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Abstract

Mercury contamination reduces fledging probability in birds. Mercury has been

introduced to the South River in the Shenandoah, creating differences in habitat

quality on a landscape of fragmented forest patches. To study the possible out-

comes of the spread of this adaptation through populations in the Shenandoah, we

construct and implement a mathematical model that features common life history

traits, including dispersal and nest competition, of a generic bird species. To see

which processes or parameters have the largest effect on allele frequencies, pop-

ulation sizes and reproductive output (a proxy for fitness), we use partial rank

correlation. We conclude that in a simple two-patch instance of the model, local

selection pressures and asymmetry of migration have the largest effects on allele

frequencies and fitnesses. In half of cases observed, the mercury tolerance allele did

not establish in either patch, but it did reach fixation in both patches in 20% of

trials run. We also find that in a two-patch instance, allele frequencies in the con-

taminated and uncontaminated patches tend to correlate with each other very well,

suggesting that there is a homogenizing process which couples allele frequencies.
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Ŝbi,t Post-dispersal number of breeding subadults 2.2.1
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Chapter 1

Introduction

1.1 Motivation

Ecological processes do not always happen over homogeneous landscapes; this in-

validates a key simplifying assumption in many spatial models. Ecological metapop-

ulation theory has provided a way to simply and elegantly study population dynam-

ics on heterogeneous landscapes [17]. A metapopulation is a collection of discrete

interacting subpopulations, arranged spatially within a network of habitat patches

[18].

Between 1929 and 1950, an industrial plant in Waynesboro, Virginia released

mercury into the South River and South Fork Shenandoah River in the Shenandoah

Valley [12]. It has been demonstrated that this mercury has infiltrated terrestrial

food webs as birds consume aquatic insects [10]. Due to biomagnification, birds are

showing hazardous levels of mercury in their blood. Presence of mercury has been

demonstrated in laboratory settings to reduce the reproductive output of exposed

birds, mainly by decreasing the proportion of hatched birds that fledge from the

nest [38]. However, there is evidence that there is heritable variation in avian re-

sponse to mercury [37]. Studies of killifish have demonstrated heritable antioxidant

defense to aquatic contaminants [25] [26], suggesting that such a mechanism might

exist for mercury tolerance in birds.

Mercury contamination is mostly confined to the affected rivers and their flood

plains, but birds are highly mobile and move between patches of forest habitat.

Metapopulation theory has been used to study birds [14][28][33]. Bird populations

on fragmented woodland [41] and urban [29] landscapes have been demonstrated

to have characteristics of metapopulations, such as genetically distinct subpopula-

tions and recolonization events. Scrub jays populations, for example, show higher

levels of genetic differentiation as the size of gaps between habitats grows [9]. Tits

in mixed deciduous and evergreen habitats demonstrate adaptation to the more

1
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common forest type, yet still colonize less suitable forest patches where they are

maladaptive and have lower reproductive success, creating source-sink dynamics

[11]. We will assume for this project that the metapopulation theory approach is

applicable to bird populations in the fragmented habitat patches of the Shenan-

doah, i.e., that birds breed in and disperse between distinct subpopulations.

Widespread tolerance to mercury contamination could be an adaptation, cre-

ated by local selection on tolerance genes. However, surrounding populations in

uncontaminated areas may flood the contaminated area with locally maladap-

tive wild-type alleles, establishing polymorphism and reducing overall fitness. The

weaker the polymorphism is (i.e., the more prevalent adaptive tolerance is), the

greater the risk of removing legacy contamination, as removing mercury would

reverse selection pressure by favoring maladaptive wild-type alleles that are in a

minority. It is important, then, to assess level of adaptation of populations directly

exposed to mercury when considering river restoration, as a fully adapted popula-

tion would suffer from absence of the contaminant. A spatially structured model

can be used to study the effects of local immigration on the level of adaptation in

contaminated areas.

However, the effects of contamination do not have to be limited to areas where

the contaminant is present. Theodorakis noted that radionuclide-stressed kangaroo

rat populations and reference populations did not show significant genetic variation

unless controlling for migration [35]. Spromberg et. al. were able to simulate distant

effects of a contaminant on a metapopulation, paying special attention to patch

arrangement [34]. This means that the genetic effects of contamination may be felt

outside of contaminated areas; when this causes a reduction in fitness, it is called

a migration load. Dispersal of a locally adapted allele such as mercury tolerance

into areas where it is not beneficial may present problems if breeding into local

populations occurs and produces maladapted offspring. One such example of this

comes from fisheries management, where escaped captive-bred fish are maladapted

for the wild, and have lowered reproductive output and less fit offspring than wild

fish [2]. It is important, then, not just to study prevalence of tolerant alleles in

contaminated areas but also in uncontaminated areas, which may see a reduction

in overall fitness despite a lack of direct exposure.

Such phenomena can be studied using mathematical modeling and simulations.

For this project, we created a model of a bird population occupying discrete habitat

patches. Bird population densities and frequency of a tolerance allele are recorded

in each patch over discrete time steps. We used latin hypercube sampling to run

the model over 1500 parameter combinations for a two-patch instance, allowing

variation in life history traits such as fecundity, behavioral traits such as disper-

sal likelihood, and environmental traits such as inter-patch distance and selection
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pressure. We used partial rank correlation to compare model inputs to resulting al-

lele frequencies, population sizes and fitness estimates at equilibrium. This will tell

us which parameters have the strongest effects on population sizes and tolerance

prevalence, and by proxy also the likelihood of adaptation or migration load.

1.2 Predictions

First, it is natural to assume that a stronger local selection pressure leads to a

lower probability of polymorphism. The mechanism here is that natural selection

favors birds with the locally adaptive allele, who have more fledgelings and thus

more offspring in the next year. Thus, our first prediction is that selection strength

against the locally maladaptive allele will have a strong effect on the frequency

of the tolerance allele in that patch. For example, stronger selection against the

wild type allele in a contaminated patch should lead to a higher frequency of the

tolerant allele in that patch.

Second, we note that we are studying a phenomenon that relies on dispersal

between patches. Without dispersal, in the absence of genetic drift or random mu-

tations (neither of which we will incorporate into this model) and over dominance,

we would expect each subpopulation to reach fixation of its adaptive allele [22].

Movement of maladapted individuals introduces maladapted alleles into each sub-

population. Thus, gene flow is an important process worthy of study in this project.

Theory predicts that strong enough gene flow can wipe out or at least compromise

local adaptation [3][21][23] (this has also been demonstrated empirically [27]), and

conversely that strong local directional selection can minimize effects of gene flow

and create population differentiation [6] (although not in all cases [15]). Our sec-

ond prediction is that lower levels of gene flow will lead to higher frequency of

the locally adapted allele, and conversely that higher gene flow will lead to higher

prevalence of the locally maladaptive allele.

We suppose that dispersal between two patches is enhanced by two factors: eas-

ier travel between patches and higher reproductive rates that create crowding and

necessitate moving between patches. In the case of ease of travel between patches,

barriers to dispersal [19] or small dispersal radius [9] impede movement and lead to

genetically distinct subpopulations. Our third prediction is that parameter inputs

associated with easier travel between patches, e.g., larger dispersal radius, shorter

inter-patch distances, or more available nesting sites, will lead to higher rates of

population mixing and thus increase the prevalence of maladaptive alleles. Another

factor that may lead to more gene flow is a larger dispersing population. If popula-

tion growth persists when all breeding territories are occupied, and territories can

be no further compacted to make new breeding sites, then there must be a class



4

of non-reproductive “floaters” that compete for nesting sites [31]. In the quest for

nests, these floaters may move among patches, even if into suboptimal habitats [7].

Our fourth prediction is that increasing fecundity and survivorship or decreasing

strength of density dependence will increase local maladaptation by creating more

floaters who will breed into non-optimal subpopulations.

The gene flow question can be viewed a different way: symmetry of dispersal.

Models have demonstrated that asymmetrical gene flow between patches with op-

posing selection pressures lowers the viability of the whole population [5][39]. The-

ory also shows that asymmetrical migration lowers the likelihood of polymorphism

in the lower-immigration patch [21] (this has also been demonstrated empirically

[4]). Our fifth and final prediction is that increasing asymmetry between contami-

nated and uncontaminated patches in the model will increase local maladaptation.

This can be studied by modifying the number of breeding territories in a patch, or

by increasing the relative selection differential in a patch, which can create a “mi-

grational meltdown” wherein maladaptation opens up more breeding territories,

which in turn attracts more maladapted individuals [21].



Chapter 2

Model Development

This model has discrete time steps, each simulating the passing of one breeding

season. A time step begins with settlement of open breeding territories. Surviving

breeders and floaters from the previous year compete for these nesting sites, and

in the process the floaters may disperse among patches. When nests are settled,

breeders lay eggs which hatch and fledge. After fledging, all birds either mature

or die; those birds that die open breeding territories for settling at the beginning

of the next time step. This is process illustrated in figure 2.1. All processes are

deterministic.

2.1 Life History Dynamics

This section developes within-subpopulation dynamics and ignores interactions

between subpopulations; this is similar to describing a single subpopulation in

isolation. Because there is only one subpopulation to describe, notation in this

section will not include subscripts for patch numbers.

2.1.1 Stage Classes and Transitions

We model a bird that has two stage classes (Cristol, Fovargue, unpublished), a

subadult stage class S (one year old) and an adult stage class A (older than one

year). Both classes are reproductive, although they give birth at different rates and

exhibit different survival probabilities. In a time step, the breeding subadults Sb

and adults Ab will give birth to hatchlings, which develop in that same time step

into subadults. After giving birth, subadults and adults will mature or die, with

surviving subadults moving into the adult class with surviving adults. This means

that all individuals that breed in time t and survive to t + 1 must be adults in

t+ 1.

5
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Figure 2.1: Life history diagram showing events during one time step. Time step
begins between the t− 1 census and t dispersal.

Population densities are recorded after reproduction and maturation. By our

timing, this means that densities are recorded at the very end of each time step.

That is to say, St and At represent both population densities at the end of time

step t and at the very beginning of time step t+ 1. Simplistically, the population’s

growth can be defined by the following equations:

St = bSS
b
t−1 + bAA

b
t−1 (2.1)

At = σSSt−1 + σAAt−1 (2.2)

bS and bA are functions that depend both on population size and allele fre-

quencies. σS and σA are constants on the range [0, 1].

In the birth functions, subadults and adults have different fecundities, fS and

fA. Eggs laid have different probabilities of surviving to fledge; survivorship is

dependent on genotypes and the presence/absence of contaminant. For now, we

define LS and LA as functions for fledging probability in subadults and adults,

respectively; they will be defined completely in 2.1.6. Finally, there is the proba-

bility of surviving the winter from fledging to subadulthood (σH). In the absence

of density-dependent regulation, the number of offspring per subadult would be

fSLSσH , and the number of offspring per adult would be fALAσH .

We assume that our bird species has a non-reproducing floater class, created by
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population growth that persists when the population size exceeds the number of

available breeding territories [31]. As the size of the floater class increases, resource

and habitat strain cause population growth to decrease. There are two commonly-

employed equations to model discrete-time density dependence, the Beverton-Holt

equation and the Ricker equation. We employ the Beverton-Holt equation because

we assume that the rate that hatchlings mature into subadults is constant (one

breeding season), and that there is no time lag between vital rates and environ-

mental conditions [36]. One advantage to the Beverton-Holt equation is that it is

easier to solve analytically for a steady-state; this becomes useful in determining

initial conditions for simulations (see 3.3). In this equation, reproductive output

continues to decrease as more floaters enter the population (i.e., the density is

dependent on the total number of birds, not just the number of breeders). This

assumption is justified by the fact that floaters compete with reproducing birds

for food and breeding territories, stressing reproducing birds and their offspring.

The Beverton-Holt equation, which does not have an Allee effect, models density

dependent growth and takes the form

per capita growth =
f

1 + δ(St + At)

where f is maximum fecundity (i.e., as St + At → 0) and δ is a constant. Let

0 ≤ d ≤ 1 be the proportion of maximum fecundity a bird achieves when all

φ breeding territories are occupied. This introduces density dependence, where

reproductive capacity continuously and monotonically decreases (unless d = 1) as

population size increases. We solve for δ in the following equation:

df =
f

1 + δφ
1

d
= 1 + δφ

1− d
d

= δφ

δ =
1− d
dφ

Maximum fecundity is fSLSσH for subadults and fALAσH for adults. Our per-

capita birth terms, then, are

bS =
fSLSσH

1 + 1−d
dφ

(St + At)
bA =

fALAσH

1 + 1−d
dφ

(St + At)
(2.3)
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meaning that the recruitment rate is:

St+1 = bSS
b
t + bAA

b
t =

σH
(
fSLSS

b
t + fALAA

b
t

)
1 + 1−d

dφ
(St + At)

(2.4)

where Sbt ,A
b
t are the breeding subadults and adults in the patch (see next section).

2.1.2 Breeding Birds and Floaters

We assume in this model that if there are open breeding territories, floaters will

fill them. Thus, it is impossible to have open breeding territories and floaters in

the same patch. Let φ be the number of breeding territories in a patch. When

St + At ≤ φ, there are no floaters, and the number of breeding birds is equal to

the population size (i.e., Sb = S and Ab = A). However, when St + At > φ, some

birds do not get nests, and there are floaters [31]. Floater birds move between

patches in search of new breeding territories (this process is described in 2.2.1).

Since only birds with breeding territories can reproduce, and there are a fixed

finite number of breeding territories in a patch, there is a maximum number of

breeders the whole population can sustain. This prevents the population from

growing arbitrarily large.

At the beginning of each simulation, breeding territories are divided propor-

tionally among subadults and adults. This means that

Sb0 = min

(
1,

φ

S + A

)
S Ab0 = min

(
1,

φ

S + A

)
A

For population levels below φ, the breeding population makes up the entire pop-

ulation, but for population levels above φ, the breeding population sums up to φ.

The number of floaters in any time step is defined by

Sft = St − Sbt Aft = At − Abt

During competition for nests, there is no distinction between “floater” subadults

and “breeding” subadults. Since floaters are birds that do not have nests, in the

model we can consider all subadults as floaters when nest competition occurs,

since subadults are those birds born in the previous time step and thus have not

yet possessed a breeding territory. For this reason (and ease of notation), we will

drop the f superscript from subadults (i.e., simply write S instead of Sf ) when
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considering calculations during nest occupancy. Sf will be reserved for subadults

that are not able to attain nests after nest competition has occurred.

2.1.3 Nest Competition

Let ι be the proportion of surviving breeders at the end of time t − 1 that are

guaranteed a nest in time step t. 1 − ι, then, is the proportion of occupied nests

that breeders get dislodged from. ι will be fixed in each model iteration and does

not change over time. Define Ant as the number of breeding birds in t−1 guaranteed

their nest in time step t.

Ant = ι(σSS
b
t−1 + σAA

b
t−1)

At the beginning of time step t, the number of available breeding spots is

φ′t = φ − Ant . Note that for ι = 0, no breeders are guaranteed nests, and φ′t = φ,

meaning that all nests are subject to competition by all subadults and adults.

Assume that the φ′t spots are divided up proportionally among newborn subadults

(St) and floaters (Aft ); we do not assume that a bird’s competing ability depends

on its age. The number of breeding individuals in a time interval, then, is:

Sbt = min
( φ′

St + Aft
, 1
)
St (2.5)

Abt = min
( φ′

St + Aft
, 1
)
Aft + Ant (2.6)

These values for breeders are used in equation 2.4 to calculate the number of

subadults in the next time step.

2.1.4 Allele frequencies

We assume the mercury tolerance mechanism is a single-locus gene with only

two alleles; mercury tolerance and a wild type. A plausible mechanism for this

is a gene for a detoxification protein, which can isolate or remove mercury from

the body. Similar examples of gene complexes have been found with killifish in

the Elizabeth River [25] [26]. It has been demonstrated that zebra finches have a

heritable capacity for tolerance to mercury (a non-decrease in fledging rates); in the

absence of mercury, tolerant individuals have lower fledging rate than intolerant

individuals [37]. The dominance of this gene will be controlled with a parameter

h, controlling the fitness of heterozygotes.
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It should be noted here that the tolerance mechanism is not well understood.

We assume that it is a single-locus detoxification protein, although this may be a

naive assumption. Fledging probability is the only parameter our model uses with

observed differential response to mercury exposure. Thus, this model assumes that

the fledging probability of birds is a function of their genotypes and the mercury

dosage in their environment; all other parameters are constant across genotypes.

Let aSt be the frequency of the tolerance allele in the subadult population at the

end of time t, and likewise for aAt in the adult population (this means that (1−aSt )

and (1 − aAt ) are the frequencies of the wild type allele). Let gSt be a vector of

genotypic frequencies among breeding subadults; its entries correspond to tolerant

homozygote, heterozygote, and intolerant wild-type, respectively.

gSt =
[
(aSt )2 2aSt (1− aSt ) (1− aSt )2

]T
gAt is defined similarly for breeding adults using aAt . Note that the l1 norms of gSt
and gAt are equal to 1; all individuals must have one of these three genotypes, and

any calculation using gSt accounts for all birds.

2.1.5 Genotype inheritance

For simplicity, in this subsection we will disregard stage class, labeling the fre-

quency of the tolerant allele p and the frequency of the wild-type allele q. Geno-

typic frequencies, then, are p2, 2pq, and q2. We assume in the model the number

of males and females is the same, and that males and females have the same geno-

typic frequencies. This means that p is the same for males and females (and by

extension, so is q). We assume that all mating is random, and that fecundity is not

affected by mercury presence or genotype (thus all birds of the same stage class

have the same fecundity). Combinatorially, the expression (p2 + 2pq + q2)2, which

expands to p4 + 4p3q + 6p2q2 + 4pq3 + q4, gives the probability of each individual

combination of parental genotypes (the probability of having two homozygotic tol-

erant parents, for example, is p4). We will group together all of these probabilities

by the expected genotypes of their eggs.

For example, consider all parental combinations which can yield a tolerant

homozygote offspring: two tolerant homozygotes, two heterozygotes, or one tolerant

homozygote and one heterozygote. Using a Punnett square, one knows that all

offspring of two homozygotic tolerant parents will be homozygotic tolerant. One

half of expected offspring of a homozygotic tolerant and a heterozygotic pair will

be homozygotic tolerant. One quarter of offspring of two heterozygotes will be

homozygotic tolerant. The probability of having a homozygotic tolerant offspring,

then, is:
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(p2)2 +
1

2
(2)p22pq +

1

4
(2pq)2

= p4 + 2p3q + p2q2

= p2(p2 + 2pq + q2)

= p2

This means that the probability of random mating producing a homozygote

tolerant egg is p2, or exactly the proportion of breeders with that genotype. Note

that this is merely an example of Hardy-Weinberg equilibrium, as there is no

selection acting upon the number of eggs laid. Similarly, it can be shown that the

probability of mating producing a heterozygote egg is 2pq, and the probability

of mating producing a homozygote recessive egg is q2. This justifies using allele

frequencies at the end of time step t (those of the parents) to predict the genotypes

of eggs laid (those of the offspring) in t+ 1 before fledging, when selection occurs.

2.1.6 Differential fledging probabilities

Equation 2.4, the recruitment rate of subadults, is dependent on LS and LA. These

are functions for the respective probability that an individual subadult or adult

fledges, depending on local mercury contamination and genotype. For recruitment,

we count the expected number of fledgelings given a certain number of breeders

and their genotypes. The expected number of fledgelings in a pool of breeders is the

product of the number of fledgelings born to parents of one genotype multiplied by

the probability of a parent having that genotype, summed up over each genotype.

Thus, LS and LA are respectively average fledging probabilities of eggs laid by a

set of breeding subadults and adults, weighted by allele frequencies. From the laws

of probability, this can be stated as:

Pr(fledge) = Pr(fledge|tolerant homozygote) Pr(tolerant homozygote)

+ Pr(fledge|heterozygote) Pr(heterozygote)

+ Pr(fledge|wild type homozygote) Pr(wild type homozygote)

There is no evidence thus far suggesting that mercury affects the offspring of

subadults and adults differently; we then assume that the fledging probabilities

for adults and subadults of the same genotype are the same. Define l as a vector

of fledging probabilities for different alleles in a given patch. ltol is the fledging

probability of a homozygotic tolerant egg, i.e., Pr(fledge|tolerant homozygote), and
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lwild the fledging probability for a homozygotic wild type egg,

Pr(fledge|wild type homozygote). Note that these variables are patch-dependent;

fledging probability for one genotype is different in a contaminated patch than in

an uncontaminated one.

l =
[
ltol (h)ltol + (1− h)lwild lwild

]T
h serves as a heterozygosity modulator; when h = 1, the tolerant allele is dominant,

when h = 0, the tolerant allele is recessive. Intermediate values of h represent

incomplete dominance. Weight these fledging probabilities by the probability that

an individual has each genotype (i.e., the allele frequencies) to produce

LS = (aSt )2ltol + 2(aSt )(1− aSt )(hltol + lwild − hlwild) + (1− aSt )2lwild

Note that this is the inner product of gSt and l. LA is defined the same way,

substituting aAt in for aSt . This means that LS = 〈gSt , l〉 and LA = 〈gAt , l〉. Thus,

our functions LS and LA are simply the inner products of genotypic frequencies

and fledging probabilities. This means that our recruitment function is:

St+1 = bSS
b
t + bAA

b
t (2.7)

=
σH
(
fSS

b
t 〈gSt , l〉+ fAA

b
t〈gAt , l〉

)
1 + 1−d

dφ
(St + At)

where 〈, 〉 denotes the inner product.

2.1.7 Change in allele frequency in subadults

The frequency of the tolerant allele is the number of copies of the allele divided by

the total number of alleles in the population. Each tolerant homozygote has two

copies of the allele, and each tolerant heterozygote has one copy of the allele. In

fledgelings, the number of copies of the tolerant allele is

Sbt fS
(
2(aSt )2ltol + 2aSt (1− aSt )(hltol + (1− h)lwild)

)
σH

Each fledgeling has two copies of this gene. Dividing the number of copies of the

gene (i.e., twice the population size) in the subpopulation gives proportion of all

subadult genes that have the tolerant allele, i.e., the tolerance allele frequency in

subadults.
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aSt =
2Sbt fSσH

(
(aSt )2ltol + 2(aSt )(1− aSt )(hltol + (1− h)lwild)

)
2Sbt fSσH ((aSt )2ltol + 2aSt (1− aSt )(hlwild + (1− h)ltol) + (1− aSt )2lwild)

=
(aSt )2lwild + aSt (1− aSt )lwild

LS

Define the following vectors

g′St =
[
(aSt )2 (aSt )(1− aSt ) 0

]
g′At =

[
(aAt )2 (aAt )(1− aAt ) 0

]
the l1 norms of these vectors are one half the number of copies of the tolerant alleles

in the subadult and adult populations, respectively. We use one half of the number

of copies of the allele because this allows us to divide by the total population size

(rather than the number of copies of alleles, i.e., twice the population size) to get

allele frequencies.

We use population sizes to calculate the expected number of copies of an allele

from one generation to the next. Since selection has not yet acted when eggs are

first laid, the frequency of the tolerant allele in eggs is the same as the frequency in

breeding parents (see 2.1.5). Scaling the vector g′St by fSσHS
b
t (where fS is fecundity

of adults and σH is overwinter survival) gives the number of copies of the tolerant

allele in eggs laid by second years, and likewise for the vector fAσHA
b
tg
′A
t . Sbt 〈g′St , l〉

and Abt〈g′At , l〉 give the number of copies of the tolerant allele in fledged offspring

by weighting fledging probabilities by genotypic frequencies.

To calculate the frequency of alleles in the subadult population in the next

generation, divide the half-number of copies of the tolerant allele in offspring by

the total number of individuals born. The half-number of alleles is

fSσHS
b
t 〈g′St , l〉

1 + 1−d
dφ

(St + At)
+

fAσHA
b
t〈g′At , l〉

1 + 1−d
dφ

(St + At)

=
σH
(
fSS

b
t 〈g′St , l〉+ fAA

b
t〈g′At , l〉

)
1 + 1−d

dφ
(St + At)

The total subadult population size in the next generation is,

St+1 =
σH
(
fSS

b
t 〈gSt , l〉+ fAA

b
t〈gAt , l〉

)
1 + 1−d

dφ
(St + At)

)
St+1

We note that this equation uses gSt and gAt instead of g′St and g′St used for the
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half-number of alleles. The allele frequency in subadults in the next generation is:

aSt+1 =
fSS

b
t 〈g′St , l〉+ fAA

b
t〈g′At , l〉

fSSbt 〈gSt , l〉+ fAAbt〈gAt , l〉
(2.8)

=
σH
(
fSS

b
t 〈g′St , l〉+ fSA

b
t〈g′At , l〉

)(
1 + 1−d

dφ
(St + At)

)
St+1

These two expressions are equivalent; the bottom one is implemented in model

code.

2.1.8 Change in allele frequency in adults

We assume that the probability of survival into adulthood is independent of geno-

type. The number of copies of the allele in adults in the next time step is σSSta
S
t +

σAAta
A
t . Dividing this by the whole population size gives the frequency in adults

in the next generation.

aAt+1 =
σSSta

S
t + σAAta

A
t

σSSt + σAAt
(2.9)

=
σSSta

S
t + σAAta

A
t

At+1

2.1.9 Carrying Capacity

A patch’s breeding population can not exceed its number of nesting sites. We as-

sume that there is no territory compacting, meaning that the number of nesting

sites stays constant over time. This means that there is an upper limit to the num-

ber of breeders in a population, and thus an upper limit to population growth.

In the absence of dispersal, if allele frequencies are held constant over time, equi-

librium population size can be found analytically. Call the respective number of

subadults and adults at equilibrium S∗ and A∗. At this equilibrium, the following

conditions are satisfied:

S∗ = min
(
1,

φ

S∗ + A∗
)fSL∗SσHS

∗ + fAL∗AσHA
∗

1 + 1−d
dφ

(St + At)

A∗ = σSS
∗ + σAA

∗

L∗S and L∗A are fledging probabilities at equilibrium (and therefore constant).
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In the absence of over dominance, mutation, [22], or dispersal, directional selection

will move each subpopulation to fixation of its most advantageous allele.

Solving for A∗ in terms of S∗ gives:

A∗ =
σSS

∗

1− σA

Note, now, that A∗+S∗ = S∗
(

1 + σS
1−σA

)
. Designate x = σS

1−σA
. and substitute this

back into the equation for S.

S∗ = min

(
1,

φ

S∗(1 + x)

)
σHS

∗(fSL∗S + fAL∗Ax)

1 + 1−d
dφ
S∗(1 + x)

Consider R′, the net reproductive output of a bird in the absence of density-

dependence; R′ is a dimensionless parameter combining fecundity and survivorship;

Caswell defines net reproductive output as
∑∞

i σibi [8]. For our birds,

R′ = fSL∗SσH + σSfAL∗AσH + σSσAfAL∗AσH + σSσ
2
AfAL∗AσH + . . .

= σH
(
fSL∗S + σSfAL∗A

(
1 + σA + σ2

A + . . .
))

= σH

(
fSL∗S +

σSfAL∗A
1− σA

)
= bS + xbA

Thus,

S∗ = min

(
1,

φ

S∗(1 + x)

)
S∗R′

1 + 1−d
dφ
S∗(1 + x)

This is a piecewise function, depending on min
(

1, φ
S∗(1+x)

)
. This piecewise function

can also be thought of as depending on R′. Consider the case when when there are

fewer birds than there are breeding territories, φ
S∗(1+x)

> 1. Then, min
(

1, φ
S∗(1+x)

)
=

1, and
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S∗ =
S∗R′

1 + 1−d
dφ
S∗(1 + x)

R′ =
1− d
dφ

S∗(1 + x)

S∗(1 + x) =
φ(R′ − 1)

1−d
d

S∗ =
dφ(R′ − 1)

(1− d)(1 + x)

If population is larger than the number of breeding territories, min
(

1, φ
S∗(1+x)

)
=

φ
S∗(1+x)

. Thus,

S∗ =
φ

S∗(1 + x)

S∗R′

1 + 1−d
dφ
S∗(1 + x)

S∗ =
φ

1 + x

R′

1 + 1−d
dφ
S∗(1 + x)

R′φ

1 + x
= S∗ + (S∗)2

(1− d)(1− x)

dφ

The quadratic formula tells us that:

S∗ =
φ

2(1 + x)1−d
d

(
−1 +

√
1 + 4R′

1− d
d

)
In both equations, as φ

S∗(1+x)
limits to 1 (i.e., as population approaches carrying

capacity from above or below), R′ approaches 1−d
d

. Note that as φ
S∗(1+x)

approaches

1, S∗ approaches φ
1+x

; as it approaches φ
1+x

from below (i.e., for populations smaller

than the number of breeding territories)

φ

1 + x
=

(R′ − 1)φ
1−d
d

(1 + x)

1 =
(R′ − 1)

1−d
d

R′ = 1 +
1− d
d

=
1

d

Limiting from above, i.e., for populations larger than carrying capacity,
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φ

1 + x
=

φ

2(1 + x)1−d
d

(
−1 +

√
1 + 4R′

1− d
d

)
√

1 + 4R′
1− d
d

=
2

d
− 1

4R′
1− d
d

=
4− 4d

d2
− 4

d

R′
1− d
d

=
1− d
d

1

d

R′ =
1

d

This means that S∗ and A∗ are actually continuous functions of the dimension-

less parameter R′. If R′ > 1
d
, then the equilibrium population will have floaters,

and if R′ < 1
d

the equilibrium population will have no floaters. This threshold for

reproductive rate is intuitive; as the total population size approaches the number

of breeding territories (φ), net reproductive rate approaches dR′ (where R′ is the

reproductive rate in the absence of density dependence, i.e., as the population size

approaches 0). In order to have a population exceed the total number of breeding

territories, dR′ > 1, or R′ > 1
d
. Thus, the threshold for reproductive rate needed

to guarantee floaters increases with the inverse of d, which is a measure of density

dependence. Indeed, numerical simulations of populations with zero dispersal show

that for subpopulations with life history parameters such that R′ > 1
d
, equilibrium

population sizes exceed the number of breeding sites in each patch, subpopula-

tions with 1
d
> R′ > 1 leads to equilibrium populations smaller than the number

of breeding sites in each patch, and R′ < 1 leads to a population crash.

At steady state,

S =


0 if 0 < R′ < 1
dφ(R′−1)

(1−d)(1+x) if 1 < R′ ≤ 1
d

φ

2(1+x) 1−d
d

(
−1 +

√
1 + 4R′ 1−d

d

) (2.10)

Additionally, at steady state A = σS
1−σA

S.

2.2 Spatial Structure

Now we move from considering a single population in isolation to a fragmented

population made up of n discrete patches. In the case of the Shenandoah Val-
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ley, some of these subpopulations are along the South River, and therefore are

contaminated with mercury [10], while other subpopulations are further from the

river where presumably mercury exists in much lower dosages or is not physically

present.

2.2.1 Floater Dispersal

We assume that birds disperse between habitats in search of open nests. It follows

that only floaters will disperse, since birds in the breeding population already have

nests. Floaters, then, play a key role in this model by allowing gene flow. The model

records bird abundances in each patch at the end of each time step; section 2.1.2

describes how the model tracks breeding and non-breeding birds. Thus, in each

patch at each time step, the model has a value representing abundance of non-

breeding “floater” birds. However, if allowing for dispersal, these floaters can move

between patches in search of open nests; thus, a floater can begin a time step in

one patch, then move to another patch in order to compete for nests there. In this

model, birds may only disperse once per time step.

Describing dispersal requires describing where these floaters are likely to move.

This model assumes that the probability of an individual dispersing from a patch

i to a patch j is dependent on two things: the distance between i and j, and the

number of open breeding territories in j (this means dispersal follows a “gravity

model”). The first assumption is quite naive when it comes to bird dispersal mod-

els, as landscape features tend to affect dispersal behavior, and that response to

such features varies among birds [19]. This problem can be solved by using effec-

tive distances between patches, which incorporate landscape features that modify

dispersal into parameters that determine dispersal likelihood. While this makes

inter-patch distances difficult to calculate in empirically in extant natural systems,

it is easy to incorporate barriers to dispersal into theoretical studies or hypotheti-

cal simulations. We also use the simplifying assumption that dispersal depends, at

least in part, on the number of open breeding territories. Our other assumption is

that birds disperse towards sites that have more open breeding sites. This assumes

that perhaps bird are equally likely to visit each patch, but are most likely to stop

and settle if it sees an open patch; the probability that it sees an open patch is

proportional to the number of open patches.

Let dij be a measure of effective distance from patch j to patch i, with djj = 0

for all j (that is, there is no travel cost to stay within a patch). We will make the

simplifying assumption in our analysis that dij = dji for every pair i, j, although

it is not a necessary condition for the model. This model tracks the size of a whole

population of birds by subdividing the population into discrete subpopulations
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(patches) and keeping track of the number of birds in each patch. In order to

simulate a bird competing for multiple nests in multiple patches at once, we pro-

portion the floater population of each patch based on the probability that a bird

will try to compete in each patch, then add these values to populations in their

destination patches. This can be done by matrix multiplication and is explained

in equation 2.11.

The pre-dispersal number of floater adults in patch i at time t is Afi,t = Ai,t−Ani,t.
Assume that the distance a bird is willing to fly to compete for a nest decays

exponentially; this is featured in several other models of dispersal [1]. Let e−αdij

be a decay rate of a bird’s willingness to move to compete in patch i from patch j,

where α is a nonnegative parameter. Higher α indicates lower chance of competing

over long distances; thus α can be thought of as a quantification of barriers to

dispersal. Furthermore, assume that the likelihood a bird will invade a territory

is directly proportional to the number of open spots in the destination territory;

that is, a bird in patch j will be more likely to compete in territory i the higher

φ′i is. The probability that a bird in j will compete in i, then, is
φ′ie
−αdij∑

k∈Nj
φ′ke
−αdkj ,

where Nj is the set of breeding territories reachable from j. The expected number

of floaters resident in patch j who will disperse into i would be Afi,t−1 (the number

of birds at the end of time step t− 1 is the same as the number at the beginning

of time step t) times the term above. The total number of floaters in patch i after

dispersal, which we will denote by
ˆ
Afi , is the sum:

Âfi,t =
∑
j∈Nj

φ′ie
−αdij∑

k∈Nj(e
−αdkjφ′k)

Afj,t−1 (2.11)

If Aft is an n × 1 vector where the ith entry represents the number of floater

adults before dispersal in subpopulation i at time t, and Âft is likewise an n ×
1 vector of post-dispersal adult floater population sizes, then the above can be

rewritten as:

Âft = MAft−1

where M is an n× n movement matrix such that:

mij =
φ′ie
−αdij∑

k∈Nj(e
−αdkjφ′k)

(2.12)

Note that each column in M sums to 1. Also note that M changes over time, as
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it is dependent on φ′ which also changes over time. The value in equation 2.11 is

used for Afi,t in equations 2.5 and 2.6 to determine the number of breeding birds

in each patch. A proportion of these floaters will gain nests in i; the remaining

floaters will remain floaters in i until the next time step. The number of floaters

in patch i after nest settlement, then, is:

Afi,t = Âfi,t −min
(
1,

φ′i

Âfi,t + Ŝi,t

)
Âfi,t (2.13)

Subadults will follow the same rules as adults for dispersal. However, since

subadults have never competed for nests before, all subadults can disperse. Thus,

the post-dispersal number of subadults can be found using a the matrix equation:

Ŝt = MSt−1

where M is the same as defined above for adults. These values Âbt and Ŝbt are used

for the recruitment function in equation 2.7 and for calculating allele frequencies

in equations 2.8 and equations 2.9.

2.2.2 Allele Frequencies

Consider a hypothetical subpopulation i where floaters and breeders both have

an allele frequency ai. If a proportion of floaters emigrate and floaters from other

subpopulations immigrate into i, the breeding population frequency will still be ai
(and the subadults in the next generation will have a frequency as a function of

ai) while the floating population will have an allele frequency that is a function of

the frequencies of immigrants. The allele frequencies of floaters and breeders will

inevitably diverge, especially in situations where floaters rarely overtake territories

from established breeders (ι is close to 1) and the two groups do not mix [13].

This necessitates keeping track of the allele frequencies of breeders and nesters

separately.

Define aAf,i,t to be the allele frequency of adult floaters in subpopulation i at time

t before dispersal, aAb,i,t to be the allele frequency of adult breeders in subpopulation

i at time t before dispersal, and aSi,t to be the allele frequency of subadults in

subpopulation i at time t (remember that before nest settlement there are no

subadult breeders; for this reason we do not distinguish between subadults floaters

and breeders). These variables with a hat (e.g., âAf,i,t) represent the allele frequencies

after dispersal.

Because nest resettlement involves mixing floater subpopulations, the allele

frequency in the breeding population of i after resettlement is a function of the
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breeding population frequency in i before resettlement and the floater population

frequencies in all other patches. The expected number of copies of the tolerant

allele, as before, is the half-number of copies of the tolerant allele divided by the

total population. Before resettlement of nests, the allele frequencies are the same

as at the end of the t− 1 step. In subadults, the half-number of alleles is

∑
j∈Nj

φ′ie
−αdij∑

k∈Nj φ
′
ke
−αdkj

Sj,t−1a
S
j,t−1

the frequency of alleles in subadults after dispersal in patch i is

âSi,t =
1

Ŝi,t

∑
j∈Nj

φ′ie
−αdij∑

k∈Nj φ
′
ke
−αdkj

Sj,t−1a
S
j,t−1 (2.14)

where Ŝi,t is the number of subadults after dispersal. Using aSt to denote an n× 1

vector of subadult allele frequencies before dispersal at time t, the above can be

rewritten as

âSi,t =
M(i,)(St−1 ◦ aSt−1)

Ŝt

=
M(i,)(St−1 ◦ aSt−1)

M(i,)St−1
(2.15)

where M(i,) is the ith row of the dispersal matrix M and ◦ denotes the Hadamard

product. Equation 2.15 is implemented in code. A similar equation can be derived

for the adult floater allele frequency. Since the half-number of alleles in adult

floaters is

∑
j∈Nj

φ′ie
−αdij∑

k∈Nj φ
′
ke
−αdkj

Afj,t−1a
A
f,j,t−1

the frequency of alleles of floaters competing in patch i at time t is:

âAf,i,t =
1

Âfi,t

∑
j∈Nj

φ′ie
−αdij∑

k∈Nj φ
′
ke
−αdkj

Afj,t−1a
A
f,j,t−1 (2.16)

where Âfi,t is the same as defined in equation 2.11. Using matrix multiplication, we

can rewrite this as:
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âAi,t =
M(i,)(A

f
t−1 ◦ aAt−1)
Ât

=
M(i,)(A

f
t−1 ◦ aAt−1)

M(i,)At−1
(2.17)

Equation 2.17 is implemented in code.

When nests are settled by adult floaters and subadults (see 2.1.3), the settling

birds (breeders) are a randomly selected proportion of the birds competing for

these nests. The pool of breeding adults is made up of some birds who nested in

the previous time interval (An = ιAbi,t−1) and floater adults (Âfi,t). The frequency

of alleles in breeding adults, then, is:

âAb,i,t =
AnaAb,i,t−1 + min

(
1,

φ′i
Ŝi,t+Â

f
i,t

)
Âfi,tâ

A
f,i,t

An + min
(
1,

φ′i
Ŝi,t+Â

f
i,t

)
Âfi,t

(2.18)

We assume that when floaters gain nests during resettlement, they do so at

random. Since there is no difference among genotypes in ability to gain nests, we

may assume that the allelic frequency of floaters gaining nests in i are the same

as the frequencies of the entire floater subpopulation in i, as the floaters who gain

nest can be considered a random sample of all floaters. This is why we are allowed

to use the term âAf,i,t for describing allelic frequencies of breeders-turned-nesters

in equation 2.18. These values âSf,i,t, â
S
b,i,t, â

A
f,i,t, â

A
b,i,t are used to calculate fledging

probabilities LS and LA for the allele frequencies of offspring as described in sec-

tion 2.1.6, as well as for calculating change in allele frequencies due to survivorship

in section 2.1.8.

2.3 Algorithm

The script begins by initializing variables and a dispersal matrix.

function Setup(Number contaminated patches, number uncontaminated patches,

carrying capacity list, distance matrix)

Create global list of patch sizes, φ, distance matrix, variables A, S

Sb0, S
f
0 , Ab0, A

f
0 ← values from equation 2.10

aSb,0, a
S
f,0, a

A
b,0, a

A
f,0 ← 2

Af0
for all contaminated patches

aSb,0, a
S
f,0, a

A
b,0, a

A
f,0 ← 0 for all uncontaminated patches

t = 1
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end function

Next, the script loops over three procedures, each meant to simulate a different

part of a bird’s annual life cycle.

repeat

function Resettle(time step t)

Locally store number of nesters An, open spots φ′, dispersal matrix M

Calculate Ŝbt , Ŝ
f
t , Â

b
t , Â

f
t using equation 2.13

Update âSb,t, â
S
f,t, â

A
b,t, â

A
f,t using equations 2.16 and 2.18

Calculate ε from equation 3.1

end function

function Birth(time step t)

Calculate St from equation 2.7

Update aSb,t, a
S
f,t using equation 2.8

end function

function Mature(time step t)

Update aAb,t, a
A
f,t from equation 2.9

Update Abt , A
f
t from equation 2.2

end function

Calculate weighted averages of allele frequencies in each patch

time ← t+ 1

until All allele frequency change smaller than 10−5 and all population changes

smaller than 10−5

Record t∗, time until equilibrium, and Si.t∗ , Ai,t∗ , a
S
i,t∗ , a

A
i,t∗ , R

′

The loop terminates at a state close to equilibrium (exact equilibrium is near

impossible to reach due to computational precision). At this point, several output

variables are stored. Code is implemented using R 3.0.1.



Chapter 3

Model Analysis

Although the model is equipped to handle an arbitrary number of patches, to gain

an initial understanding we will only do analysis on two-patch landscapes. Each

landscape will have one contaminated patch and one uncontaminated patch; this

removes landscape configuration from consideration as an input variable.

3.1 Global Sensitivity Analysis

In searching for conditions for migration load and local maladaptation, we are ul-

timately asking questions about model sensitivity, in other words, what has the

greatest effects on various model outputs, specifically allele frequencies? We ex-

pect that our model will produce variation in allele frequencies and population

sizes, and global sensitivity analysis provides a framework for determining which

input variables cause the greatest variation in model output [32]. Partial rank cor-

relation (PRC) quantifies the effects of individual input parameters on individual

model outputs after removing the effects and interactions of all other variables [20]

(whereas partial correlation describes linear relationships between variables and

outputs, partial rank correlation describes this relationship on rank transformed

data) [24]. The output of PRC is a partial rank correlation coefficient, a statis-

tic on the range [−1, 1], where positive numbers indicate a positive relationship

between a parameter and response variable, negative numbers indicate a negative

relationship, and higher magnitudes suggest a stronger relationship. The statistical

significance of PRC coefficients can be assessed using student’s t-test [24].

We isolate eleven parameters of interest to use in PRC. For each parameter,

we choose three values. These are shown in Table 3.1. Median life history param-

eter values fS, fA, σS, σA, as well as the median value for d were recommended by

Cristol (personal communication); for each parameter value, a point above and be-

low the values recommended were arbitrarily selected to allow study over a range of

24
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parameter space. The values for parameters lwild,c and ltol,u come from laboratory

experiments conducted by Varian-Ramos et. al., 2013 and 2014, on zebra finches.

Cristol (personal communication) recommended .8 as a baseline fledging probabil-

ity, and laboratory experiments found birds exposed to mercury suffered between

a 20% and 50% reduction in fitness; 20% reductions coming from dosage concen-

trations observed in the Shenandoah, and 50% reductions coming from “worst case

scenario” dosage concentrations. The value ι = 1 corresponds to all nesting birds

retaining their nests, and ι = 0 corresponds to a “free for all” for all nests in each

year. The value h = 1 corresponds to a dominant tolerant allele, h = 0 corresponds

to a recessive tolerant allele, and h = .5 corresponds to incomplete dominance. For

the value α = 0, birds disperse between patches regardless of inter-patch distance

(but still favor patches with more open breeding territories); α = 1 and α = 2

correspond to birds that increasingly favor nearby patches over distant patches,

i.e., higher α means smaller dispersal radius.

The size of the contaminated patch, φc, is held constant at 10. With changes

in φu, the uncontaminated patch can either be half as large, the same size as, or

twice as large as the contaminated patch. The parameter σH is held constant at

0.3. In our two patch model, we let inter-patch distances δcu = δuc = 1. We bundled

the effects of α, decay rate of dispersal likelihood, and inter-patch distances into a

single parameter. However, in a hypothetical case with more patches, inter-patch

distances (landscape configuration) and α may have different effects, and would

thus have to be studied separately.

Testing all combinations of parameters would require 311 trials of the model. To

limit our sample size, we use the Latin Hypercube Sampling technique to generate

1500 distinct combinations [32]. These samples were created by creating a 1500×11

array, with a row for each parameter combination and a column for each parameter.

Each column was filled with 500 copies of each of the three values chosen for

each parameter. Each of these columns was then shuffled. This method treats

all parameter combinations as equally likely and samples parameter combinations

with replacement. Although biologically it is unrealistic to treat all parameter

combinations as equally likely, we are using this technique simply to gain a complete

understanding of the model, so that we may understand the relative effects of each

parameter in the model. Thus we want to adequately sample the sample space,

giving no preference to certain regions that may be more biologically relevant.

The model was run for each of these 1500 samples until allele frequencies and

population sizes were near constant in both patches (change in allele frequency and

change in population size were < 10−5 for each subpopulation and stage class). Let

the time equilibrium is reached be t∗. At time t∗, the model was stopped, and the

following response variables were recorded for each patch:
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Parameter Parameter Meaning Values
fS Fecundity of subadults .6 .9 1.2
fA Fecundity of adults .9 1.2 1.5
σS Survival probability of subadults .2 .4 .6
σA Survival probability of adults .3 .5 .7
α Rate of decay of dispersal probability with distance 0 1 2
ι Nest guarantee parameter 0 .5 1

lwild,c Fledging probability of wild type bird exposed to mercury .4 .52 .64
ltop,u Fledging probability of tolerant bird in absence of mercury .4 .52 .64
φu Number of breeding territories in uncontaminated path 5 10 20
h Heterozygosity modulator 0 .5 1
d Proportion of reproductive output when all nests full .84 .9 .96

Table 3.1: Eleven parameters chosen, with three values each, for latin hypercube
sampling.

1. Population size relative to the equilibrium population size as defined in equa-

tion 2.10, i.e., St∗+At∗
S∗+A∗

2. Allele frequencies of subadults and adults weighted by their proportion of

the total population, i.e.,
St∗a

S
t∗+At∗a

A
t∗

St∗+At∗

3. R′ =
∑

i biσi, our measure of net reproductive output in the absence of

density dependence defined in 2.1.9. This is recorded for each patch, as well

as a population-wide R′ that is weighted by the size of each subpopulation.

This R′ value can also be interpreted as a measure of population fitness [16].

4. A measure of gene flow into each patch, given by

εi =

∑
j 6=i

(
mij(Sj + Afj )

)
min

(
1, φi

Si+A
f
i

)
∑

j

(
mij(Sj + Afj )

)
min

(
1, φi

Si+A
f
i

)
+ Ani

(3.1)

The numerator of 3.1 is the proportion of dispersers into patch i (that did

not originate in i) attaining nests; the denominator is the proportion of all

dispersers into i attaining nests, plus the number of nesters. The numerator,

then, is the number of breeders in i originating outside of i in that time step,

and the denominator is the total number of breeders in i in that time step.

This makes εi the proportion of breeders in i originating outside of i, which

serves as an appropriate measure of gene flow.
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3.2 Methods

We will perform PRC for each pair of parameter and response variable. This was

done using the R package “sensitivity” [30]. Of our sample of trial runs, we perform

PRC using the “pcc” command, calculating 95% confidence intervals via bootstrap-

ping with n = 100 bootstrapped samples. We will group statistically significant

(p < .05) data points with overlapping confidence intervals to assess the primary

parameters that each of our output variables is most sensitive to.

Our first prediction posed in section 1.2 is that local selection pressure against

the maladapted allele will decrease the frequency of that allele. To test this predic-

tion, we varied the strength of selection pressure in each patch. Our first prediction

will be tested by assessing PRC coefficients of selection pressures in a patch and

allele frequencies at equilibrium in each patch. Model input in this case is lwild in

the contaminated patch and ltol in the uncontaminated patch; thus, higher input

variables correspond to weaker selection pressures (e.g greater lwild in the contami-

nated patch corresponds to higher fledging probability of eggs of wild type parents

exposed to mercury). Our prediction will be supported, then, if lwild has a negative

PRC coefficient, as higher fledging probability of wild type birds in a contaminated

patch will lead to more wild type birds and thus fewer tolerant birds in that area,

and that ltol will have a positive PRC coefficient, as higher fledging probability of

tolerant birds in an uncontaminated patch would lead to more tolerant birds in

that patch. We will also perform PRC between these parameters and R′, the net

reproductive rate in each patch. We predict that the relationship between selection

pressure and R′ will be similar to the relationship between selection pressure and

allele frequencies.

Our second prediction is that more gene flow will lead to higher prevalence

of the locally maladaptive allele. We have defined a parameter εi for the amount

of gene flow into patch i. We will perform Pearson product-moment correlation

between ε and allele frequency in each patch. Our prediction will be supported

of εc has a negative correlation with the frequency of the tolerance allele in the

contaminated patch, as more gene flow into the contaminated patch means more

wild type wild type birds breeding into the local population. For the same reason,

we expect that εu will correlate positively with frequency of the tolerant allele in the

uncontaminated patch. We will also study Pearson correlation between gene flow

and R′, where we predict a similar relationship to gene flow and allele frequency.

Our third prediction, that increasing parameters that encourage movement be-

tween patches will lead to more maladaptation, can be tested by assessing PRC

coefficients of α (dispersal likelihood decay rate) and ι (which controls the num-

ber of open nests) with allele frequencies in each patch. Increasing α lowers the
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probability of dispersal between distant patches. We expect, then, a positive PRC

between α and the tolerance allele frequency in the contaminated patch and a

negative PRC between α and the tolerance allele frequency in the uncontaminated

patch. Increasing ι decreases the number of open nests to compete over in a time

step. We predict a positive relationship between ι and the tolerant allele frequency

in the contaminated patch, and a negative relationship between ι and the tolerant

allele frequency in the uncontaminated patch. To relate this to fitness, we will also

evaluate the PRC coefficients of α and ι with R′.

Our fourth prediction is that increasing fecundity and survival probabilities and

decreasing the strength of density dependence will lead to more maladaptation by

creating more floaters and thus more gene flow. First, to ensure that a relationship

between these parameters and gene flow exist, we will examine PRC coefficients

of fS, fA, σS, σA, and d with ε. If a relationship between these parameters and

gene flow exist, we will assess PRC coefficients of these parameters with allele

frequencies in each patch. We expect negative relationships between fecundity and

survivorship parameters and tolerance frequency in the contaminated patch and

positive relationships between these parameters and tolerance frequency in the

uncontaminated patch. We also predict the the same will be true of the relationship

between d and allele frequencies, as increasing d decreases density dependence

and thus creates more floaters. Because R′ is a function of these life history trait

parameters, we expect that R′ will be very strongly positively affected by them,

but we will not count these relationships as significant. However, we will examine

PRC coefficients of d with R′ in each patch.

Our final prediction is that asymmetrical dispersal will lead to more local mal-

adaptation. First, to see if there is a relationship between asymmetrical dispersal

and fitness, we will study the Pearson correlation between each net gene flow into

the contaminated patch, εc − εu, and allele frequencies and R′. If a relationship

exists, we will assess PRC coefficients of φu on allele frequency and fitness in both

patches, with the assessment that lower φu means that breeding grounds that favor

wild type birds are rare relative to grounds that favor tolerant birds. Increasing φu
should lead to more wild type birds in the whole population. We predict then that

φu will have a negative PRC coefficient with the tolerant allele in both patches.

3.3 Initial Conditions

We want to simulate sudden appearance of a contaminant in a landscape full of

wild-type birds. Before the model begins, all patches are assumed to be free of

mercury. In the absence of mercury, directional selection will guide each patch to

analytic steady state determined by equation 2.10 and fixation of the wild-type
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allele.

Before the first time step of the model, the contaminant is introduced to select

patches. Also, two mutant copies of the tolerant allele appear in each contaminated

patch (uncontaminated patches remain at fixation of the wild type allele). The

effects of this dose are constant over time; that is, the amount of contaminant

does not increase or decrease. Contaminant does not move between patches; this

means that patches that are uncontaminated remain uncontaminated throughout

the whole experiment. We also assume a static landscape, where patches do not

change in size and inter-patch distances do not change.

For parameter combinations where R′ < 1 before the introduction of mercury,

we do not run the model, as this corresponds to a population that will crash even

without the introduction of mercury. Because of this, even though we use 1500

parameter combinations with Latin Hypercube Sampling, we may have fewer than

1500 data points.

3.4 Results

Because certain parameter combinations yielded R′ < 1, 1197 data points were

generated by running the simulation until steady state.

Steady state frequencies of the tolerant allele in each patch are plotted in fig-

ure 3.1a. Pearson’s ρ gives a correlation between frequencies in patches of .991

with p < 2.2 ∗ 10−16, 1195 degrees of freedom. Maximum difference between al-

lele frequencies in all simulations was .298. Median tolerant allele frequency was

.048 in the contaminated patch and .029 in the uncontaminated patch. 250 pa-

rameter combinations out of 1197 (20.9%) had tolerant allele frequency above .95

in the contaminated patch. 243 (20.3%) had tolerant allele frequency above .95

in the uncontaminated patch; all of these 243 data points with high tolerance in

the uncontaminated patch are included in the 250 points with high tolerance in

the contaminated patch, suggesting that it is highly unlikely that a tolerance is

prevalent in an uncontaminated area but not a contaminated one.

Median population size was 83.9% of equilibrium size in the contaminated

patch and 90.3% of equilibrium size in the uncontaminated patch. Pearson’s ρ

for population sizes in the two patches was .725, p < 2.2 ∗ 10−16. In 63 trials

(5%), population in both patches was less than 1% of the equilibrium population

size in each patch; there was one additional trial where only the contaminated

patch’s population was below 1% of its equilibrium level and two cases of the

converse. These trials can be thought of as population crashes. The weighted fitness

parameter R′ of the whole population was below 1 for 55 of these 63 instances of

population crashing. The maximum whole-population R′ value for instances of
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(a) Tolerance allele frequency. ρ = .991
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(b) Relative population size. ρ = .725

Figure 3.1: Scatter plots allele frequencies (a) and population relative to analytic
steady state (b) for 1197 model trials. Contaminated patch on x axis, uncontami-
nated patch on y axis. Red line corresponds to the line y = x

population crash was 1.074.

PRC coefficients for each of combination of parameter and response variable

are listed in Table 3.2. For the tolerance frequency in both patches, the significant

variables were (in order of decreasing magnitude) fledging probability of tolerant

birds in the uncontaminated patch, fledging probability of wild type birds in the

contaminated patch, dispersal decay rate, fecundity of subadults, and heterozygos-

ity. These are shown in figures 3.2a and 3.2b.

Population sizes, which are divided by the analytically derived equilibrium pop-

ulation size in equation 2.10 to control for differences in patch size and life history

parameters, show significant rank correlation with a number of parameters. Popu-

lation size in the contaminated patch had a significant relationship with all param-

eters but density dependence, and population size in the uncontaminated patch

had a significant relationship with all parameters but invasion probability, size of

the uncontaminated patch, and density dependence. The strongest correlation in

the contaminated patch was with the fledging probability of tolerant birds in the

uncontaminated patch; the strongest correlation in the uncontaminated patch was

with the fledging probability of wild-type birds in the contaminated patch. Life

history traits, dispersal decay rate, and local maladaptive fledging probability had

the next strongest correlations. Dispersal decay rate had a negative relationship in
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Popc Popu Tolc Tolu Rc Ru Rtotal εc εu εc − εu
fs .277* .111* .216* .234* .606* .610* .758* -.231* .155* -.013
fa .206* .324* .043 .051 .502* .624* .696* -.053* .011 -.029
σs .256* .394* .032 .027 .716* .846* .891* -.314* -.229* -.034
σa .147* .353* -.058 -.038 .641* .843* .861* -.272* -.280* -.007
α -.210* .346* -.280* -.280* -.268* .199* -.063* -.865* -.908* .029
ι .175* -.046 .035 -.002 .117* -.150* -.065* -.657* -.681* .037
lwild,c .216* .631* -.407* -.382* .141* .399* .337* -.076* .008 -.042
ltol,u .444* -.180* .464* .476* .420* -.284* .241* -.204* .199* .035
φu -.069* -.026 -.036 -.034 -.061 .009 -.066* .058 -.004 -.018
h .110* -.109* -.132* -.157* .167* -.087* .100* .149* .114* .002
d .010 .001 .022 .025 -.008 -.050 .029 -.000 .019 -.128*

Table 3.2: Mean bootstrapped PRCC values (n = 100) for parameter inputs (rows)
on response variables (columns). ∗ is significance to the .05 level.
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Figure 3.2: Significant (p < .05) PRC coefficients and confidence intervals for
tolerant allele in each patch. Height corresponds to magnitude of coefficient, color
corresponds to effect (green positive, red negative).
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the contaminated patch and a positive relationship in the contaminated patch.

Reproductive rates Rc, Ru and Rtotal were most sensitive to life history param-

eters. These parameters were also sensitive to maladaptive fledging probabilities

and dispersal decay rate; in both patches, the correlation with fledging probability

in the opposite patch was stronger than correlation with local fledging probability.

Also, just as with population sizes, dispersal has a negative effect on reproductive

rate in the contaminated patch and a positive effect on reproductive rate in the

uncontaminated patch. Rtotal was positively correlated with fledging probability in

both patches.

Gene flow into the contaminated patch, εc was sensitive to all parameters except

for size of the uncontaminated patch and density dependence. Gene flow into the

uncontaminated patch, εu was sensitive to all parameters except for size of the

contaminated patch, density dependence, wild type fledging probability in the

contaminated patch, and fecundity of adults. For εc, all significant parameters had

negative correlations. For εu, tolerant fledging probability in the uncontaminated

patch, fecundity of subadults and heterozygosity had weak positive correlations,

and all other parameters had stronger negative correlations. Net gene flow into

the contaminated patch was only significantly correlated with strength of density

dependence, a weak negative relationship.

Gene flow into the contaminated patch, εc, had a Pearson correlation coefficient

(ρ) of −.088 with allele frequency in the contaminated patch (p < .005). Likewise,

gene flow into the uncontaminated patch εu, had Pearson correlation coefficient of

.384 with allele frequency in the uncontaminated patch (p < 2.2 ∗ 10−16). εc, when

compared with reproductive output in the contaminated patch, yielded ρ = −.181,

p < .001. εu when compared with reproductive output in the uncontaminated

patch yielded ρ = −.206, p < .001. Net gene flow into the contaminated patch had

a Pearson correlation coefficient ρ = −.738 with tolerant allele frequency in the

contaminated patch (p < 2.2 ∗ 10−16), ρ = −.517 with fitness in the contaminated

patch Rc (p < .001) and ρ = −.225 with the total weighted fitness Rtotal (p <

2.2∗10−16). Correlation between net gene flow and allele frequencies and population

sizes are shown in figures 3.3a and 3.3b.
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(a) Net gene flow and frequency tolerance.
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(b) Net gene flow and population size

Figure 3.3: Relationship between net gene flow into the contaminated patch, εc−εu,
and allele frequencies (a) and population sizes (b).



Chapter 4

Conclusion

4.1 Discussion

We built a model for the spread of a mercury tolerance gene in a spatially structured

bird population. In order to assess likelihood of tolerance fixation and migration

load in a two-patch scenario, we selected model parameters assumed to correlate

with allele frequency, population size and reproductive rate, and performed global

sensitivity analysis on 1197 simulated outcomes.

Within the domain parameter space we studied, we found that half of trials

reached a steady state with the tolerance allele at less than 5% in both patches.

Fixation or near fixation of the tolerance allele was reached in 21% of simulations.

This suggests that for the parameter space we sampled, fixation of the tolerance

allele in both patches is uncommon but not impossible; likewise, there is a roughly

50% chance that the tolerance allele disappears from the population. Allele fre-

quencies in each patch were tightly coupled, with a rank correlation close to 1.

Because of this tight coupling, both patches can not reach their optimal equilib-

rium; migration load must appear in at least one. Dispersal between patches is one

plausible mechanism for this tight coupling; movement of birds between patches

creates gene flow, known to homogenize allele frequencies in spatially structured

populations.

Steady state allele frequencies in both patches were most sensitive to fledging

probabilities of the maladaptive alleles, which is a measure of selection pressure.

Both patches had stronger response to the fledging probability of tolerant birds

in the uncontaminated patch (a positive relationship in both patches), although

because of overlapping confidence intervals we can not definitively conclude that se-

lection pressure in one patch has a stronger effect. This confirms our first prediction

that local selection pressure has a strong influence on allele frequencies. However,

our results also suggest local allele frequencies are sensitive to selection pressures

34



35

in distant patches. Stated differently, local selection pressure has global effect. This

supports the above observation that allele frequencies in the two patches are tightly

coupled; local selection pressure strongly affects allele frequencies locally but also

in neighboring patches.

Local selection pressure also had a strong, significant effect on reproductive

output in each patch. In both patches, selection pressure in the neighboring patch

had a much stronger effect than local selection pressure. This result is counterin-

tuitive; one would expect that local selection pressures should control fitness, not

distant ones. This may further support the conclusion that the allele frequencies

are very tightly coupled by gene flow. Another surprising result is that strength

of selection pressure has a different relationship with fitness in each patch; lower

selection pressure in the contaminated patch correlates with higher local fitness,

but lower selection pressure in the uncontaminated patch leads to lower fitness.

Perhaps this is due to the fact that in half of trials, the contaminated patch still

had near fixation of the wild type allele, and thus an increase in fledging proba-

bility for wild type birds would increase overall fitness. The relationship between

maladaptive fledging probability and the weighted total fitness was positive, and

stronger than all other correlations other than life history traits. This suggests that

selection pressure is the strongest influence on reproductive output in a two-patch

landscape.

Dispersal likelihood α also had significant partial rank correlation with tol-

erance allele frequencies in both patches. This relationship was negative in both

patches, suggesting that as barriers to dispersal increase, frequency of the toler-

ance allele decreases in both patches. We expected with our third prediction that

increasing α would decrease tolerance in the contaminated patch but increase it in

the contaminated patch; thus our prediction was only partially supported. The ι

parameter did not have a significant effect on allele frequencies, meaning that the

rate of nest overturning and vigor of competition for nests likely does not affect al-

lele frequencies. Our prediction about the relationship between α and within patch

fitnesses was also only partially supported, as increasing barriers to dispersal in-

creased fitness in the uncontaminated patch but not the contaminated patch. This

suggests that the mechanism that motivated our third prediction, easier dispersal

between patches introducing maladaptation and reducing fitness, is not evident in

our model. Existing literature shows instances where increasing gene flow increases

population fitness by adding needed variation to the gene pool and avoiding in-

breeding depression, but this explanation does not work for model, as we examine

only a single allele and have no inbreeding depression effects in our model.

The only life history trait that has a statistically significant influence on al-

lele frequencies is the fecundity of subadults, a positive relationship. There is no
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intuitive reason for why fecundity of subadults would have the greatest effect on

allele frequencies; perhaps a life-cycle sensitivity analysis could provide insight into

the crucial role of subadult birth in population dynamics [8]. Additionally, density

dependence d had no significant effect on allele frequency, population size, or gene

flow in any patch, although it did have a significant effect on net gene flow into

the contaminated patch. Gene flow is sensitive to life history parameters, although

in several cases the relationship is negative. This is the opposite relationship of

the one expected in our fourth prediction, suggesting that gene flow decreases as

fecundity or survivorship probability decreases. Perhaps this is because higher fe-

cundity or survivorship does not directly lead to a higher floater population; this

would make sense if selection pressure was so strong that created open nests at a

rate faster than could be filled by reproducing birds. However, the fact that there

is still non-zero gene flow at equilibrium in many trials suggests that there is still

movement between populations, indicating that there is a class of floaters and that

all nests in at least one patch are full. This question needs more consideration.

Gene flow did correlate with allele frequencies, although the strength of corre-

lation was much stronger in the uncontaminated patch than in the contaminated

one. Correlation with fitness was also present, and made intuitive sense: increases

in gene flow mean an influx of maladaptive alleles. This validates our second predic-

tion, although only weakly. Asymmetrical migration has been referenced in several

studies as a threat to viability and a homogenizing force [4][5][21][39]. We found

that asymmetrical gene flow did have a strong significant relationship with allele

frequencies and fitnesses in each patch. This supports our fifth prediction that

asymmetrical migration into a patch increases maladaptation in that patch. How-

ever, the mechanism for creating asymmetrical gene flow is not easily evident: the

only parameter that gene flow asymmetry is sensitive to is density dependence.

If there was evidence that more floaters led to more gene flow, then a density

dependence relationship could provide a logical mechanism for creating gene flow

asymmetry through source-sink dynamics. For example, larger values of d in a

source patch could mean more floaters which then occupy open territories in the

sink habitat. However, since this model found no direct tie between floaters and

population growth and gene flow, we are unable to draw that conclusion at this

time. Surprisingly, the size of the uncontaminated population φu did not have a

significant correlation on net gene flow. Patch size alone, then, can not determine

the steady state of populations and allele frequencies in the whole population.

Although not as strong as the coupling of allele frequencies, population sizes

showed a strong correlation. In nearly all instances, populations in at least one

patch fell below analytical steady state, suggesting population reduction are in-

evitable with the introduction of a contaminant. However, complete population
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crashes were rare, representing only 5% of all trials. In some of these instances of

population crash, reproductive output was above 1, suggesting that R′ < 1 for a

patch (or the whole population) is not a sufficient condition for population crash.

This suggests that there may be unseen source-sink dynamics in the model.

4.2 Future Work

Future work on this model could benefit from more biologically relevant data. Some

data from zebra finches were used for selection pressures, but other data points

were arbitrarily chosen, as were the ranges of parameters tested in latin hypercube

sampling. It is possible that lack of variation in output exists because the parameter

range sampled was not wide enough to capture different dynamics. Field work with

attention devoted to a single species could provide a reliable dataset for future

analysis and application of the model.

This model observes only steady-state dynamics of contaminated populations.

This means that valuable information about population dynamics while the pop-

ulation is changing are lost. For example, observations of a small set of randomly

chosen trials showed that in all instances observed, the contaminated patch sub-

population experienced a very sharp dip in the first time steps of the model, then

slowly climbed back to its new steady state. Information about the minimum pop-

ulation size shown could be valuable, especially for future studies that account

for genetic drift and stochastic effects which could bring a subpopulation to ex-

tinction. Information about the time until fixation could also be of importance for

handling legacy contaminants, like those in the Shenandoah. Knowing how far into

the process of recovery a population is may allow one to assess how close to a new

steady state a population is.

Incorporation of more aspects of source-sink dynamics would improve this

study; source-sink analysis has already been applied to mercury contamination

of frogs in the Shenandoah [40]. Categorizing populations as sources or sinks re-

quires some parameter or process with a threshold value above which a population

is a source or below which a population is a sink. It would make sense that R′ acts

as a sufficient parameter for this, but the fact that a subpopulation can crash in

some instances where R′ > 1 implies that another parameter, perhaps somehow

related to reproductive output, could be used for this threshold.

Finally, more complicated landscapes can be translated into patch networks

and studied in depth. We saw homogenization of allele frequencies and, to a lesser

extent, populations in a simple two-patch case. However, even the addition of a

third patch can introduce can introduce different landscape topologies; studies of

processes such as dispersal and adaptation have been studied on three-patch land-
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scapes and found that even at this simple level, different patch configurations can

lead to different outcomes [34] [42]. Including more patches and then varying land-

scape configurations would create another interesting input variable for sensitivity

analysis.

4.3 Conclusion

In a model of spread of an allele for tolerance to an environmental contaminant,

allele frequency and reproductive output were observed to correlate most with

strength of selection and asymmetry of migration. These correlations support hy-

potheses and prior research on causes of migration load and population differen-

tiation. Other, weaker correlations were also observed, but did not support our

predictions, and more research is needed to validate their significance and tie them

back to biological mechanisms. Several other predictions about relationships be-

tween parameters and response variables were not observed. In a two-patch simula-

tion, allele frequencies in each patch were tightly coupled, suggesting there is some

homogenizing process preventing divergence of allele frequencies. Population sizes

of each patch also showed coupling, although not as tight. This demonstrates that

local dynamics and processes can have strong effects on distant subpopulations.
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