework. Section 10 of the TMDL (USEPA, 2010) is titled 

“Implementation and Adaptive Management,” a true indication of the CBP’s 

commitment to moving towards adaptive management. But it is telling that the words 

“adaptive management” only occur once in the eight pages of the section. In that 

sentence, the CBP states a commitment to taking an adaptive management approach by 

incorporating new scientific understanding in the 2017 Mid-Point Assessment. The 

cooperation of the CBP with the research presented in this dissertation, along with the 

changes in the updated CBP watershed model, demonstrate that the CBP has followed 

through on their commitment. However, the CBP can and should continue to incorporate 

more adaptive management strategies, such as utilizing a framework, like multiple 

models, to constrain uncertainty in an effort to refine a TMDL forecast over time (see 

NRC, 2011). 

 Incorporated in all of the complexity involved in a regulation like the Chesapeake 

Bay TMDL is uncertainty. Uncertainty exists at every level of the regulatory process, 

from how much pollution must be reduced, to what individual actions actually work best 

at reducing nutrient runoff, to how long it will take to see results, to what the climate 

impacts will be in the future. The complexity of a regulation like the TMDL makes it 

even more important to understand the uncertainty surrounding the science fundamental 

to the regulation’s development. It was in that light that the CBP requested its STAC to 

explore the viability of incorporating multiple models.  

 

5.3 Why should we use multiple models in a TMDL? 

 The two workshops that STAC hosted on multiple models elucidated some 

fundamental advantages to utilizing multiple models in the TMDL process in a variety of 

ways. The reports that followed these workshops are filled with words such as 

uncertainty, accountability, and confidence (Friedrichs et al., 2012; Weller et al., 2013). 
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While the application of multiple models can address those (very important) aspects of 

the science, the social aspects of incorporating a multiple model framework should not be 

overlooked. In that vein, multiple models should be utilized in the TMDL for three basic 

reasons: to help assess uncertainty, to incorporate the best science and methodology, and 

to assist in moving the regulation forward.  

 The incorporation of multiple models allows for an assessment of uncertainty by 

framing a boundary of possibilities. This is similar to how the spaghetti plots form the 

cone of uncertainty in hurricane forecasts. Observations provide information as to where 

the hurricane is at present, and multiple models from multiple institutions that incorporate 

a variety of underlying assumptions project where the hurricane will be in the future 

(NWS, 2009). One day out, the models all generally agree in the trajectory of the 

hurricane, but further into the future, the models begin to disagree due to the differences 

in the models such as their configuration, tuning, assumptions, and forcing. Therefore, 

while a hurricane may be 5 days out from landfall, and the scientists do not know exactly 

where landfall will occur, they can have a high confidence that the hurricane is headed 

towards New Jersey rather than Florida.  In that example, it is easy to see how important 

decisions, such as a warning for New Jersey but not Florida, can be made without perfect 

information. While projecting future water quality may be more complicated than 

predicting a hurricane’s path, the fundamental advantage of multiple lines of evidence 

that allow an assessment of uncertainty still holds.  

 One important aspect of the hurricane example is that the models originated from 

different institutions (be they government or academic). This is important because it 

generally allows for a greater diversity of models than if they had all come from a single 

institution. Model diversity enhances the projection of uncertainty since no model is 

individually correct, but incorporating a more diverse group can increase the odds that 

future reality falls within the cone of uncertainty (Janssen et al., 2015). The inclusion of 

academic research labs and institutions also helps ensure that the best modeling science 

and methodology are being used, since academic research partially exists to continually 

redefine the cutting edge.  

Including the academic scientific community can also build necessary stakeholder 

confidence while also taking advantage of the difference in approach between academic 
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and regulatory scientists. As previously mentioned, scientists are broadly trusted to act in 

the public interest. Adding to this is the recent move in academia (and to some degree, 

government) to open source science. These open source methods not only increase 

transparency for stakeholders, they also allow for the sharing of scientific advances 

between research groups much more rapidly than in the past. The academic science 

community also approaches questions differently from government scientists engaged in 

developing regulations. This is not a knock on those regulatory scientists. Their job is to 

identify a scientific basis for a regulation and they work hard at doing that properly. But 

academic research scientists approach problems with flexibility that allows them to ask 

questions about their understanding of the environment and a model’s representation of 

that environment. Furthermore, academic research models themselves are developed and 

utilized in a different way from a regulatory model. Many regulatory models, like the one 

developed for the Chesapeake Bay TMDL (Cerco et al., 2010), are essentially designed to 

answer a particular question. On the other hand, academic research models, particularly 

those developed using open source software, are designed to be flexible so that they can 

be used to ask multiple questions.  

The incorporation of more scientists and models into the process also increases 

the diversity of expertise and experiences that can help ensure that the best science is 

being utilized. This can help to move the science behind the regulation forward and 

towards a truly adaptive management framework even if it must exist within the rigid 

standards of a TMDL. Part of the feedback problem inherent in applying adaptive 

management to a TMDL is that if new information necessitates that load restrictions are 

altered for a given jurisdiction then the entire load allocation for the whole watershed 

must be recalculated and redistributed. This may result in a given location’s required load 

reduction to fluctuate with each iteration of the adaptive management cycle. Multiple 

models can be used to hedge against major fluctuations in each iteration by establishing 

an understanding of uncertainty to begin with, laying out the potential bounds of 

possibility. Multiple models can also be used to assess confidence in particular locations 

of the Bay, directing targeted research efforts at those locations exhibiting the highest 

uncertainty.  
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 Overall, a multiple modeling framework applied to the TMDL would take into 

account multiple lines of evidence to increase scientific understanding of the fundamental 

processes underlying the TMDL goals. This would allow for an assessment of uncertainty 

in both model results and the eventual attainment of water quality standards while also 

promoting an open and transparent scientific and regulatory process. The regulation 

would also benefit from incorporating the diverse expertise of Chesapeake Bay research 

community that is already focused on understanding the natural and anthropogenic 

impacts on Chesapeake Bay’s past, present, and future.   

 

5.4 How are multiple models in the Chesapeake Bay currently being used? 

 The shallow water multiple model pilot project that grew out of one of the STAC 

workshops (Friedrichs et al., 2012) is still underway 

(http://www.chesapeakebay.net/groups/group/evaluation_of_multiple_shallow_water_sys

tems_analysis). The project has brought researchers from multiple institutions together to 

utilize multiple models developed across academia and government to better understand 

how to overcome the obstacles water quality models face in the shallow and ecologically 

critical reaches of the Bay. While this project was derived directly from the CBP’s 

request to study the possibility of using multiple models in the TMDL, it is not the only 

project to do so. Other federal agency projects, such as the National Oceanic and 

Atmospheric Administration’s Integrated Ocean Observing System’s Coastal Ocean 

Modeling Testbed (NOAA-IOOS-COMT), have also started projects to understand how 

to promote the use of multiple models in our understanding of coastal ecosystems.    

Partially as a result of the robust Chesapeake Bay modeling community, these types of 

projects and others have utilized and plan to utilize multiple models in the watershed, the 

Bay, and a mix of both, to further our understanding of the ecosystem, to explore the 

potential impacts of the TMDL, and to create a framework from which the CBP could 

move forward in implementing in the regulatory process.  

 In both the watershed (e.g., Boomer et al., 2013) and the Bay (e.g., Bever et al., 

2013; Chapter 2), multiple models studies are being used to evaluate the skill of models 

relative to each other by comparing model output to the extensive historical observations 
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available throughout the Chesapeake Bay region. Primary outcomes of these studies 

include the identification of strengths and weakness among the models overall and the 

research results point towards future research needs while also attempting to quantify 

uncertainty and establish a framework for the future use of multiple models. Furthermore, 

these studies include as one of the models in the study the relevant CBP model used in 

the regulatory process to create the TMDL. This allows for a direct comparison of the 

regulatory model to other models and can act as a gut check to identify whether or not the 

models perform similarly. Studies of both the watershed (e.g., Sharifi et al., 2016) and the 

Bay (e.g., Chapter 3) have also utilized multiple models, including the CBP model, to run 

scenario experiments to identify if models project a similar response in variables as a 

result of different scenario forcing.  

 The research presented in Chapter 3 went further than a comparison of scenarios 

and utilized the multiple model approach to assess confidence in the impact of TMDL 

nutrient reduction on water quality standard attainment. Via a Confidence Index, each 

segment of the Bay was given a confidence score between 0 and 1. This isolated the 

portions of the Bay where the models are in least agreement, and are therefore locations 

where the impact of nutrient reduction is least certain. Because the Confidence Index is 

composed of multiple indices, the reason for a low score could be isolated. These results 

pointed to oddities in the regression methodology used in TMDL development. The 

research was presented to the CBP and the information is currently being incorporated 

into the 2017 TMDL Mid-Point Assessment.  

 The newest version of the CBP watershed model (referred to as Phase 6) that will 

be used in the Mid-Point Assessment takes a necessary step toward integrating multiple 

models in the TMDL process. The new model is designed to be more transparent and 

easier to understand and incorporates multiple models at various steps within the model 

structure. For example, Phase 6 utilizes the average of three watershed models to identify 

the average nutrient loads delivered to the Bay from different land-use types. The three 

models are diverse in terms of how they work and where and why they were developed. 

Further, the use of a multi-model mean has been found to be of higher predictive skill 

than any individual model used in the mean (Gneiting and Raftery, 2005; Chapter 2).  

 



 188 

5.5 How might multiple models be used for the Chesapeake Bay TMDL in the 

future? 

 While the CBP has continually emphasized their support of efforts to incorporate 

multiple models into the scientific foundation of the TMDL and they have begun the 

process of incorporating multiple models into the watershed portion of the regulatory 

development, there is much more to be done. While the 2017 Mid-Point Assessment will 

include aspects of multiple modeling in the watershed, the modeling of the Bay will 

continue to be based on a single model. As this discussion has demonstrated, the research 

community will continue to move forward along with the CBP towards the adoption of 

more multiple model frameworks used in TMDL decision making. 

 One such endeavor that has recently gotten off the ground aims to fully 

incorporate two watershed models (Phase 6 from the CBP and one from academia) with 

two Bay models (the one used by the CBP and one from academia used in Chapter 4) to 

examine the potential impacts of climate change on the TMDL nutrient reductions. This 

multiple model framework will enable the uncertainty that stems from both the nutrient 

reduction and future climate change to be examined and constrained. The incorporation 

of more models into the Confidence Index (Chapter 3) will further allow the CBP and 

research community to understand how the modeling results compare to each other 

beyond the raw model output and to the assessment of water quality standard attainment. 

Utilizing researchers from multiple academic institutions alongside the CBP, this project 

also has the potential to promote transparency and take advantage of the diversity of 

expertise.   

 Future multiple modeling efforts could expand on the chain of multiple models to 

incorporate economic models that can help identify options for offsets that can reduce the 

overall implementation costs without hampering TMDL progress. With costs in mind, the 

funding of these research projects is imperative but the costs of the modeling efforts are 

vastly outweighed by the costs of the full TMDL implementation and trumped even 

further by the total cost of making poor management decisions. Incorporating more 

adaptive management would further hedge against potentially ineffective management 

decisions.  
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5.6 Conclusions 

 The water quality regulatory process in the United States is established in the 

Clean Water Act Section 303(d), which mandates the development of a TMDL for 

impaired waterways. Since the TMDL is the regulatory infrastructure that the EPA has to 

work under to repair the nation’s waterways, it is important to evaluate how multiple 

models can be used to enhance the scientific foundation of a TMDL. In that vein, the 

CBP has solicited the advice of the scientific community and has committed to move 

forward with incorporating multiple model approaches into the Chesapeake Bay TMDL 

development process. 

 Incorporating multiple models in the TMDL can establish a degree of confidence 

in the regulation on multiple fronts. The science itself can quantitatively identify a range 

of uncertainty that can be used in adaptive management of the ecosystem. The use of 

multiple models and the incorporation of academic scientists and their open source 

research can enhance the confidence of the scientific community that the environmental 

regulations are based on sound science. The use of academic scientists and transparent 

methodologies can also enhance the confidence of the public in the efficacy of an 

environmental regulation. The increased confidence and buy-in from all fronts can help 

keep the TMDL on track to achieve the water quality goals.  

The success of the Chesapeake Bay TMDL is imperative for the future of water 

quality regulations across the United States. As the largest and most complex TMDL to 

date, it is critical that the science at the foundation of the regulation is sound. Multiple 

models must be at the heart of understanding how to ensure the future success of 

regulatory efforts to save the Bay.  
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