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Gymnura complex from the western North Atlantic (ATL), Gulf of Mexico (GOM), and 

Suriname (SUR – including Venezuela and French Guiana). The first canonical axis (CA1) 

and CA2 accounted for 78% and 22% of the variation explained, respectively, and LNC and 

SP contributed most to differences between geographic regions (a) and individual variability 

(b). The proportion of variation explained without LNC was 71% and 29% for CA1 and CA2, 

respectively, and significant regional separation of specimens was retained by the remaining 

nine characters (c, d) 

Figure 5. Majority rule bootstrap consensus tree of mitochondrial ND2 sequences for 67 taxa, 

including the outgroup shark Carcharhinus plumbeus. Specimen localities are abbreviated: 

DE – Delaware; VA – Virginia; SC – South Carolina; GA – Georgia; FL – Florida; AL – 

Alabama; MS – Mississippi; TX – Texas; SUR – Suriname; GAB – Gabon; SEN – Senegal; 

WNA – western North Atlantic; EP – East Pacific. Data from GenBank indicated by * 

Figure 6. Majority rule bootstrap consensus tree of nuclear RAG-1 sequences for 27 taxa, 

including the outgroup shark Squalus acanthias. Specimen localities are abbreviated: VA – 

Virginia; GA – Georgia; FL – Florida; AL – Alabama; TX – Texas; SUR – Suriname; GAB – 

Gabon; EP – East Pacific. Data from GenBank indicated by * 

Figure 7. Median joining haplotype networks of mitochondrial ND2 (a) and nuclear RAG-1 (b) 

sequences from western North Atlantic (red), Gulf of Mexico (green), Suriname (purple), and 

Gabon (yellow) specimens of the Gymnura complex. Branch lengths correspond to the 

magnitude of genetic divergence between sequences, and hash marks indicate the number of 

nucleotide differences. Specimen locality abbreviations are provided in Figure 5 

Figure 8. Dorsal (A) and ventral (B) view of Gymnura micrura neotype USNM 440357, adult 

male 330 mm DW, Suriname, South America 

Figure 9. Dorsal (A) and ventral (B) view of Gymnura micrura paratype USNM 440356, adult 

female, 582 mm DW, Suriname, South America 
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Figure 10. Dorsal (A) and ventral (B) view of Gymnura n. sp. A holotype USNM 440358, adult 

male 406 mm DW, North Carolina, USA 

Figure 11. Dorsal (A) and ventral (B) view of Gymnura n. sp. A paratype USNM 440359, adult 

female, 638 mm DW, Georgia, USA 

Figure 12. Dorsal (A) and ventral (B) view of Gymnura n. sp. B holotype USNM 440360, adult 

male, 331 mm DW, Florida, USA 

Figure 13. Dorsal (A) and ventral (B) view of Gymnura n. sp. B paratype USNM USNM 440361, 

adult female 694 mm DW, Alabama, USA 

Figure 14. Variation in disk coloration and patterns between (a) juvenile male Gymnura n. sp. A, 

Florida east coast (b) juvenile female Gulf of Mexico G. n. sp. B, Florida west coast, and (c) 

juvenile male G. n. sp. B, Alabama 

Figure 15. Variation in tail morphology and coloration 

Figure 16. Dorsal (a) and ventral (b) view of mature male G. sp. A voucher from the eastern 

Atlantic, Gabon, Africa 
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DISSERTATION ABSTRACT 
 

Batoid fishes are among the most threatened and least understood chondrichthyan species 
worldwide due to their large body size, conservative life-history characteristics, and 
predominantly coastal distributions where fishing and habitat degradation threaten the stability of 
populations. A lack of empirical life history data is widespread across batoid taxa — nearly half 
of all species are considered data deficient, thus hindering species assessments and the 
development of effective management strategies. Furthermore, many batoid taxa are in need of 
taxonomic re-examination. Increasing our understanding of life history traits that determine 
population productivity, such as age and size at maturity, growth rate, and fecundity is 
prerequisite to examining the potential for populations to increase or stabilize in response to 
fishing mortality.  

The Butterfly Rays (Myliobatiformes: Gymnuridae) are comprised of 10 globally 
distributed species that inhabit shallow coastal regions and are commonly caught in benthic 
fishing gears targeting commercially valuable species. Two species are recognized in the western 
Atlantic: the Spiny Butterfly ray, Gymnura altavela (Linnaeus 1758), and the Smooth Butterfly 
Ray, G. micrura (Bloch & Schneider 1801). Previous life history studies on U.S. Butterfly Rays 
were often spatially and temporally limited, which may bias conclusions due to 
underrepresentation of some life stages, and lead to inaccurate biological characterizations. 
Furthermore, sexual dimorphism and ontogenetic variability in body shape, and inter- and 
intraspecific inconsistencies in taxonomic characters (e.g., disk coloration, tail banding patterns) 
have contributed to substantial taxonomic confusion in the Gymnuridae.  

To address knowledge gaps in the life history and taxonomy of western Atlantic Butterfly 
Rays, this dissertation describes the age and growth of G. altavela, the reproductive biology of G. 
altavela and G. micrura, and the taxonomic status of G. micrura. The largest male and female G. 
altavela were estimated to be 11 and 18 yrs old, respectively. Disk width at maturity was 1278 
mm and 946 mm for male and female G. altavela, respectively, and was significantly greater in 
Atlantic G. micrura (male: 390 mm; female: 551 mm) than Gulf of Mexico G. micrura (male: 
298 mm; female: 448 mm). Maximum fecundity was seven in G. altavela, and ranged from six to 
12 in G. micrura from the Atlantic and Gulf of Mexico, respectively. Based on geographical 
variation in life history parameters, morphology, and genetics, a re-description and proposed 
neotype for G. micrura is presented, and two new species and holotypes are described from the 
Atlantic (Gymnura n. sp. A) and Gulf  of Mexico (Gymnura n. sp. B). In U.S. waters, Gymnura n. 
sp. A may be more vulnerable than Gymnura n. sp. B to indirect fishing mortality due to its larger 
size, potential later age at sexual maturity, and lower fecundity, since the probability of an 
individual encountering fishing gear before successfully reproducing is likely greater. This 
disseratation provides empirical support for the conservation and sustainable management of 
Atlantic Butterfly Rays. Careful consideration of species-specific taxonomy and biology is 
required to accurately assess the vulnerability of contemporary populations to extinction risk, and 
to document and maintain the true biodiversity of this taxon.



 
 

Age, Growth and Reproduction of Western North Atlantic Butterfly Rays (Myliobatiformes: 
Gymnuridae), with the Description of Two New Species  
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INTRODUCTION 
 

Background 
 

The chondrichthyan fishes comprise an estimated 1250 living species of sharks, skates, 

rays and their allies whose ancestors originated over 400 million years ago (Bräutigam et al., 

2015). The success of these cartilaginous fishes is demonstrated by the variety of aquatic 

ecosystems and niches in which they are foundhave adapted, from the coastal, pelagic, and deep 

realms of all oceans to estuaries, freshwater rivers, and inland lakes. Batoid fishes (skates, rays, 

guitarfishes, wedgefishes, and sawfishes) represent more than half of all described 

chondrichthyan species, yet remain poorly understood and include some of the world’s most 

threatened vertebrate species despite their evolutionary success (Bräutigam et al., 2015).  

Relative to teleostean fishes, batoid fishes generally grow more slowly, require several 

years to reach sexual maturity, and produce fewer offspring throughout their lifetime—traits that 

result in increased vulnerability of populations to depletion from overexploitation, bycatch, the 

degradation and loss of habitat, and climate change (Brander 1981; Dulvy & Reynolds, 2002; 

Simpfendorfer et al., 2011; Dulvy et al., 2014). Consequently, reported increases in global batoid 

landings have generated management and conservation concerns; thus improved monitoring of 

populations and a better understanding of the life history of taxa worldwide is urgently required 

(Sulikowski et al., 2005; Kyne et al., 2012; Mandelman et al. 2012; Dulvy et al, 2014). 
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The International Union for the Conservation of Nature (IUCN) Red List of Threatened 

Species found that nearly 20% of all batoid fishes are threatened with extinction 

(www.iucnredlist.org). Assessment of the extinction risk for these species is hindered by 

inadequate information, given that more than 45% of batoids that are considered ‘Data Deficient’. 

This deficiency presents major challenges for the development of effective management 

strategies (Dulvy et al., 2014). However, successful management and conservation of this group 

requires improved understanding of species-specific life history strategies, for which taxonomic 

clarity is a fundamental requirement. For many taxa, early species descriptions were often brief 

and did not fully account for ontogenetic, sexually dimorphic, or individual morphological 

variability, resulting in taxonomic confusion, misidentifications, and uncertainty in the status of 

many species. Collectively, the lack of knowledge for batoid fishes has implications that extend 

beyond the conservation concerns for this group. For example, in their ecological role as 

important mesopredators and prey that link upper and lower trophic levels, many batoid fishes 

contribute to the structure and dynamics of coastal ecosystems (Heithaus et al. 2010; Bornatowski 

et al. 2014), suggesting that stability and productivity of co-occurring ecologically and 

economically valuable fauna may be impacted by perturbations to batoid populations (Heithaus et 

al., 2008; Stevens et al., 2000). Improved understanding of the taxonomy, life history, and 

ecological role of batoid fishes is therefore essential for the assessment, management, and 

conservation of species facing increasing environmental and anthropogenic pressures that can 

influence the biodiversity and stability of aquatic ecosystems. To address the need for increased 

knowledge of batoid fishes, this dissertation presents an investigation into the life history and 

taxonomy of two western North Atlantic Butterfly Rays (Myliobatiformes: Gymnuridae, van 

Hasselt 1823). 

The Gymnuridae are globally distributed in warm temperate and tropical seas where they 

inhabit shallow coastal regions dominated by sandy and muddy substrates (McEachran & 

http://www.iucnredlist.org/
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Capapé, 1984; McEachran & Séret, 1990; Murdy et al., 2013; Last & Stevens, 2016). The family 

comprises one genus (Gymnura) containing 10 recognized species, and the Indo-West Pacific is 

the most species-rich region of its distribution (Jacobsen & Bennett, 2009; Last et al., 2016). 

Members of the Gymnuridae are distinguished from other rays by a rhomboid and highly dorso-

ventrally compressed body shape, in which the width of the disk is approximately twice the disk 

length, and by a short and slender tail that often has light and dark crossbars (Compagno & Last, 

1999; Last & Stevens, 2009). Although they are commonly described as benthic species, the 

Butterfly Rays are unique among other Myliobatiformes in their form of locomotion, and are 

capable of both undulatory and oscillatory swimming modes, typically linked to benthic and pelagic 

habitat use, respectively (Rosenberger, 2001). Diet studies have also revealed that the Gymnura 

are tertiary, piscivorous, and occupy one of the highest trophic levels (i.e. 4.24) of all batoid 

fishes examined (Raje 2003; Bizzarro 2005; Jacobsen & Bennett, 2013; Yokota et al., 2013). 

In the western North Atlantic, two species are recognized: the Spiny Butterfly Ray, 

Gymnura altavela (Linnaeus 1758), and the Smooth Butterfly Ray, G. micrura (Bloch & 

Schneider 1801). Both species are distributed from the U.S. Mid-Atlantic coast and Gulf of 

Mexico to the coast of Brazil (Robins & Ray, 1986; McEachran & de Carvalho, 2002; Last et al., 

2016), and are also reported from the western coast of Africa in the eastern Atlantic, in addition to 

the Mediterranean Sea where G. altavela can be found (McEachran & Séret, 1990; Ebert & 

Stehmann, 2013). Gymnura altavela is easily distinguished from G. micrura by a significantly 

larger adult body size, the presence of one or more tail spines, and a tentacle-like lobe on the 

margin of each spiracle (Last et al., 2016). Biological information on G. altavela and G. micrura, 

including diet, taxonomy, and reproduction has been reported in several studies (e.g., Daiber & 

Booth, 1960; Capape et al., 1992; Yokota et al., 2012; Alkusairy et al., 2014). Despite reported 

disk widths exceeding 2 m (Bini 1967; Schwartz 1984; Bigelow and Schroeder 1953), there is no 

information on age and growth for any species of Butterfly Ray, presumably due to difficulties 
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interpreting growth bands in their relatively small and poorly mineralized vertebral centra. 

Furthermore, previous investigations into other aspects of the life history of these gymnurid 

species were often spatially and temporally limited, which may bias conclusions due to 

underrepresentation of some life stages, and lead to inaccurate biological characterization and 

taxonomic confusion. Uncertainty in the taxonomic status of gymnurids remains problematic due 

to the lack of type material for some species. Consequently, taxonomic revision of the Gymnuridae 

and re-descriptions of most taxa are needed (Muktha et al., 2016; Jacobsen & Bennett, 2009; Smith 

et al., 2009).  

Gymnurids are incidentally caught in trawls and other benthic fishing gears targeting 

demersal species in U.S. waters, and high catches are common in some coastal and estuarine 

regions (Shepherd & Myers, 2005; Grubbs & Ha, 2006; K. Parsons, pers. obs.). In the western 

North Atlantic, Butterfly Rays are not considered species of commercial value, and therefore their 

populations are not managed or directly monitored. Both G. altavela and G. micrura are 

considered species of Least Concern in U.S. waters by the IUCN, although widespread population 

declines of G. altavela in other regions have resulted in a global status of ‘Vulnerable’, and the 

species is ‘Critically Endangered’ in the Mediterranean (Walls et al., 2016) and the Southwest 

Atlantic off Brazil (Vooren et al., 2007). All G. micrura populations are considered ‘Data 

Deficient’, and accurate assessments of catches throughout the geographical range of the species 

are needed (Grubbs & Ha, 2006). 

 

Dissertation Rationale and Summary 
 

 The Mid-Atlantic Bight encompasses coastal areas that are well sampled by VIMS 

fishery-independent survey programs, and catch data imply the potential importance of this area 

to a large community of at least 13 batoid species, one quarter of which are classified as ‘Data 
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Deficient’ by the IUCN. Survey programs provide a valuable platform for the collection of 

species-specific data on the taxonomy, life history, abundance, and distribution of batoid 

species. Monitoring and assessment of the majority of batoid species is, however, not a priority 

for most programs, resulting in poor or non-existent data on batoid populations relative to other 

invertebrates, teleosteans, chondrichthyans, and sea turtles. To address the clear need for 

improved data collection and analysis in order to better understand the status and role of batoid 

species in coastal ecosystems of the western North Atlantic, I focused my dissertation research on 

two sympatric species of Gymnura that are common in the Mid-Atlantic Bight: Gymnura altavela 

and G. micrura. Given that the ranges of distribution for both species extend far beyond the Mid-

Atlantic Bight, it was essential to collaborate with 11 survey programs from Massachusetts to 

Texas to access specimens representative of the populations in U.S. waters. More than 650 

specimens of Gymnura were collected through this effort with the primary goal to identify key 

life history parameters that can be used to assess the status and vulnerability of U.S. populations. 

In Chapters 1 and 2, I address knowledge gaps in the biology and life history of Gymnura with 

the following objectives: (1) determine the age of G. altavela from vertebrae using High 

Resolution X-ray Computed Tomography; (2) describe growth patterns and estimate key growth 

parameters for this species; and (3) describe sexual dimorphism and variation in the size at 

reproductive maturity, reproductive anatomy, periodicity, and fecundity of G. altavela and G. 

micrura. Latitudinal and regional variation in the life history of G. micrura revealed in Chapter 2 

raised concerns for the status of the species, thus providing the foundation and motivation for 

Chapter 3, with the aim to clarify the taxonomic uncertainty of G. micrura based on morphological, 

molecular, and life history data. To achieve this objective, data from fresh specimens collected for 

Chapter 2 were augmented with data from nearly 300 preserved specimens of Gymnura that 

represented nine of the 10 valid species from 28 countries held in the collections of the National 



6 
 

Museum of Natural History, Smithsonian Institution, Washington, D.C. (USNM), the Harvard 

University Museum of Comparative Zoology, Cambridge, MA (MCZ), the Field Museum, 

Chicago, IL (FMNH), the Florida Museum of Natural History, Gainesville, FL (FLMNH), and 

the Muséum National d'Histoire Naturelle, Paris, France (MNHN). Taxonomic evaluation of G. 

micura was also dependent on morphometric and molecular comparisons between U.S. 

specimens and those from the type locality (i.e. Suriname) for the species, since a holotype was 

not documented when the species was originally described by Bloch & Schneider in 1801. 

Accordingly, I embarked on an expedition to the northern coast of South America to acquire 

specimens from Suriname. Data from the type-locality specimens proved to be invaluable, 

necessitating the transformation of Chapter 3 from a taxonomic evaluation of G. micrura to a re-

description of the species from Suriname, and the description of two new species of Butterfly Ray 

in the western Atlantic.         

 In summary, the impetus driving my research questions was the paucity of the most basic 

biological information for two common, but poorly understood, Butterfly Ray species in the 

western North Atlantic. Through numerous collaborations with a variety of fishery-independent 

and dependent operations, laboratories, and museum collections, the studies detailed in this 

dissertation: (1) address important knowledge gaps in our understanding of the Gymnuridae; (2) 

reveal discoveries that redefine the global biodiversity of the taxon and the regional biodiversity 

of fauna in western Atlantic marine ecosystems; (3) identify areas of focus for future research on 

Butterfly Rays, and (4) provide motivation for increasing efforts to monitor and assess batoid 

populations in U.S. waters.  
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Abstract  
 

Life history strategies of batoid fishes have evolved within dynamic marine ecosystems. 

Adaptations in reproductive and developmental biology are paramount to the survival of species, 

and therefore knowledge of growth rates to maturity is fundamental for identifying constraints on 

the conservation of populations. The butterfly rays (Myliobatiformes: Gymnuridae) are highly 

derived batoids with generally low reproductive potentials for which age and growth information 

remains unknown. In this study we applied high-resolution X-ray computed tomography 

(HRXCT) to vertebral centra from a myliobatiform for the first time to estimate age, and used a 

multimodel approach to investigate growth of spiny butterfly ray, Gymnura altavela. Estimated 

ages of the oldest male and female were 11 and 18 yrs at disk widths (WD) 1355 mm and 2150 

mm, respectively. Disk width-at-age data were analyzed using three growth models (von 

Bertalanffy, logistic, Gompertz), and the most parsimonious and empirically supported model 

was the logistic function with sex treated as a fixed effect on asymptotic disk width (WD∞) and k 

parameters. Growth model parameter estimates were (males) WD∞ = 1285.46 ± 67.27 mm, k = 

0.60 ± 0.10, and (females) WD∞ = 2173.51 ± 129.78 mm, k = 0.27 ± 0.04. Results indicated 

sexually dimorphic growth patterns, with males growing faster and reaching asymptotic size at 

earlier ages than females. These age and growth results for G. altavela represent the first such 

study for the genus, and suggest that this species grows at a similar rate as many teleosts and 

some batoids, which is relatively fast among other chondrichthyans.   

 

Key words Myliobatiformes, Gymnuridae, growth coefficient, HRXCT, logistic growth model 
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Introduction 

 

Batoids (Chondrichthyes: Batoidea) are a cosmopolitan group of skates and rays for 

which life history traits remain largely unknown relative to other chondrichthyans and teleosts. 

Many marine batoids inhabit coastal ecosystems, from shallow estuarine to shelf waters, where 

their characteristic dorso-ventrally flattened body shapes are adapted to benthic habitats that 

support diverse prey types such as mollusks, crustaceans, polychaetes, and fishes (McEachran 

and Dunn 1998; Ebert and Bizzarro 2007; Ebert and Stehmann 2013). Although commercial U.S. 

fisheries do not target rays, overlapping distributions with fishes of economic importance results 

in their incidental catch (bycatch) in demersal fisheries (Brander 1981; Stevens et al. 2005; 

Tamini et al. 2006). In general, low value bycatch is unregulated, poorly monitored, and 

discarded at sea, impeding evaluation of species-specific landings data and the potential impacts 

on populations. Common effects of fishing include alterations to the size and age structure of 

populations that may induce compensatory changes in demographic rates (Walker and Hessen 

1996; Walker and Hislop 1998; Frisk et al. 2008; Romine et al. 2013). Nearly 20 % of batoid 

fishes are threatened with extinction according to The International Union for the Conservation of 

Nature (IUCN) Red List of Threatened Species (www.iucnredlist.org), and 45 % of species are 

considered ‘Data Deficient’ due to inadequate life history information, presenting major 

challenges for the development of effective management strategies (Dulvy et al., 2014). 

Consequently, reported increases in global batoid landings have generated management and 

conservation concerns, highlighting the need for improved monitoring of populations and a better 

understanding of the life history of these taxa worldwide (Simpfendorfer et al. 2011; Mandelman 

et al. 2012; Dulvy et al. 2014). 

In general, large-bodied batoids tend to grow more slowly, live longer, and produce fewer 

offspring than smaller species, and females grow larger and at a slower rate than males (Frisk 

2010; Fisher et al. 2013). Life history traits that are characteristic of most batoids and other 

http://www.iucnredlist.org/
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chondrichthyans lead to increased vulnerability of populations to depletion from overexploitation 

(Hoenig and Gruber 1990), particularly species with large maximum sizes (Dulvy et al. 2000; 

Dulvy et al. 2014). As both mesopredators and prey that link upper and lower trophic levels, 

skates and rays may also play important ecological roles in the structure and dynamics of coastal 

ecosystems (e.g., Murawski 1991; Heithaus et al. 2010; Bornatowski et al. 2014). Thus, 

perturbations to coastal batoid populations may also impact the stability and productivity of co-

occurring species of ecological and economical value. Improved understanding of size-at-age and 

growth patterns in batoid fishes is prerequisite to assessing the status of populations and 

evaluating changes in demographics over time.      

The spiny butterfly ray Gymnura altavela (Linneaus, 1758) is a large coastal stingray 

(Myliobatiformes) with an amphi-Atlantic and Mediterranean distribution, inhabiting sandy and 

muddy substrates of western North Atlantic waters from Massachusetts to Florida (McEachran 

and Capapé 1984; Robins and Ray 1986; McEachran and Séret 1990; McEachran and de Carvalho 

2002). Descriptions of the species in U.S. waters are restricted to spatially- and temporally-

limited studies from which few life history parameters have been estimated, despite reported 

geographical variability in their maximum and maturity sizes, and low (< 10 yr-1) uterine 

fecundity (Bigelow and Schroeder 1953; Daiber and Booth 1960; Schwartz 1984; Capapé et al. 

1992; Henningsen 1996). While it is not targeted by U.S. fisheries, G. altavela may be commonly 

captured and discarded in demersal trawling operations that occur where densities are high. The 

impact of fishing pressure on post-release survival of this species remains unknown, which 

greatly limits assessments and inferences regarding population status. Threats to the U.S. 

population are classified as Least Concern by the International Union for Conservation of Nature 

(IUCN) (https://www.iucn.org), although G. altavela is considered globally Vulnerable due to 

population declines observed in the Southwest Atlantic and West Africa, and is Critically 

Endangered off the coast of Brazil and in the Mediterranean (Vooren et al. 2007; Walls et al. 

https://www.iucn.org/
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2016). Reliable life history information including age and growth estimates are needed for 

improved vulnerability assessments of western North Atlantic populations of G. altavela.  

Batoid vertebral centra offer a measure of somatic growth through the mineralization of 

nutrients and deposition of growth bands over time (Ridewood 1921). These structures have been 

used to estimate age and evaluate growth of several taxa within the order Myliobatiformes, 

including the Dasyatidae (Ismen 2003; Jacobsen and Bennett 2010, 2011; O’Shea et al. 2013), 

Myliobatidae (Martin and Cailliet 1988), Platyrhinidae (Kume et al. 2008), Rhinopteridae (Smith 

and Merriner 1987; Neer and Thompson 2005; Fisher et al. 2013), Urolophidae (White et al. 

2001, 2002), Urotrygonidae (Mejía-Falla et al. 2014), and Rhinobatidae (White et al. 2014). 

Despite reported disk widths exceeding 2 m (Bini 1967; Schwartz 1984; Bigelow and Schroeder 

1953), there is no information on age and growth for any species of butterfly ray (Gymnuridae), 

presumably due to difficulties interpreting growth bands in the relatively small and poorly 

mineralized centra. To provide fundamental age and growth information, there is a need for 

alternative approaches to the examination of vertebral centra for which conventional methods 

remain inadequate.  

Recent advances in high-resolution X-ray computed tomography (CT) scanning at the 

microscopic scale (i.e., HRXCT) provide fine-scale three-dimensional models that can be 

digitally sectioned to reveal the micro-structure of soft and hard tissues, and offer a valid and 

repeatable method for the analysis of calcified vertebral morphology to estimate age in 

chondrichthyans (e.g., Geraghty et al. 2012). CT scanning offers a non-destructive alternative to 

traditional chondrichthyan ageing methods (i.e., serial sectioning of vertebrae). Broadly applied 

to the study of systematic morphology of vertebrates, CT scanning has become a valuable tool for 

detailed examination of both fossil (Schultze and Cloutier 1991; Maisey 2001a; Witmer et al. 

2008) and extant vertebrates including chondrichthyans (Maisey 2001b; Maisey 2004; Hilton et 

al. 2015; Moyer et al. 2015). The present study applies HRXCT methods to Gymnura vertebral 

centra to determine the age of 49 western North Atlantic G. altavela. Age estimates were then 
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used to describe growth patterns and provide key growth parameters for this population. Sex-

specific weight-at-length relationships were also examined in 119 specimens collected over a 

four-year period from multiple fishery-independent surveys along the U.S. Atlantic coast. The 

novel application of HRXCT methods presented here is broadly applicable to other 

chondrichthyans with poorly mineralized vertebrae for which age information is needed for stock 

assessments. Results from this study are intended to augment life history knowledge of G. 

altavela for improved assessment of the western North Atlantic population. 

 

Materials and methods 

 

Sample collection and HRXCT analysis 

 

Specimens of G. altavela were collected between 2012 and 2016 from fishery-

independent trawl and longline surveys of shelf waters in the U.S. western North Atlantic (Fig. 

1). Individuals were sexed, measured, and dissected in the field or stored frozen for laboratory 

processing. Disk width (WD) and disk length (LD) were measured to the nearest mm, and 

individuals were weighed (W) to the nearest 0.1 g. Complete vertebral columns from the 

synarcual cartilage to the tail tip were excised from specimens and stored frozen for age analysis. 

Vertebral columns were later thawed and soaked in hot water for 10 to 15 minutes to enable 

removal of soft tissues and disarticulation of centra. To identify which centra were ideal for age 

analysis, a pilot study using a subsample of vertebral columns from seven males (n=3 mature, 4 

immature) and eight females (n=3 mature, 5 immature) was conducted. Vertebral columns were 

completely disarticulated, and each centrum was enumerated and air-dried. Dried whole centrum 

diameter (CD) was measured to the nearest 0.1 mm, and the CD coefficient of variation was 

calculated for every set of five vertebrae. Variation was smallest among precaudal vertebrae, and 

centrum numbers 35-40 were the largest across all life stages of both sexes with the exception of 
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one young-of-year female. Based on these observations, one precaudal centrum between numbers 

35 and 40 was selected from the posteriormost abdominal region of 49 specimens and preserved 

in 70 % ethanol for age analysis (Fig. 2a). 

Whole G. altavela centra were air dried and imaged with a Zeiss (formerly Xradia) 

MicroXCT 400 (https://www.zeiss.com/microscopy/int/x-ray.html) at The University of Texas 

High-Resolution X-ray Computed Tomography Facility. Scans were performed using a 

Hamamatsu X-ray source set to 70 kV/10 W. Three different protocols were used, yielding 

resolutions scaled to centrum size and usually accommodating multiple centra within a single 

scan. The largest centra were scanned using the 0.4X objective, acquiring 1441 views over 360 

degrees of rotation at 3s/view with a 0.35mm SiO2 X-ray prefilter, yielding 25.0 micron 

resolution. Medium-sized centra were also scanned using the 0.4X objective, at 4s/view and with 

distance between the X-ray source and detector set to yield 14.5 micron resolution. The smallest 

centra were scanned using the 4X objective and a 0.15 mm SiO2 X-ray prefilter at 1.75s/view, 

yielding 5.5 micron resolution. Depending on the antero-posterior thickness of the included 

centra, total number of slices ranged from 491 to 990 per scan (Fig. 2b). Image slices were 

rendered in three dimensions using the Amira (FEI) software program and visualized using false 

color to enhance centrum density variations (Fig. 2c–f). Virtual models of whole centra were 

inspected for structural quality using rotation and transparency controls (Fig. 2c–d). Each virtual 

centrum was sliced in half along the sagittal plane to assess internal anatomy and calcification 

patterns (Fig. 2e). A thin virtual section from the sagittal plane was then selected for age 

determination (Fig. 2f).  
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Statistical analyses 

 

The relationship between the weight and disk width of 119 individuals (nmale = 63, nfemale 

= 56) was estimated using the equation:  

 𝑊𝑖 =  𝛼𝑖𝑊𝐷𝑖
𝛽𝑖𝑒𝜀𝑖     (1) 

 

where for the ith individual (i = 1, 2, …, 119) αi is a constant, βi is allometric parameter, and ɛi is 

the multiplicative error term. Sexual dimorphism was examined by assuming: 

     �
𝛼𝑖
𝛽𝑖� = �

𝛾0𝛼 + 𝛾1𝛼  𝑆𝑒𝑥𝑖
𝛾0𝛽 + 𝛾1𝛽 𝑆𝑒𝑥𝑖

�              (2) 

where Sexi is a binary covariate representing the sex of the ith individual (male coded ‘0’, female 

coded ‘1’). Equation (2) implies the parameters (𝛾0𝛼 , 𝛾0𝛽 ) and sums (𝛾0𝛼 + 𝛾1𝛼 , 𝛾0𝛽 + 𝛾1𝛽) 

define the parameters in equation (1) for males and females, respectively (Kimura 2008). 

Regression assumptions from preliminary model fits were evaluated using histograms, QQ-plots, 

and visual inspection of residuals, and results supported a multiplicative error structure (Quinn 

and Deriso 1999). Accordingly, both sides of equation (1) were log transformed prior to model 

fitting. Ordinary least squares was used for estimation and four model parameterizations were 

considered: (1) no sex effect; (2) effect of sex on αi; (3) effect of sex on βi; and (4) effect of sex 

on both αi and βi. Model selection was determined by goodness-of-fit mean squared error (MSE) 

and Akaike’s information criterion (Akaike 1973; Burnham and Anderson 2002) corrected for 

small sample size (AICc; Zhu et al. 2009). Model-based predictions of weight-at-disk width were 

back transformed and bias corrected (Sprugel 1983). 

Growth band pairs were defined as one opaque and translucent band pair extending 

through the intermedialia (I) and into the corpus calcareum (CC; Casey et al. 1985; Brown and 

Gruber 1988). The first opaque band distal to the focus and associated with a change in the angle 
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of the CC was defined as the birth band (BB; age = 0 years), and annual deposition of band pairs 

in centra was assumed. Age was estimated by counting band pairs distal from the BB and 

extending from one arm of the CC, through the I and across the opposing CC arm (Fig. 3; Cailliet 

et al. 2006).  

Growth band pairs were counted on HRXCT digital sections prepared independently by 

two readers using Amira. All centrum images were read twice by each reader for training and 

fluency in growth band identification, followed by two blind independent readings to assign ages 

to each specimen, and readings were temporally separated by two weeks to reduce bias. 

Reproducibility of age determinations between and among readers was examined through age-

bias regression analysis (Campana et al. 1995), and systematic differences in age assignments 

were tested using Evans-Hoenig’s and Yates continuity corrected McNemar’s χ2 tests of 

symmetry (Bowker 1948; Hoenig et al. 1995; Evans and Hoenig 1998). Age assignment precision 

was evaluated by calculating within and between reader: 1) percent agreement:  

𝑃𝐴 =  𝑁𝑎
𝑁𝑟
∙ 100       (3) 

where Na and Nr represent the number of ages agreed upon and read, respectively; 2) coefficient 

of variation (CV; Chang 1982); and 3) index of average percent error (Beamish and Fournier 

1981):  

𝐼𝐴𝑃𝐸 =  1
𝑁
∑ �1

𝑅
∑ �|𝑎𝑖𝑗−𝑎𝑗|

𝑎𝑗
�𝑅

𝑖=1 � ×  100%𝑁
𝑗=1      (4) 

where aij is the ith age estimate for the jth individual, aj is the mean age calculated for the jth 

individual, N is the total number of individuals aged, and the number of times an individual was 

aged is represented by R. 

One HRXCT image slice from each centrum image stack was converted to a two-

dimensional 8-bit TIFF file, and linear measurements of the centrum radius (CR) from the focus 

to the marginal edge were obtained using the straight line selection tool in ImageJ 

(https://imagej.nih.gov/ij). A linear model was fitted to estimate the relationship between CR and 

https://imagej.nih.gov/ij
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WD using generalized least squares estimation.  Two forms were considered, one with and one 

without variance modeled as a power function of the mean (var(𝜀𝑖) = 𝜎2�𝑓(𝑥𝑖,𝛽)�2𝜃) to explore 

and accommodate heterogeneity (Ritz and Streibig 2008). AICc was used for model selection. 

Due to inadequate seasonal coverage of samples, marginal increment analysis could not be used 

to assess temporal periodicity in growth band formation.  

The relationship between disk width and age of G. altavela was investigated using 

multiple growth models fitted using nonlinear least squares (Thorson and Simpfendorfer 2009). 

Regression assumptions were evaluated using the graphical methods described above for the 

weight-at-disk analysis and diagnostics from preliminary model fits supported an additive error 

structure. Model classes considered included:  

von Bertalanffy (VBF1; Beverton and Holt 1957) 

𝑊𝐷𝑖 = 𝑊𝐷∞𝑖�1− 𝑒−𝑘𝑖(𝑡𝑖−𝑡0𝑖)� + 𝜀𝑖         (5) 

�
𝑊𝐷∞𝑖
𝑘𝑖

� = �
𝛽0𝑊𝐷 + 𝛽1𝑊𝐷∞  𝑆𝑒𝑥𝑖
𝛽0𝑘 + 𝛽1𝑘  𝑆𝑒𝑥𝑖

�           (6) 

 

Gompertz (GFF1; Quinn and Deriso, 1999) 

𝑊𝐷𝑖 = 𝑊𝐷∞𝑖𝑒−𝑒
−𝑘𝑖(𝑡𝑖−𝑡0𝑖) + 𝜀𝑖          (7) 

�
𝑊𝐷∞𝑖
𝑘𝑖
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𝛽0𝑊𝐷 + 𝛽1𝑊𝐷∞  𝑆𝑒𝑥𝑖
𝛽0𝑘 + 𝛽1𝑘  𝑆𝑒𝑥𝑖

�    (8) 

 

and logistic function (LGF1; Ricker 1979) 

𝑊𝐷𝑖 =  𝑊𝐷∞𝑖
1+ 𝑒𝑏𝑖−𝑘𝑖𝑡𝑖

+ 𝜀𝑖     (9) 
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𝛽0𝑘 + 𝛽1𝑘  𝑆𝑒𝑥𝑖

�    (10) 
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where for the ith individual (i = 1, 2, …, 49), WDi is disk width, WD∞i is theoretical asymptotic 

disk width, ki is the instantaneous growth coefficient, bi is a constant (logistic model), ti is age, t0i 

is the theoretical age at zero disk width (von Bertalanffy, Gompertz models), ɛi is an additive 

error term, and Sexi is a binary covariate coded as described above for the weight-at-disk width 

analysis (Kimura 2008). For each growth function, model parameterizations considered included: 

(1) no sex effect; (2) effect of sex on WD∞i; (3) effect of sex on ki; and (4) effect of sex on both 

WD∞i and ki.  For the von Bertalanffy and Gompertz models, the latter three parameterizations 

were intended to explore sexual dimorphism under the parsimonious assumption that the 

theoretical size at zero disk width did not differ among sexes. For the logistic models, parsimony 

was again invoked by not including the effect of sex on bi. Parameter estimates for males were 

directly estimated, while parameters for females required summation of the baseline (i.e., male) 

estimate and the coefficient of the sex effect. Accordingly, standard errors for female parameter 

estimates were obtained using the delta method (Seber 1982). Size-at-birth (WD0) was calculated 

from the y-intercept of the model chosen for inference with standard errors estimated from the 

delta method. Model selection was based on biological plausibility and concordance of 𝑊𝐷0, 

𝑊𝐷∞, and k parameter estimates, goodness-of-fit (MSE), and AICc. All statistical analyses were 

conducted using R (R Development Core Team, 2016), and results were considered significant at 

α < 0.05 (where applicable). 

 

Results 

 

Gymnura altavela specimens used for the weight-at-disk width analysis ranged in size 

from 427 – 2150 mm WDFemale (0.56 – 80.26 kg WFemale) and 506 – 1365 mm WDMale (1.13 – 

25.50 kg WMale) (Table 1). Differences in the weight-at-disk width relationship among sexes was 

not empirically supported and was best described by a function of the form logW = log(2.78 × 

10-9 WD3.17) (Table 2; Fig. 4). A significant linear relationship between CR and WD was 
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described by the equation CR = 7.84WD – 2897.07 (α = -2897.07 ± 431.13; β = 7.84 ± 0.60; θ = 

0.98; ΔAICc = 38.82 between parameterizations with and without the variance function, which 

provided strong support for inclusion of the power of the mean model), and demonstrated that 

vertebral growth was proportional to body size (Fig. 5). Therefore, use of G. altavela centra for 

age analysis was appropriate.   

Reconstructed HRXCT vertebral centra from G. altavela revealed interpretable growth 

band pairs. Pre-birth bands were observed but not consistent in all centra, and the BB was 

associated with a change in CC angle, followed by a broad translucent band reflecting the first 

year of growth. Narrow OB and broad TB pairs were readily distinguishable across the I and both 

arms of the CC in digital sections, however, these tended to become compacted near the growth 

margin in larger individuals.  

Age estimates from the two readers did not differ systematically (Evans-Hoenig’s χ2 = 

2.29, P = 0.32; McNemar with Yates continuity correction χ2 = 1.84, P = 0.17). Percent agreement 

between readers increased from 60 % (IAPE = 5.88, CV = 8.32) during the first reading to 78 % 

(IAPE = 3.58, CV = 5.06) during the second reading (Fig. 6a). Within reader agreement was 90 

% (IAPE = 1.26, CV = 1.78, Fig. 6b) and 92 % (IAPE = 1.04, CV = 1.48) for reader A and B, 

respectively. Final ages were assigned to all specimens by consensus, and the oldest ages 

estimated were 18 years for a 2150 mm WDfemale, and 11 years for a 1355 mm WDmale (Table 1). 

 The most empirically supported disk width-at-age model was the logistic parameterized 

with the Sex covariate in both 𝑊𝐷∞  and 𝑘  (LGF4), which resulted in biologically plausible 

estimates of 𝑊𝐷∞ for males (1285.46 ± 67.27 mm) and females (2173.51 ± 129.78 mm) relative 

to observed sizes (1355 and 2150 mm, respectively) (Table 3, 4; Fig. 7). Predicted growth 

coefficients were kmale = 0.60 ± 0.10, kfemale = 0.27 ± 0.04, and b = 1.19 ± 0.12 (Table 4). Size-at-

birth calculated from the logistic parameter estimates was 300.80 ± 33.81 for males, 508.61 ± 

49.63 for females, and 404.70 ± 38.72 for the average across sexes. The smallest free-swimming 

individual observed was 496 mm. 
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Discussion  
 

 Findings from this study demonstrated the first successful application of HRXCT for 

ageing a large stingray species with relatively small (< 1.0 % WD), weakly calcified vertebral 

centra, and offer further support for the utility of this alternative method in chondrichthyan ageing 

studies. Furthermore, we provided the first known estimates of age and growth parameters in the 

Gymnuridae, advancing critical life history knowledge necessary for assessment of the U.S. 

western North Atlantic G. altavela population. The use of HRXCT-reconstructed models of 

vertebral centra for age estimation offers considerable advantages over manual sectioning and 

these have been reviewed by Geraghty et al. (2012). Most notably, vertebral centra are preserved 

whole and therefore available for comparative studies as new methods are developed with 

advances in technology, and users have unconstrained control over the manipulation (e.g., section 

thickness, transparency, contrast, perspective) of digital three-dimensional sections, improving 

the ability to identify and interpret growth bands. It is important, however, to establish a 

standardized protocol for the examination of virtual sections to ensure consistency between 

readers. The greatest disadvantage of this method is cost, which effectively limited the sample 

size in the present study. Recent efforts to provide open access to digital libraries of HRXCT-

scanned specimens (e.g., Digimorph, http://digimorph.org, Accessed: 27 February 2017) may 

improve future accessibility to this method for use in ageing studies.  

 Precision of age assignments between and within readers was generally high in the 

present study, with percent agreement between readers improving from 60 to 78 % between 

reading trials, and 92 % agreement within one year during both trials. Birth band determination 

was the greatest contributing factor to reader disagreement, followed by the presence of false 

bands and the compression of marginal bands in the largest individuals. Marginal increment ratios 

of centrum growth bands (not presented here) were inconclusive because specimens were 

http://digimorph.org/
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predominantly collected by surveys operating during autumn months, thus precluding the 

determination of seasonal periodicity in band pair formation. Consequently, ages reported here 

assume an annual deposition of growth bands, which is common in fish ageing studies (Okamura 

et al. 2013; Cailliet and Goldman 2004), and has been validated in other batoid species (e.g., 

Sulikowski et al. 2003; Jacobsen and Bennett 2010). Nevertheless, validation of annual 

deposition of growth bands is needed to verify age estimates for G. altavela.        

 Sexually-dimorphic changes are observed during ontogeny in G. altavela. Neonates are 

born at approximately the same size and shape, and increase in mass and width at similar rates 

during early life stages, irrespective of sex. Later, this species demonstrates sex-specific patterns 

in growth, with males reaching a smaller asymptotic size as females continue to increase in size 

over a longer lifespan. These results support previously reported sexual dimorphism for G. 

altavela (Bigelow and Schroeder 1953; Capape et al. 1992; Alkusairy et al. 2014), other 

gymnurids (Raje 2003; White and Dharmadi 2007; Jacobsen et al. 2009), and various other batoid 

species (Ismen 2003; Smith et al. 2007; Sulikowski et al., 2007). Individual mass increased at a 

greater rate than width during ontogeny, similar to weight-at-length relationships reported for 

other stingrays, including other species within the genus Gymnura (Cailliet and Goldman 2004; 

Neer and Thompson 2005; White and Dharmadi 2007; Yokota et al. 2012; Teixeira et al. 2016). 

The allometric parameter estimated for western North Atlantic G. altavela (β = 3.17 ± 0.04 S.E.) 

differed from the range of estimates most recently reported for the Mediterranean population (β = 

2.795 – 3.028), and may be explained by the smaller size range (300 – 1650 mm WD) of 

individuals examined from the eastern Atlantic (Başusta et al. 2012; Özbek et al. 2016), 

differences in maximum size, or variations in rates of growth, among other factors. 

Understanding intraspecific differences in weight-at-length relationships requires adequate 

ontogenetic and spatio-temporal coverage of a species (Froese 2006).  

To account for changes in rates of batoid growth across juvenile, maturing, and adult life 

stages, sigmoid functions including logistic and Gompertz growth models have increasingly been 
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utilized (e.g., Mollet et al. 2002; Dale and Holland 2012; White et al. 2014). However, Smart et 

al. (2016) found little evidence that sigmoid functions consistently perform better than von 

Bertalanffy growth models for chondrichthyans in general. Growth of G. altavela was best 

described by logistic and Gompertz models, with the former having the greatest statistical 

support, while less support was associated with von Bertalanffy models that estimated asymptotic 

size with low precision. The logistic growth model estimated biologically reasonable values of 

asymptotic size and size-at-birth observed in this and previous studies of western North Atlantic 

G. altavela (Bigelow and Schroeder 1953; Daiber and Booth 1960). Maximum size observed in 

the present study (2150 mm WD) is similar to the largest G. altavela (2170 mm WD) sampled 

from the same region prior to 1999 (Wigley et al. 2003), but smaller than 2600 mm WD reported 

by Schwartz (1984). In the western and eastern Mediterranean, smaller maximum sizes ranging 

from 1342 - 1650 mm WD are reported for this species (Capapé et al. 1992; Başusta et al. 2012; 

Alkusairy et al. 2014; Özbek et al. 2016). Consequently, there is uncertainty in the taxonomic 

status of G. altavela from U.S. and Mediterranean waters, and recent molecular evidence suggests 

that individuals from the coast of Senegal (type locality) may be genetically distinct from U.S. 

individuals (Naylor et al. 2012; Alkusairy et al. 2014). Thus, broader spatio-temporal sampling 

and taxonomic evaluation of eastern and western Atlantic populations are needed to better 

understand variation in the growth patterns of this species (Goldman 2005; Alkusairy et al. 2014).   

Growth model results from the present study may be widely applied to other batoid taxa 

to improve understanding of the life history strategies, ecology, and systematic relationships of 

this diverse group.  Sex-specific growth coefficients estimated by the logistic model for G. 

altavela (kmale = 0.60; kfemale = 0.27) were similar to values reported for both large-bodied (> 2400 

mm WD) rays, such as spinetail devilray (Mobula japonica; pooled sexes k = 0.28; Cuevas-

Zimbrón et al. 2012), and relatively small-bodied (< 1000 mm WD) species including western 

North Atlantic cownose ray (Rhinoptera bonasus; kmale = 0.26 – 0.27; kfemale = 0.19; Fisher et al. 

2013), eastern Pacific round stingray (Urotrygon rogersi; kmale = 0.65; kfemale = 0.22; Mejía-Falla 
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et al. 2014) and western Pacific fanray (Platyrhina sinensis; kmale = 0.56; kfemale = 0.28; Kume et 

al. 2008). Female gymnurids have a higher energy demand due to matrotrophy, likely resulting in 

their slower growth rates compared to males. Furthermore, the large body size of female G. 

altavela may impart an evolutionary advantage (e.g., larger offspring and higher fecundity) 

compared to most other batoids. Future investigations into stingray life history strategies across 

broad geographic scales are needed to identify key parameters (e.g., age at maturity and 

fecundity) for improved assessments of populations. 

Maternal provisioning of nutrients in butterfly rays results in extreme increases in organic 

matter between the egg and term embryo stages (Ranzi 1934), yielding relatively large-bodied 

neonates. Size-at-birth calculated from the logistic model parameter estimates was 405 mm WD 

for pooled sexes, 301 mm WD for males, and 509 mm WD for females. The smallest free-

swimming G. altavela observed during this study was 496 mm WD, while Wigley et al. (2003) 

reported a 200 mm WD specimen in the western North Atlantic; however, it is possible that this 

latter individual was an aborted embryo rather than a free-swimming neonate. Future 

investigations should focus on trends in energy allocation (including quantifying the magnitude of 

maternal provisioning over the course of gestation) and physiological responses to environmental 

influences (e.g., effect of seasonal temperature fluctuations on growth) during ontogeny for 

improved understanding of growth and longevity in this species.  

The present study provides the first known estimates of age and sex-specific growth 

patterns for any species of Gymnura, contributing to the sparse life history data available for 

western North Atlantic rays. Results from the present study suggest that G. altavela displays 

moderately fast rates of growth and average longevities relative to other ray species for which age 

and growth information is available, suggesting the potential for reduced vulnerability of the 

population to depletion from overexploitation relative to slower growing and longer lived taxa. 

However, certain life history traits are known to increase extinction risk (e.g., large body size, 

shallow-water residency, and low fecundity) (Dulvy et al. 2014), and may have contributed to the 
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depletion of stocks in the Mediterranean and southern portion of the western Atlantic. These 

factors emphasize the need for further monitoring of U.S. populations, as well as investigating the 

effects of non-target fisheries on post-release survival. Equally important initiatives to identify 

and preserve habitats essential for parturition and survival of early life stages of G. altavela 

should be included in the development of management strategies for the conservation of 

biodiversity and preservation of healthy ecosystems along the U.S. Atlantic coast. Collectively, 

such efforts rely on species-specific data, hence a taxonomic re-evaluation of G. altavela is 

recommended to delineate the species’ range of distribution and life history parameters, which is 

essential for predicting the vulnerability of populations.  
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Tables  
 

Table 1 Summary of western North Atlantic Gymnura altavela used for age assessment. Age groups not 

represented in this study were 3 – 6 and 14 – 17 for females, and 9 – 10 for males. Weight (W) summary 

statistics reported here are only for specimens that were aged. For the full weight-at-disk width (WD) 

analysis, WD and W ranges were: WDfemale 427 – 2150 mm; Wfemale 0.56 – 80.26 kg; WDmale 506 – 1365 

mm; Wmale 1.13 – 25.50 kg  

 

  

Age 
Group (n) 

Mean Disk 
Width (mm) 

Range Disk 
Width (mm) 

Mean Wet 
Weight (kg) 

Range Wet 
Weight (kg) 

Female 0 (2) 575.0 544-606 1.6 1.2-1.9 

 
1 (1) 680 

 
2.8 

 
 

2 (3) 621.7 600-639 1.8 1.5-2.1 

 
7 (3) 1387.3 1100-1670 17.7 11.3-24.2 

 
8 (2) 1602.5 1575-1630 37.3 34.8-39.7 

 
9 (2) 1892.5 1880-1905 64.0 58.0-70.0 

 
10 (2) 1862.5 1845-1880 66.5 65.1-68.0 

 
11 (3) 1592.3 1173-1867 49.8 49.0-50.6 

 
12 (1) 1780.0 

 
68.0 

 
 

13 (1) 2036.0 
 

76.8 
   18 (1) 2150.0   80.3   

Male 0 (1) 561.0 
 

1.5 
 

 
1 (2) 582.5 527-638 1.7 1.2-2.2 

 
2 (4) 631.8 565-690 2.1 1.5-2.7 

 
3 (2) 787.5 770-805 4.3 3.9-4.5 

 
4 (1) 965.0 

 
14.3 

 
 

5 (5) 1196.8 1080-1330 15.7 11.1-20.8 

 
6 (3) 1094.0 940-1200 13.5 12.8-14.2 

 
7 (8) 1225.9 1016-1348 19.3 10.4-25.5 

 
8 (1) 1110.0 

 
11.8 

   11 (1) 1360.0   20.4   
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Table 2 Number of parameters (p), mean squared error (MSE), AICc, ΔAICc, and parameter estimates ± 

standard errors for models fitted to western North Atlantic Gymnura altavela weight-at-disk width data. 

Model parameterizations were: (1) no covariate; (2) sex covariate on α; (3) sex covariate on β; and (4) 

sex covariate on α and β. The weight-at-disk width relationship was best described by Model 1 with 

parameter estimates: α = 2.54 × 10-9 ± 6.24 × 10-10, β = 3.18 ± 0.04 

Model p MSE AICc ∆AICc 

1 3 0.0272 -85.23 0.00 

2 4 0.0268 -84.43 0.80 

3 4 0.0268 -84.51 0.72 

4 5 0.0267 -82.61 2.62 
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Table 3 Number of model parameters (p), mean squared error (MSE × 104), corrected Akaike 

information criterion (AICc), and ΔAICc for 12 growth models fitted to western North Atlantic 

spiny butterfly ray disk width-at-age data. For each growth function, model parameterizations 

considered included (1) no sex effect, (2) effect of sex on WD∞i, (3) effect of sex on ki, and (4) 

effect of sex on both WD∞i and ki. Parameters estimated without the sex covariate are reported for 

pooled sexes. The most empirically supported model was the logistic (LGF4) with sexually 

dimorphic asymptotic disk width and growth coefficient parameters, and a shape parameter for 

pooled sexes 

 

Model   p MSE  AICc ΔAICc 

VBGF1 4 2.91 651.57 23.91 
VBGF2 5 1.95 634.52 6.85 
VBGF3 5 2.04 636.67 9.00 
VBGF4 6 1.85 634.42 6.75 
GGF1 4 2.74 648.67 21.01 
GGF2 5 1.85 631.97 4.31 
GGF3 5 1.89 633.05 5.38 
GGF4 6 1.80 633.14 5.48 
LGF1 4 2.66 647.24 19.58 
LGF2 5 1.85 631.89 4.23 
LGF3 5 1.88 632.79 5.13 
LGF4 6 1.61 627.66 0.00 
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Table 4 Parameter estimates ± standard errors from the most empirically supported growth model 

(LGF4) fitted to western North Atlantic spiny butterfly ray disk width-at-age data. Asymptotic 

disk width (WD∞) and the growth coefficient (k) parameters were modeled with a sex covariate, 

and the shape parameter (b) was modeled for pooled sexes. Disk width-at-birth (WD0) was 

derived from the parameter estimates of the LGF4 model. 

    WD∞ k b WD0 

LGF4 Pooled   1.19 ± 0.12 404.70 ± 38.72 

 Males 1285.46 ± 67.27 0.60 ± 0.10  300.80 ± 33.81 
  Females 2173.51 ± 129.78 0.27 ± 0.04   508.61 ± 49.63  
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Fig. 1 Map of sampling area and distribution of Gymnura altavela specimens collected for this 

study. Black circles indicate specimens used for age analysis 
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Fig. 2 Methods for vertebral centrum processing for HRXCT scanning, reconstruction, and 

ageing using Amira software. a Vertebral centrum (8.4 mm diameter, female 1905 mm WD) 

excised from vertebral column, ventral view; b examples of  slices from reconstructed CT scan of 

centrum in panel C, anterior (top) to medial (bottom); c profile view of false-colored HRXCT-

reconstructed whole centrum (8.8 mm diameter, female 1737 mm WD), anterior to right; d 

anterior view of whole centrum (9.6 mm diameter, female 1880 mm WD) adjusted for 

transparency and contrast to enhance growth band visualization; e sagittal plane view of centrum 

(2.1 mm diameter, female 639 mm WD); f sagittal section of centrum in panel C used for age 

analysis. Ant = anterior, pos = posterior, med = medial     
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Fig. 3 False-colored HRXCT-reconstructed vertebral centrum section (diameter = 8.8 mm) from 

female Gymnura altavela (1737 mm WD) estimated to be 11 years old. Centrum radius (CR), 

corpus calcareum (CC), and intermedialia (I) are indicated, and arrows mark the focus (F), birth 

band (BB), and transparent (TB) and opaque bands (OB) 
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Fig. 4 Weight-at-disk width relationship for (a) male (n = 63) and (b) female (n = 56) western 

North Atlantic Gymnura altavela 
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Fig. 5 Centrum radius-at-disk width linear relationship for western North Atlantic Gymnura 

altavela (n = 49)  
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Fig. 6 Age bias plots estimated by (a) reader A and (b) between readers A and B for western 

North Atlantic Gymnura altavela vertebral centra (n = 49). Sample size is indicated on the top 

axis 
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Fig. 7 Logistic growth model fit to disk width-at-age data for male (gray circles, dashed line, n = 

28) and female (black circles, solid line, n = 21) western North Atlantic Gymnura altavela  
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CHAPTER 3 

Aspects of Reproductive Biology in the Spiny Butterfly Ray (Gymnura altavela) and Smooth 
Butterfly Ray (Gymnura micrura) from the Western North Atlantic and Gulf of Mexico 
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Abstract 
 

The observed maximum disk width (WD) of Gymnura altavela was 2150 mm WDF and 

1365 mm WDM for females and males, respectively. Size at reproductive maturity in females 

(WD50F; 95% C.L.) was estimated to be 1278 mm (1088.0–1467.2), and males reached maturity at 

smaller sizes (946 mm WD50M; 837.9–1053.8). In the western North Atlantic, Gymnura micrura 

maximum size was 1029 mm WDF and 528 mm WDM, and 544 mm WDF and 364 mm WDM for 

individuals from the northern Gulf of Mexico. Size at maturity of females and males from the 

Atlantic population (551 mm WD50F; 526.7–574.5; 390 mm WD50M; 376.7–404.1) was significantly 

larger than maturity size estimated from the Gulf of Mexico (448 mm WD50F; 398.1–498.3; 298 

mm WD50M; 269.8–326.5). Maximum fecundity was seven in G. altavela, and ranged from six to 

12 in G. micrura from the Atlantic and Gulf of Mexico, respectively. Geographic variation in the 

reproductive biology of G. micrura suggests disparate capacities for production in U.S. waters. 

Thus, a regional-scale approach to the assessment of U.S. butterfly ray populations is 

recommended, and further investigation into the taxonomic status of the G. micrura throughout 

its distributional range is warranted. 

Keywords: Batoid, size-at-maturity, fecundity, matrotrophy histotrophy, trophonemata, gestation
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Introduction 
 

The butterfly rays (Myliobatiformes: Gymnuridae) are globally distributed in warm 

temperate and tropical seas (McEachran, 1982; Compagno et al., 1989; Last & Stevens, 2009) 

where they inhabit shallow coastal regions dominated by sandy and muddy substrates 

(McEachran & Capapé, 1984; McEachran & Séret, 1990). In the western North Atlantic, two 

species are recognized in U.S. waters: the spiny butterfly ray, Gymnura altavela (Linnaeus 1758), 

and the smooth butterfly ray, Gymnura micrura (Bloch & Schneider 1801). The geographical 

range of G. altavela extends along the U.S. coast from Massachusetts to Florida, with rare 

occurrences in the Gulf of Mexico (Robins & Ray, 1986; McEachran & Séret, 1990; McEachran 

& de Carvalho, 2002), while the reported distribution of G. micrura is from Maryland to Florida in 

the Atlantic and extends along the Gulf of Mexico coast from Florida to Texas (Smith, 1997). Both 

species are also reported from the southwestern and eastern Atlantic (McEachran & Séret, 1990; 

Ebert & Stehmann, 2013). Significantly larger adult body size, the presence of one or more tail 

spines, and a tentacle-like lobe on the margin of each spiracle easily distinguishes G. altavela 

from G. micrura.  

Biological information on G. altavela and G. micrura, including diet, taxonomy, and 

reproduction has been reported in several studies (e.g., Daiber & Booth, 1960; Capape et al., 

1992; Yokota et al., 2012; Alkusairy et al., 2014). However, investigations into the life history of 

gymnurid populations in U.S. waters were often spatially and temporally limited, which may bias 

conclusions due to underrepresentation of some life stages, and lead to inaccurate biological 
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characterization and taxonomic confusion. Consequently, aspects of the reproductive biology of 

G. altavela and G. micrura from the western North Atlantic, including size at maturity, fecundity, 

and periodicity of reproductive activity, remain fragmented (IUCN, 2013; Last & Stevens, 2009; 

Henningsen, 1996).  

Reproductive anatomy is largely conserved across batoid taxa. Males possess paired 

testes and external claspers, organs that support spermatogenesis, sperm transport and storage 

(Hamlett, 1999), and the female anatomy consists of paired ovaries, oviducts, oviducal glands, 

and uteri, although a variety of specializations relating particularly to uterine accommodation and 

nutritional support of embryos exists (Hamlett et al. 1985, 2005; Hamlett & Kobb, 1999). The 

Gymnuridae demonstrate lipid histotrophy, in which embryonic development is initially 

supported by yolk-sac nutrients, and followed by maternal supplementation of protein- and lipid-

rich histotroph secreted from uterine trophonemata, a matrotrophic strategy that results in a small 

number of large offspring (Wourms 1977, 1981; Hamlett & Kobb, 1999). Many elasmobranchs 

(sharks, skates, and rays) demonstrate slow growth to sexual maturation and relatively low 

fecundities, traits that increase intrinsic vulnerability of populations to depletion from 

overexploitation (Holden, 1973; Hoenig & Gruber, 1990; Simpfendorfer & Kyne, 2009). Changes 

in the age structure, length frequencies, and other demographic rates of batoid populations have 

been linked to fishing pressure (Brander, 1981; Walker & Hessen, 1996; Walker & Hislop, 1998; 

Oddone et al., 2005), and roughly 20% of species are threatened with extinction (Dulvy et al., 

2014). A lack of empirical life history data is widespread across chondrichthyans including 

batoids, of which nearly half (47.5%) of all species are classified as data deficient (Dulvy et al., 

2014), thus hindering the assessment of populations and development of management strategies. 

Gymnurids are incidentally caught in trawls and other benthic fishing gears targeting 

demersal species in U.S. waters, and high catches are not uncommon in some coastal and 
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estuarine regions (Shepherd & Myers, 2005; Grubbs & Ha, 2006; K. Parsons, pers. obs.). In the 

western North Atlantic, Gymnura are not considered species of commercial value, and therefore 

their populations are not managed or directly monitored. Both G. altavela and G. micrura are 

considered species of Least Concern in U.S. waters by the International Union for Conservation 

of Nature and Natural Resources (IUCN) (http://www.iucnredlist.org; Kyne et al., 2012). 

However, widespread population declines of G. altavela in other regions have resulted in a global 

status of Vulnerable, and the species is Critically Endangered in the Mediterranean (Walls et al., 

2016) and the Southwest Atlantic along the coast of Brazil (Vooren et al., 2007). All G. micrura 

populations are considered Data Deficient, and accurate assessments of catches throughout the 

geographical range of the species are needed (Grubbs & Ha, 2006). Increasing our understanding 

of batoid life history traits that determine population productivity, such as age and size at 

maturity, growth rate, fecundity, maximum size, and natural mortality, is a prerequisite for 

examining the potential for batoid populations to increase or stabilize in response to fishing 

mortality (Beverton & Holt, 1959; Pauly, 1980), and to rebuild stocks that may be overexploited.  

This study investigates the reproductive biology of western North Atlantic G. altavela 

and G. micrura through the examination of specimens collected from U.S. fishery-independent 

trawl surveys with the following objectives: 1) describe sexual dimorphism in body size (i.e., 

mass-at-disk width relationship, maximum size); 2) estimate spatio-temporal variation in 

reproductive anatomy (e.g., ovary and testis mass), condition (i.e., gonadosomatic and 

hepatosomatic indices), periodicity, and fecundity; 3) estimate size at reproductive maturity; and 

4) investigate maternal histotrophic supplementation to embryos by measuring changes in organic 

content throughout development of G. altavela. Results from this study address knowledge gaps 

in the life history of U.S. coastal batoid populations, and highlight the unique and spatio-

temporally variable reproductive strategies of G. micrura. 
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Materials and Methods 
 

Specimen collection 
 

Specimens of Gymnura altavela and G. micrura were collected for life history studies 

from various fishery-independent trawl surveys conducted between 2012 and 2016 (Fig. 1 and 

Table I). Specimen disk width (WD), disk length (LD), and total length (LT) was measured to the 

nearest mm, and individuals were weighed (M) to the nearest 0.001 kg and dissected or stored 

frozen for laboratory analysis. Dissections were conducted following a standardized protocol: 1) 

an incision was made at the cloacal opening and along the outer margin of the abdominal cavity 

to reveal the internal anatomy; 2) the liver was removed and weighed to the nearest g (ML); 3) 

reproductive organs were examined to determine maturity status, then removed and weighed to 

the nearest 0.1 g; and 5) total eviscerated mass was recorded to the nearest g. All samples were 

blotted dry prior to weighing.  

Characteristics of the reproductive system were recorded for all individuals to assign 

maturity status. Maturity status was determined by macroscopic examination of characters 

associated with sexual maturity in gymnurids, based on Yokota et al. (2012) (Table II and Fig. 2 

and Fig. 3). In females, the development of oocytes, oviducal glands, uteri width relative to 

oviducts, and uterine trophonemata was recorded. Diameters of the five largest ovarian oocytes 

(𝐷O1–𝐷O5) were measured from the left ovary in situ, and the left oviducal gland (DOG) was 

measured at its widest transverse diameter to the nearest 0.1 mm. Males were assessed by clasper 

length relative to the posterior margin of the pelvic fin, degree of clasper calcification (i.e., non-, 

partially-, fully-calcified), enlargement of left testis and lobe development, and the presence of 

sperm in seminal vesicles. Left and right testes (MTL, MTR) and ovaries (MOL, MOR) were weighed 

to the nearest 1.0 g.  
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Uterine contents from gravid females were collected throughout the study period in order 

to assess reproductive periodicity, fecundity, and gestation in G. altavela and G. micrura. Uterine 

eggs and embryos were enumerated and weighed to the nearest 0.001 g, and stored frozen for 

laboratory analysis of maternal provisioning changes throughout early development in G. 

altavela. Egg diameter (DE) and embryo disk width (WDE) were measured to the nearest 0.1 mm. 

Early-stage embryos had external yolk sacs (EYS) larger than the WD and open gill slits with 

external gill filaments [Fig. 4(a)]. Mid-stage embryos were characterized by EYS smaller than 

WDE and the absence of external gill filaments, and late-stage embryos had completely absorbed 

the EYS but visible remnants of the yolk stalk remained [Fig. 4(b) and (c)]. Full term embryos 

had only yolk scars present.  

Maternal provisioning of nutrients to developing embryos was evaluated in G. altavela to 

better describe and quantify the energetic cost of the matrotrophic reproductive strategy in this 

taxon as an exemplar for Gymnuridae. Energetic deficit of embryogenesis was determined by 

comparing ash-free dry mass of fertilized eggs and late-stage embryos to estimate change in 

organic content throughout gestation. Ash-free dry mass was obtained following a protocol based 

on Cotton et al. (2015). Samples were dried in aluminum trays at 60°C to constant weight, 

indicating removal of water content. Dried samples were transferred to a muffle furnace and 

heated for 4 hours at 150°C, then 12 hours each at 200, 250, 275, and 300°C. Temperatures were 

then increased to 350°C in 5° increments for 12 hours each. Samples were then incinerated at 

550°C for 72 hours. Remaining ash content was weighed to the nearest 0.001 g. Water content 

(wet mass - dry mass), inorganic content (ash mass), organic content (dry mass - ash mass), and 

percent increase in organic content from fertilized eggs to late-stage embryos were calculated. All 

protocols for sampling and euthanizing fish were approved by the College of William & Mary’s 

Institutional Animal Care and Use Committee. 
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Statistical analyses 
 

The relationship between mass (M) and disk width (WD) of G. micrura was analyzed 

using the allometric growth equation:  

(1) 

𝑀𝑖 =  𝛼𝑖𝑊𝐷𝑖
𝛽𝑖𝑒𝜀𝑖 

where for the ith individual αi is a constant (sometimes referred to as a condition factor), βi 

governs curvature, and 𝑒𝜀𝑖 is the multiplicative error term. Sexual dimorphism was examined by 

including a fixed-effects parameterization (Kimura 2008):   

�
𝛼𝑖
𝛽𝑖� = �

𝛾𝑂𝛼 + 𝛾1𝛼𝑆𝑒𝑥
𝛾𝑂𝛽 + 𝛾1𝛽𝑆𝑒𝑥

� 

where Sex is a binary covariate with intercept and slope parameters 𝛾0𝛼 and 𝛾0𝛽, respectively. 

Four parameterizations of the model were fitted using nonlinear least squares: (1) no sex effect, 

(2) effect of sex on αi, (3) effect of sex on βi, and (4) effect of sex on both αi and βi.  

Maturity status of G. altavela and G. micrura was categorized into three stages (Stage 1 = 

immature juvenile; Stage 2 = maturing subadult; Stage 3 = mature adult; Fig. 2). Maturity-at-size 

was analyzed using a binomial maturity classification (i.e., 0 = immature juveniles and subadults, 

1 = mature adults) and a binomial generalized linear model (McCullagh & Nelder, 1989): 

(2) 

                                                                  

𝑙𝑜𝑔𝑖𝑡(𝑝) =  𝛽0 + 𝛽1𝑊𝐷 + 𝛽2𝑆𝑒𝑥 
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 where p denotes the probability of being mature and the 𝛽𝑖’s are estimated parameters. Sizes of 

50% maturity (WD50) for males and females were calculated from estimated parameters and the 

associated 95% confidence intervals were calculated using the delta method (Seber 1982).   

Differences between the mass of the left and right gonads were investigated using non-

parametric Wilcoxon signed-rank tests with continuity correction to accommodate the non-

normal distribution of the difference in mass between left and right gonads. Reproductive and 

energetic condition of males and females were assessed through evaluation of relationships 

between body mass, liver mass (ML), and mass of the left gonad (MGL). Gonadosomatic index (IG) 

and hepatosomatic index (IH) were calculated as: 

(3) 

𝐼𝐺 =
𝑀𝐺𝐿

𝑀
 

(4) 

𝐼𝐻 =
𝑀𝐿

𝑀
 

Where MGL, ML, and M are as defined above. Confidence intervals for estimated monthly means 

were derived from 1000 bootstraps. Due to the integration of gonads with the epigonal organ, IG 

measurements for males and females included epigonal mass. Since IG and IH measurements are 

proportions, monthly and sex effects were analyzed using beta regression (Ferrari and Cribari-

Neto 2004). Seasonal trends in mature female oocyte size (DOn, n = oocytes 1 to 5) were 

investigated using linear mixed effects (LME) models to better understand ovulation cycles. 

Month and disk width were treated as fixed effects, and to account for the violation of 
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independence associated with multiple oocyte diameters from the same female, each individual 

specimen was treated as a random effect (Zuur et al. 2009). Oocyte data were log-transformed 

when deviations from non-normality and homoscedasticity were detected from diagnostic plots. 

Fecundity estimates were derived from embryo counts, and the relationship between maternal 

disk width and uterine fecundity was analyzed by linear regression. Size at birth (WDB) was 

estimated from the difference between the disk widths of the largest embryos in utero and the 

smallest free swimming young observed during the study.  

Evaluation of model assumptions was performed using histograms and QQ-plots of 

residuals, and homoscedasticity of variables was assessed through visual residual analyses (Quinn 

and Deriso 1999). The most empirically supported and parsimonious models were selected by 

negative log likelihood and Akaike’s information criterion (AIC; Akaike 1973; Burnham and 

Anderson 2002) corrected for small sample sizes (AICc; Zhu et al. 2009). Differences between 

relative AICc values (ΔAICc = AICc - AICcmin) were calculated for each model, and ΔAICc values 

between 0 and 2 indicated substantial empirical support (Burnham and Anderson, 2002). For 

mixed effects linear model selection, maximum likelihood estimation was utilized for AICc 

comparison, and predicted mean values were estimated using restricted maximum likelihood 

estimation (REML). Results were considered statistically significant at α<0.05 and all statistical 

analyses were performed using the R software program (R Development Core Team, 2016). 

 

Results 

 

 Five hundred and forty-three individuals were examined, comprising 129 specimens of 

G. altavela collected from New Jersey to North Carolina, and 416 specimens of G. micrura 
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obtained from Delaware to eastern Florida in the Atlantic (n = 296), and from Texas, Alabama, 

and western Florida in the northern Gulf of Mexico (n = 120) (Fig. 1).  

 

Gymnura altavela 
 

Sixty-four female (nF) and 65 male (nM) G. altavela were sampled during March, June, 

July, September, October and November between 2012 and 2016. Specimens included 

individuals that were immature (WDF = 427 – 1397 mm; WDM = 529 – 970 mm) and mature (WDF 

= 1178 – 2150 mm; WDM = 1021 – 1365 mm) (Table III); two females and two males were of 

unknown maturity status. The estimated size at which 50% of individuals were mature (WD50; 

95% C.I.s) was WD50F = 1277.6 mm; 1088.0 – 1467.2 mm [Fig. 5(a)] and WD50M = 945.8 mm; 

837.9–1053.8 mm [Fig. 5(b)] for females and males, respectively. Gonad mass increased 

asymmetrically, and the lack of development of ovarian follicles and testicular germinal zones in 

right gonads suggested they were non-functional [Fig. 3(a)]. Left ovary mass ranged from 0.001 – 

0.392 kg and was significantly greater than right ovary mass (Wilcoxon test W = 406, z-test Z = 

4.69, P = <0.001, r = 0.62), while left testis mass ranged from 0.002 – 0.150 kg and was also 

significantly greater than right testis mass (W = 946, Z = 5.88, P = <0.001, r = 0.87). 

Monthly variation in mean IG was best described by a model that included the sex 

covariate (M1IG) [Table IV(b)]. Predicted monthly mean IG for both females [Fig. 6(a)] and males 

[Fig. 6(b)] decreased significantly from September to October [Table V(b)]. Only one female was 

sampled in the spring (March) and summer (June) [Fig. 6(a)], and one male was sampled in the 

winter [Fig. 6(b)]. The most empirically supported model describing monthly variation in IH did 

not include the sex covariate (M2IH) [Table IV(b)]. A statistically significant decrease in mean IH 

occurred from September to October in both females and males [Table V(b) and Fig. 7(a)]. The 
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highest IH value was estimated from one female collected in the spring (March: 0.070), while the 

lowest IH was estimated from one male collected in fall (November: 0.025) [Fig. 7(a)].    

In mature females, DOG ranged from 14.4 – 27.8 mm. The relationship between DO and 

month modeled without the individual WD covariate (M2DO) received the most empirical support 

[Table IV(c)]. A significant relationship between DO and month was detected, and mean predicted 

DO was largest in spring (March: 24.16 mm) when eggs were present, followed by fall when 

embryos (September: 18.71 mm) and both eggs and embryos (October: 11.25 mm) were observed 

[Fig. 8(a)]. The smallest mean DO was predicted in summer (August: 7.7 mm), and coincided 

with the presence of embryos only [Fig. 8(a)].  

Of the 19 mature females, six (1178 – 1905 mm WD, 49 – 68 kg M) were gravid with four 

to six uterine eggs, and occurred in North Carolina waters in spring (March, n =1) and in Virginia 

waters in the summer and fall (June, n = 1; October, n = 4). A maximum of three eggs was 

observed in a single egg envelope. Average egg fecundity was five and each egg mass ranged 

between 0.009 – 0.016 kg (n = 21), with DE between 12.0 and 67.5 mm. The largest DE were 

observed from a 1845 mm WD female in the fall (October: 55.9 – 67.5 mm DE), and a similar 

sized female (1843 mm WD) collected in spring (March: 35.0 – 40.0 mm DE), while the smallest 

DE was observed in a 1880 mm WD female during the summer (June: 12.0 – 17.0 mm).  

Seven females between 1670 and 2036 mm WD (67 – 77 kg M) gravid with embryos were 

captured in summer (August) and fall (September and October) in Virginia and North Carolina 

waters, respectively. Gravid females were collected from water depths between 11.3 and 32.6 m, 

with bottom temperature and salinity profiles ranging from 19.8 to 21.5°C and 32.9 to 33.8, 

respectively. Embryo size varied from 172 to 291 mm WDE (0.09 – 0.27 kg M, n = 36) between 

August and October [Fig. 9(b)]. Embryo sex ratio did not differ significantly from 1:1, and the 
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number of embryos in the left uterus was often greater than that in the right uterus. Embryo 

development was most advanced in October, indicated by the near-complete absorption of the 

EYS and stalk, and skin pigmentation resembling free-swimming individuals [Fig. 4(d)]. Uterine 

fecundity was between three and seven, and the relationship between maternal WD and fecundity 

was not significant (adj. r2 = 0.073, P = 0.280). The largest mid- to late-stage (i.e. small EYS 

present) embryo was observed in the fall (October: WDE = 291 mm), and the smallest free-

swimming individual was collected in summer (July: WDE = 427 mm), thus the estimated size-at-

birth in the western North Atlantic was WDE = 291 – 427 mm. 

In freshly fertilized eggs, mean wet mass (9.45 g ± 0.20 S.E.), water content (5.88 g ± 

0.14 S.E.), and inorganic content (0.12 g ± 0.00 S.E.) increased in late-stage embryos to 192.22 g 

± 6.36 S.E. (+ 1933%), 165.21 g ± 6.05 S.E. (+ 2708%), and 2.66 g ± 0.11 S.E. (+ 2134%), 

respectively. Wet mass, water content, and inorganic matter slowly increased with the 

development of mid-stage embryos (WDE < 250 mm), then more rapidly as late-stage embryos 

(WDE > 250 mm) approached size-at-birth. The change in organic composition between fertilized 

eggs (3.45 g ± 0.07 S.E.) and late-stage embryos (24.36 g ± 0.64 S.E.) was 606%. 

 

Gymnura micrura – western North Atlantic 
 

A total of 167 female and 129 male G. micrura were sampled from the western North 

Atlantic in all months between April and November. Specimens included 131 immature (WDF = 

220 – 595 mm, nF = 65; WDM = 205 – 450 mm, nM = 66) and 152 mature (WDF = 506 – 1029 mm, 

nF = 95; WDM = 293 – 528 mm, nM = 57) individuals, and 13 specimens (nF = 7, nM = 6) for which 

maturity status was undetermined (Table III). The relationship between WD and M varied by sex 

and was best described by the equation log𝑀 = log (1.194 × 10−9 𝑊𝐷
3.34𝑀,3.33𝐹), [Table IV(a) 
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and Fig. 10(a)]. The WD50; 95% C.I. for females was WD50F = 550.62 mm; 526.7–574.5 mm (nF = 

159) [Fig. 5(c)] and WD50M = 390.37 mm; 376.7 – 404.1 mm in males (nM = 123) [Fig. 5(d)]. 

Visual inspection of gonads suggested functionality of the left gonad only based on the lack of 

development of ovarian follicles and testicular germinal zones in the right gonad. Left gonad 

mass ranged from MOL = 0.0001 – 0.0350 kg and MTL = 0.0001 – 0.0081 kg in females and 

males, respectively, and was significantly greater than MOR (W = 1324, Z = 5.836, P = 1.453 x 10-

11, r = 0.802) and MTR (W = 67, Z = 1.963, P = 0.046, r = 0.401). 

 The most empirically supported beta regression model fitted to female and male IG data 

contained only the model covariate (M2IG) [Table IV(b)]. Mean predicted IG increased from 0.003 

in the spring (May) to a peak in summer (July) of 0.005 that was driven by males; a single female 

collected in July had an IG 0.21% [Table V(b) and Fig 6(c)]. Mean predicted IG was relatively 

stable from late summer through fall (0.003 to 0.004), and then increased again in November to 

0.004 (Table V(b) and Fig. 6(c)]. Mean predicted IH peaked in spring (May: 0.054) and steadily 

declined throughout the summer to 0.024 in August [Table V(b) and Fig. 7(b)]. In the fall, mean 

IH increased from 0.029 to 0.044 between September and October, and then decreased in 

November (0.042) [Fig. 7(b)]. 

Oviducal glands in mature females ranged in size from 7.6 – 14.4 mm (n = 55). The 

relationship between DO and month was best described without individual WD as a covariate 

(M2DO) [Table IV(c)]. Mean DO increased between the spring (May), when only embryos were 

observed, and early summer (June), during which time both eggs and embryos were present, but 

decreased in late summer (August) when only eggs were present [Fig. 8(b)]. The largest mean DO 

was observed in the early fall (September) in the presence of embryos, and then decreased from 

October to November, when only eggs were observed [Fig. 8(b)].  
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Of 95 mature females, uterine eggs were observed in 42 individuals (maternal WD = 603 

– 1029 mm; M = 2.278 – 10.700 kg), and were collected in summer (June and August) from 

Georgia and Florida, respectively, while the majority of observations occurred in specimens from 

Delaware, Maryland, Virginia, North Carolina, and Florida during October [Fig. 9(c)]. Fecundity 

ranged from 2 to 12 with mean masses between 0.001 and 0.005 kg, and DE ranged from 24.9 to 

38.2 mm in October [Fig. 9(d)]. 

A total of seven gravid females (WD = 506 – 851 mm, M = 1.295 – 7.271 kg) were 

collected from water depths between 5.8 and 6.7 m, with bottom temperatures ranging from 24.8 

– 31.8°C, and salinities between 28.0 and 28.2. Fecundity varied from 1 to 6 embryos ranging in 

size from 26.4 – 233.0 mm WDE (M = 0.001 – 0.160 kg, n = 22). Embryos occurred between 

spring and summer (May and July) in females collected off the east coast of Florida, and in 

Virginia and Georgia waters during fall (September) and summer (June), respectively. Embryo 

sex ratio was recorded for a single specimen with one female and four male late-stage embryos. 

Uterine fecundity did not differ from 1:1 between left and right uteri except for one individual 

with three embryos in the left uterus and two embryos in the right uterus. Among the embryos 

examined, the most advanced developmental stage was observed in the fall (Virginia in 

September), and was indicated by near complete resorption of the EYS and yolk-stalk in five 

embryos ranging from 227 to 233 mm WDE (M = 0.142 – 0.160 kg) [Fig. 4(e) and Fig. 9(d)]. 

Maternal WD did not have a significant effect on fecundity. The smallest free-swimming 

individuals were observed in summer (August) off the coast of Florida (WDE = 205 mm) and in 

fall (September) in the Virginia Chesapeake Bay (WDE = 239 mm). Thus, size-at-birth was 

estimated between 205 – 239 mm WDB, but may vary in the western North Atlantic, with smaller 

birth sizes possible in southern regions. 
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Gymnura micrura – Gulf of Mexico 
 

A total of 60 female and 60 male G. micrura were sampled from the northern Gulf of 

Mexico in May, June, July, August, and October. Specimens included 16 immature (WDF = 220 – 

595 mm, nF = 8; WDM = 205 – 450 mm, nM = 8) and 91 mature (WDF = 260 – 544 mm, nF = 44; 

WDM = 242 – 364 mm, nM = 47) individuals, and 13 individuals (nF = 8, nM = 5) for which 

maturity status was undetermined (Table III). The relationship between WD and M was best 

described without the sex covariate by the equation log𝑀 = log�3.05 ×  10−9𝑊𝐷
3.18� [Table 

IV(a) and Fig. 10(c) and Fig. 10(d)]. The WD50 (95% C.I.) in females was 448.16 mm (398.1 – 

498.3) (nF = 52) [Fig. 5(e)], and 298.18 mm (269.8 – 326.5) in males (nM = 55) [Fig. 5(f)]. 

Asymmetrical development of ovaries was observed in specimens from the Gulf of Mexico, with 

only left ovaries becoming functional and increasing in mass with maturity [Fig. 3(b)]. 

Differences in testes mass were less pronounced, and while all left testes were functional, some 

macroscopic structuring of right testes was observed [Fig. 3(d)]. Left ovary mass (MOL) ranged 

from 0.0001 – 0.0093 kg and was significantly greater than MOR (W = 377, Z = 4.517, P = <0.001, 

r = 0.869). Mass of left testes ranged from 0.0001 – 0.0029 kg and was not significantly different 

from MTR (W = 43, Z = 0.981, P = 0.359, r = 0.283). 

The most empirically supported beta regression model fitted to female and male IG data 

contained a sex covariate (M1IG) [Table IV(b)]. Gonadosomatic indices were highest in the spring 

and fall (May and October) for females (IGF = 0.002) and males (IGM = 0.001), and were lowest in 

summer (July) (IGF = 0.001; IGM = 0.001) [Fig. 6(d) and Fig. 6(e)]. The most parsimonious and 

best fitted model describing monthly trends in mean IH also included a sex covariate (M1IH) 

[Table IV(b)]. Peak hepatosomatic indices occurred in the spring (May) for both sexes (IHF = 
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0.030 IHM = 0.025) and decreased significantly in the summer (July) (IHF = 0.025; IHM = 0.021) 

and fall (October) (IHF = 0.021; IHM = 0.018) [Fig. 7(c) and Fig. 7(d)]. 

In mature females, DOG ranged between 6.0 and 18.9 mm (n = 42). The relationship 

between DO and month modeled without individual WD (M2DO) received the most empirical 

support [Table IV(c)]. Mean DO was relatively small in Gulf of Mexico specimens, and there was 

no significant difference between months. When eggs were observed in spring (May), mean DO 

was 1.04 mm [Fig. 8(c)]. The smallest DO were predicted in summer (July; DO = 1.01 mm) in the 

presence of both eggs and embryos, while the largest DO were predicted in the fall (October; DO = 

1.33 mm) when only embryos were observed [Fig. 8(c)].  

Uterine eggs were observed during the summer (July) in 19 northern Gulf of Mexico 

specimens (WD = 412 – 814 mm; M = 1.24 – 5.49 kg) of G. micrura from the Alabama coast. 

Only one to two eggs were recorded from specimens due to frequent capture-induced abortion. 

Eggs sampled were generally in poor condition and measurements (i.e., egg diameter and mass) 

were not possible.  

 Thirteen G. micrura from the Gulf of Mexico between 544 and 856 mm WD (1.5 – 5.9 kg 

M) were gravid with one to 12 embryos that ranged in size from 10.4 – 119.9 mm WDE (M = 

0.009 – 0.024 kg). Early- (10.4 – 23.5 mm WDE) and mid-stage (37.2 – 73.5 mm WDE) embryos 

were observed in July off Alabama, and late-stage (98.1 – 119.9 mm WDE) embryos were sampled 

from two females off the southern Texas coast in October. The distribution of embryos between 

left and right uteri varied, but neither uteri consistently contained more embryos than the other. 

Sex ratio data were limited to two litters in which the number of females was greater than males. 

Remnants of the EYS and stalk (~1 mm total length) remained in the litter of the largest embryos 

(WDE = 104.6 – 119.9 mm) sampled in October, and full-term embryos were not observed. A 
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positive and statistically significant relationship between fecundity and maternal WD was 

observed (P = 0.0001, adj. r2 = 0.74). The smallest free-swimming specimen (WD = 242 mm) was 

collected in July, thus size-at-birth was estimated between 120 and 242 mm WDB.  

 

Discussion 

 

Detailed information on the reproductive biology of butterfly rays is fragmented due to 

the patchy spatio-temporal distribution of species and the associated challenges of adequately 

sampling across ontogeny. This study provides fundamental life history information specific to 

coastal U.S. species for a better understanding of the population dynamics of G. altavela and G. 

micrura.  

 

Gonad development 
 

Gonad asymmetry was observed among gymnurids during this study. The reduction or 

loss of right or left reproductive structures (i.e., ovaries and testes) is common in viviparous rays 

(Wourms, 1977), and varies interspecifically among gymnurids (Jacobsen et al., 2009). 

Functional left ovaries and reduced right ovaries observed in G. altavela and G. micrura are well 

documented in the literature (Gudger, 1912; Bigelow & Schroeder, 1953; Daiber & Booth, 1960; 

Capape et al., 1992; Snelson et al., 1981), whereas both ovaries are functional in the longsnout 

butterfly ray (G. crebripunctata) (Bizzarro, unpub. data) and the California butterfly ray (G. 

marmorata) (Villavicencio-Garayzar, 1993). Similarly, the left testis appeared functional and the 

right testis was typically reduced in size and undeveloped, a condition previously reported in G. 
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altavela (Daiber & Booth, 1960) and Australian butterfly ray (G. australis); this condition may be 

unique to Gymnuridae among the Myliobatiformes (Jacobsen et al., 2009). However, some 

notable abnormalities were recorded during the present study. One female G. micrura collected in 

June from the coast of Georgia contained a single large (12.2 mm) oocyte in the right ovary that 

was similar in size and color to left ovary oocytes [Fig. 3(c)]. Among male G. micrura, the 

occurrence of equally sized left and right testes, in which the right testis demonstrated various 

stages of germinal zone development, was noted in eight specimens from the Atlantic and three 

from the Gulf of Mexico [Fig. 3(d)]. Histological examination of similarly developed left and 

right testes was outside the scope of this study, and is needed to determine whether or not 

functional right testes occur in western Atlantic G. micrura. 

 

Maximum size and size-at-maturity  
 

Western North Atlantic Gymnura mass-at-disk width relationships were characterized by 

females growing larger and reaching sexual maturity at larger sizes than males, thus 

demonstrating sexual dimorphism commonly observed in Gymnura and other batoids (Capape et 

al., 1992; Ismen, 2003; Raje, 2003; Smith et al., 2007; White & Dharmadi, 2007; Jacobsen et al., 

2009). Maximum sizes of G. altavela (2150 mm WDF; 1365 mm WDM) sampled during this study 

were similar to those previously reported for the region (2030 – 2170 mm WDF; Bigelow & 

Schroeder, 1953; Daiber & Booth, 1960; Wigley et al., 2003), and larger than sizes observed in 

the Mediterranean (893 mm WDM, 1342 mm WDF) (Alkusairy, 2014). Off the coast of West 

Africa, a maximum size of 4000 mm WD reported by Bini (1967) has not been substantiated and 

may be erroneous; intense fishing pressure and the removal of large adults from coastal waters of 

this region since the 1980s, however, was followed by observed decreases in median sizes 
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(Vooren et al., 2007). Therefore, the western North Atlantic population comprises the largest 

known specimens of G. altavela throughout their range of distribution.  

Maximum sizes of G. micrura were 1029 mm WDF and 528 mm WDM in the Atlantic, and 

856 mm WDF and 459 mm WDM in the Gulf of Mexico. Maximum sizes presented here for 

northern Gulf of Mexico G. micrura are the first estimates available for the region. The largest 

female sizes reported from the Atlantic for the species are 1760 mm WDF (McEachran & de 

Carvalho, 2002) and 1200 mm WDF (Wigley et al., 2003), exceeding female sizes observed in the 

present study. In the western South Atlantic off the coast of Brazil, a maximum WD of 660 mm 

has been reported (Yokota & Lessa, 2007), suggesting that capacity for growth may differ among 

populations in the northern, temperate regions and southern, tropical waters of the western 

Atlantic. The influence of temperature on elasmobranch growth and metabolism may culminate 

in a positive relationship between increases in latitude and body size, commonly referred to as 

Bergmann’s Rule (Mayr, 1942). Slower growth to larger sizes in high latitude relative to low 

latitude populations has been demonstrated in some western Atlantic batoid species including the 

little skate (Leucoraja erinacea) (Frisk and Miller 2006) and the cownose ray (Rhinoptera 

bonasus) (Neer and Thompson 2005). Considering these findings in addition to the latitudinal 

size variation in butterfly rays observed in the present study, Bergmann’s Rule may explain some 

mechanisms underlying the dynamics of U.S. coastal batoid populations. Furthermore, 

compensatory processes resulting from high fishing pressure and removal of large individuals can 

influence regional vital rates (Walker & Hislop 1998; Frisk & Miller 2006) and may have 

contributed to maximum size differences reported for G. altavela and G. micrura between the 

present and previous studies, among other factors.      

Geographic variation in estimated maturity sizes is consistent with differences in 

maximum sizes. Throughout the Atlantic and Mediterranean, size-at-maturity estimates 
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previously reported for G. altavela range from 961 to 1080 mm WDF and 771 to 1300 mm WDM 

(Alkusairy et al., 2014; Last et al., 2016). Our results refine these estimates for western North 

Atlantic G. altavela, and suggest that specimens grow to larger sizes (1278 mm WD50F; 946 mm 

WD50M) before becoming reproductively mature. Based on age and growth analyses conducted on 

the sampled population by Parsons et al. (in review), the period of growth to sexual maturity is 

approximately four to seven years. 

Likewise, earlier studies documenting maturity size of G. micrura suggest a broad range 

of estimates, from 340 to 813 mm WD50F in females, and 269 to 420 mm WD50M in males, 

depending on locality (Bigelow & Schroeder, 1953; Daiber & Booth, 1960; McEachran & de 

Carvalho, 2002; Yokota & Lessa, 2006, 2007; Yokota et al., 2012). Maturity sizes estimated here 

fall within these ranges, with Atlantic coast individuals reaching maturity at larger sizes (551 mm 

WD50F; 390 mm WD50M) than those sampled from the Gulf of Mexico (448 mm WD50F; 298 mm 

WD50M). Previous estimates for G. micrura occurring along the U.S. coast were limited by lower 

sample sizes over smaller spatial and temporal scales, thus maturity sizes presented here more 

accurately represent current populations.   

 

Reproductive periodicity 
 

 A number of studies on the reproductive biology of gymnurids suggest temporal 

variability in annual reproductive and gestation cycles between temperate and tropical regions, 

largely due to environmental cues that influence the development of gonads and seasonal fluxes 

in food supply. In tropical regions, consistent prey availability associated with warm and 

generally stable water temperatures has been proposed to explain year-round, asynchronous 

reproductive cycles, while seasonal variation in water temperature and dietary resources 
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characteristic of temperate regions are thought to limit suitable conditions for the survival of early 

life stages, such that parturition occurs in well-defined periods of the year (Daiber & Booth, 

1960; Capape et al., 1992).  

In the present study, seasonal patterns in oogenesis and the presence and developmental 

stages of embryos were used to predict reproductive cycles in females. Trends in hepatosomatic 

and gonadosomatic indices were also examined, as these measures can provide an indication of 

the energy reserves and general reproductive condition of both males and females. Due to the lack 

of data for winter and early spring months, the periodicity of reproductive cycles in western North 

Atlantic G. altavela could not be conclusively determined. In the Mediterranean, Capape et al. 

(1992) proposed an annual reproductive cycle for G. altavela, with gestation cycles of four to 

nine months, and parturition occurring at the end of winter. Alkusairy et al., (2014) provided 

further evidence that annual reproductive cycles in the Mediterranean were most likely. This was 

based on the presence of gravid females in the spring (May) and late-fall and winter (November 

to December), although the authors state that a biannual cycle could not be discounted. In the 

western North Atlantic, a six to nine month gestation cycle is reported for the  Chesapeake Bay 

(Murdy & Musick, 2013). Gravid G. altavela in this study were observed from August to 

October, and earlier studies indicate the presence of pregnant females in February and May 

(Bigelow & Schroeder, 1953; Daiber & Booth, 1960). Only mid-stage and late-stage embryos 

were observed from late summer (August) to fall (October), and increased from a maximum size 

of 173 mm to 291 mm WDE, respectively. If size-at-birth occurs between 300 and 427 mm WDB, 

then parturition may occur in late fall based on the developmental stage of embryos recorded in 

October. However, the smallest free-swimming individual was sampled in July, providing for the 

possibility that females also give birth between late spring and early summer months. This is 

further supported by temporal trends in female IG, IH, DO and the presence of uterine eggs, which 
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reflect two seasonal peaks in reproductive condition that occur in early spring and fall. Male IG 

and IH was highest in the fall, but was only assessed for the months of July and September 

through November, thus seasonal patterns could not be discerned. Future sampling of mature 

specimens during winter and spring months is necessary to resolve the reproductive periodicity of 

western North Atlantic G. altavela.       

Gymnura micrura is reproductively active throughout the year in the South Atlantic off 

the coast of Brazil, as indicated by the presence of embryos during most months and the 

occurrence of both early- and mid-stage embryos in August (Yokota & Lessa, 2006; Yokota & 

Lessa, 2007; Yokota et al., 2012). The present study reports two peaks in female reproductive 

condition occur in specimens along the U.S. Atlantic coast, based on maximum IG and IH values 

documented in spring and fall, and large DO recorded in early summer and mid-fall. The 

gonadosomatic index of males peaked in summer and fall, while IH was clearly greatest in fall. 

However, both indices were highly variable, and annual patterns were unclear since few mature 

specimens were sampled during winter and early spring months. Uterine eggs were recorded 

throughout the summer and fall (June to October) in the southwest Atlantic (Yokota et al., 2012) 

and the western North Atlantic (June, August, October and November) (this study). The presence 

of early- and mid-stage embryos in southern regions of the western North Atlantic (i.e., Georgia 

and Florida) during late spring and summer (May – July), in addition to presumed young-of-year 

sampled from Florida in August suggests that parturition may occur in mid- to late-summer in 

southern regions of the U.S. east coast. In northern regions, late-stage embryos and the smallest 

free-swimming specimen were observed in fall (September), suggesting parturition occurs in the 

fall in higher latitudes. Based on these results, a biannual rather than annual reproductive cycle 

seems most likely, but an annual cycle cannot be excluded. Furthermore, rest cycles in the 

reproductive periodicity of Brazil specimens have been proposed by Yokota et al. (2012) based 
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on the co-occurrence of gravid females and mature females demonstrating ovarian activity, but 

lacking embryos. We report a similar case off the Georgia coast in June, when uterine eggs were 

found to be present in one female at the same time that four females carried embryos. In order to 

clarify latitudinal variations in the reproductive cycle of western North Atlantic G. micrura, 

improved sampling of the southern Atlantic U.S. coast during summer months is required. 

Reproductive cycles for G. micrura from the Gulf of Mexico are more difficult to discern 

due to temporally and spatially limited sampling, with the majority of specimens collected from 

the Alabama coast between May and July. Florida specimens consisted primarily of mature 

males, while only two mature and three juvenile females were sampled from Texas. 

Consequently, conclusions drawn from results presented here should be made with caution and 

limited to G. micrura occurring in the north central Gulf of Mexico.   

Off the coast of Alabama, uterine eggs were observed between late spring and summer 

(May – July), and both early and mid-stage embryos were observed in July but not in May. These 

results suggest that the onset of embryonic development could occur in late spring; however, it is 

possible that females gravid with early stage embryos were present during May in the broader 

region (i.e. northern Gulf of Mexico), but did not occur in the survey area. Embryonic 

development appears to occur from at least June through October, but seasonal timing of 

parturition could not be predicted due to the lack of young-of-year and juvenile specimens. Since 

specimen collection was temporally limited by the sampling frequency of fishery-independent 

surveys, inferences of seasonal patterns in IG and IH could not resolve periodicity of reproductive 

activity. The co-occurrence of eggs (n = 19) and embryos (n = 11) observed during the summer in 

the present study reflects the reproductive biology of G. micrura in the tropical South Atlantic 

(Yokota et al., 2012), and may be indicative of a rest period in Gulf of Mexico G. micrura. 

Alternatively, the presence of both eggs and embryos could also result from biannual or 
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asynchronous reproductive cycles in the population, and requires additional seasonal sampling for 

clarification.  

 

Fecundity and embryonic development 
 

Uterine fecundity in gymnurids typically ranges between three and nine (Jacobsen et al., 

2009), although 10 to 16 embryos have been observed in G. marmorata (Wallace, 1967; Davila-

Ortiz, 2002). Maximum fecundity observed in G. altavela was seven, confirming the findings of 

Daiber & Booth (1960). If this species undergoes an annual reproductive cycle and longevity of 

females is at least 18 (Parsons et al., in review), the lifetime productivity of G. altavela may 

range from 30 to more than 80 offspring. The 606% increase in organic content from fertilized 

eggs to late-stage embryos of G. altavela confirms that this is a matrotrophic species, although 

this value was low compared to increases of 3564% and 4900% between eggs and full term 

embryos estimated for G. micrura (Ranzi, 1934, Yokota et al., 2012). Since full-term embryos 

were not observed, changes in organic content were only estimated for a partial gestation period, 

accounting for the relatively low percent increase reported here. Other studies that have examined 

maternal contribution to embryonic growth report a chemical balance of development for G. 

altavela from 22.5 to 30.6 in the Mediterranean (Capape et al., 1992; Alkusairy et al., 2014); 

however, these estimates are not directly comparable to the present study due to standard water 

content values used for eggs (50%) and embryos (75%), which were originally derived from a 

catshark (Carcharhiniformes: Scyliorhinidae) by Mellinger & Wrisez (1989). Changes in water 

content  of +2708% between eggs and embryos in the present study support the assertion that 

applying standard water content values across taxa may lead to inaccurate results (Hamlett et al., 

2005; Braccini et al., 2007). 
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In North Atlantic G. micrura, up to eight embryos have been reported (Grubbs & Ha, 

2006), while a maximum fecundity of six was recorded in the present study and has also been 

observed in the South Atlantic off Brazil (Yokota et al., 2012). Fecundity was often greater in the 

Gulf of Mexico than in the Atlantic, with 9 to 12 embryos observed in four specimens, effectively 

doubling the maximum litter size for the species, and exceeding all records for the genus except 

G. marmorata, which has two functional ovaries (Villavicencio-Garayzar, 1993). Although age, 

growth and longevity of G. micrura has not been reported and reproductive periodicity remains 

unclear, results from the present study reveal the potential capacity for higher annual rates of 

production in the Gulf of Mexico relative to the western North Atlantic.       

 

Management and conservation implications 
 

Addressing knowledge gaps and developing effective fisheries management strategies 

rely on life history data that accurately represent the species for which they are collected, and 

recent studies suggesting the potential for a large number of undescribed elasmobranchs (e.g. 

Naylor et al., 2012) raise concerns for the taxonomic status of data deficient species, including G. 

micrura. Variations in reproductive parameters between North Atlantic and Gulf of Mexico G. 

micrura in the present study, and previously reported differences between the southwest Atlantic 

(i.e. Brazil) and western North Atlantic may suggest the existence of distinct populations or 

species within the western Atlantic (Yokota & Lessa, 2007; Yokota et al., 2012). Increased 

population monitoring and data collection efforts are required for the assessment of many batoid 

species in general, and a taxonomic review of G. micrura is needed in order to (1) assign vital 

rates to specific populations within their range of distribution, and (2) improve knowledge on the 

biodiversity of the ecosystems they inhabit (Collette & Vecchione, 1995).  
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The relatively large body size and low fecundities of G. altavela and G. micrura suggest 

the vulnerability of these coastal species to population depletion from overexploitation. Although 

there are no directed fisheries for gymnurids in U.S. waters, they may commonly be taken as 

bycatch in demersal trawl fisheries, particularly during mating and pupping seasons when 

relatively dense but patchy aggregations of large males and females occur in highly productive 

nearshore areas. Fishing effort during seasons of high productivity along the U.S. east coast may 

have direct impacts on gymnurid populations, but remain unknown. In elasmobranchs, stress 

associated abortion of embryos during capture of gravid females may be common (Conrath & 

Musick, 2012; Trinnie et al., 2015). The propensity for gymnurids to abort pre-term embryos 

during capture can alter reproductive success, since undeveloped embryos likely have a lower 

probability of survival than full term offspring. Furthermore, the physiological impacts of capture 

and release have not been evaluated in Gymnuridae, and may have negative effects on the 

behavior and success of reproductively active individuals during critical periods of the life cycle 

(i.e., mating and parturition). Investigations into the physiological effects of bycatch practices, 

including post-release survival, are needed to evaluate the vulnerability of gymnurids in U.S. 

waters. 

Improved monitoring and biological data collection on batoid bycatch must be prioritized 

to better understand the impacts of fisheries on the health and biodiversity of ecosystems. This 

study demonstrates the utility of existing fishery-independent research programs as platforms for 

addressing knowledge gaps in data deficient elasmobranch populations (Collette & Vecchione, 

1995), while also highlighting limitations of using survey data that are inherently restricted to the 

spatio-temporal coverage of sampling designs. Accurate descriptions of the biology of species 

requires adequate data across both sexes throughout ontogeny in taxa that are sexually dimorphic, 

since changes in body shape and life stage may manifest in different vulnerabilities to fishing 
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gears and the impacts of fishing on survival. Without life history information critical for 

population assessments, precautionary approaches to the management of batoid species that are 

indirectly affected by fisheries are warranted, particularly for globally declining populations that 

are considered vulnerable and endangered in parts of their distributional range.  
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Tables 
 

TABLE I. Institutions and surveys that contributed specimens to this study. 

Institution Survey Region Stratum Season 

NOAA NMFS Northeast 
Fisheries Science Center, 

Woods Hole, MA 

Multispecies Bottom Trawl 
Survey 

NW to Mid-
Atlantic 
Bight 

Offshore 15+ 
m 

Spring 
Winter 

Virginia Instistute of 
Marine Science 

Multispecies Research 
Group, Gloucester Point, 

VA 

Northeast Area Monitoring & 
Assessment Program 

(NEAMAP) Bottom Trawl 
Survey 

Mid-Atlantic 
Bight 

Coastal 7–27 
m 

Spring 
Fall 

Virginia Instistute of 
Marine Science 

Multispecies Research 
Group, Gloucester Point, 

VA 

Chesapeake Bay Multispecies 
Monitoring & Assessment 

Program (ChesMMAP) 
Bottom Trawl Survey 

Chesapeake 
Bay 

Bay, estuary 
7–27 m 

Year-
round 

Virginia Instistute of 
Marine Science Fisheries 
Department, Gloucester 

Point, VA 

Juvenile Fish & Blue Crab 
Trawl Survey 

Chesapeake 
Bay 

Bay, estuary 
1–30 m 

Year-
round 

South Carolina 
Department of Natural 

Resources, Marine 
Resources Research 

Institute, Charleston, SC 

Southeast Area Monitoring & 
Assessment Program 

(SEAMAP) Bottom Trawl 
Survey, Sea Turtle Trawl 

Survey 

South 
Atlantic 
Bight 

Coastal 4–12 
m 

Spring 
Summer 

Fall 

University of North 
Florida, Shark Biology 

Program, Jacksonville, FL 

Cooperative Atlantic States 
Shark Pupping & Nursery 
(COASTSPAN) Bottom 

Longline Survey 

FL Atlantic 
Coast 

Bay, estuary 
<1-15 m 

Spring 
Summer 

Fall 

Florida Fish and Wildlife 
Research Institute, 

Fisheries Independent 
Monitoring Program, 

Jacksonville, FL 

Bottom Trawl Survey FL Atlantic 
Coast 

9–110 m Spring 
Summer 

Fall 

Florida State University 
Coastal and Marine 

Laboratory, St. Teresa, FL 

Gulf of Mexico Shark 
Pupping & Nursery 

(GULFSPAN) Bottom 
Longline & Gillnet Survey 

FL Gulf of 
Mexico Coast 

Coastal 1–18 
m 

Spring 
Summer 

Fall 
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University of South 
Alabama, Dauphin Island 

Marine Laboratory, 
Dauphin Island, AL 

Bottom Trawl Sampling AL Gulf of 
Mexico Coast 

Coastal 3–30 
m 

Year-
round 

Texas Parks & Wildlife 
Department, Coastal 

Fisheries Division, Corpus 
Christi, TX 

Bottom Trawl Survey TX Gulf of 
Mexico Coast 

Coastal bays, 
estuaries 0–

90 nm 
offshore 

Year-
round 
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TABLE II. Gymnurid maturity stage classification scheme (adapted from Yokota et al., 2012). Size at birth (WDB) estimated from largest embryo 
and smallest free-swimming individual disk width. *Estimated from largest ovarian follicle from immature specimen. 

Maturity 
stage Male Female 

WDB 

G. altavela WNA 300–427 mm 
G. micrura WNA 205–239 mm 

G. micrura GOM 120–242 mm 
Immature Flaccid clasper, with length not exceeding 

posterior margin of pelvic fin; testes 
homogeneous or with small translucent 
vesicles on ventral surface; seminal vesicle 
undifferentiated, thread-like.  

Ovary homogeneous or exhibiting small follicles without vitellogenic activity; 
oviducal gland not evident; thread-like uterus with width equal to oviduct or 
slightly larger.  

Maturing Clasper becoming rigid, length may exceed 
posterior margin of pelvic fin; glans becoming 
structured; testes with some lobes evident; 
seminal vesicle beginning to enlarge.  

Ovary with vitellogenic follicle diameters* <13.1 mm (G. altavela) and 5.1 mm 
(G. micrura); oviducal gland evident; uterus distinguishable, larger than 
oviduct.  

Mature Clasper fully developed and calcified (may be 
worn), length far exceeding posterior margin of 
pelvic fin, distal region fully structured and 
may be open in fresh specimens; testis large 
and with lobes evident and salient; seminal 
vesicles large and differentiated, may or may 
not exhibit sperm. 

Ovary with vitellogenic follicle diameters* ≥13.2 mm (G. altavela) and 5.2 mm 
(G. micrura); oviducal gland fully differentiated; uterus fully developed and 
differentiated, vascularized and larger than oviduct, may or may not exhibit 
eggs or embryos.  
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TABLE III. Disk length (LD, mm), disk width (WD, mm), and total wet mass (M, kg) of Gymnura 
altavela and G. micrura specimens collected for this study. 

  

 
    Immature   Mature   

    Mean ± S.E. Range n Mean ± S.E. Range n 
G. altavela Western N Atlantic 

 
LDF 325.27 ± 15.24 202–711 33 923.42 ± 33.03 775–1185 12 

 
WDF 646.33 ± 23.02 427–1397 43 1751.00 ± 50.83 1178–2150 19 

 
MTF 2.64 ± 0.56 0.56–24.23 43 57.33 ± 3.97 24.00–80.26 16 

 
LDM 299.90 ± 5.86 258–409 30 613.75 ± 11.04 535–721 20 

 
WDM 625.42 ± 15.20 529–970 33 1214.53 ± 16.91 1021–1365 30 

 
MTM 2.28 ± 0.40 1.14–14.30 33 16.71 ± 0.74 10.39–25.50 29 

G. micrura 
       

 
LDF 209.20 ± 11.72 121–340 35 429.21 ± 7.98 287–596 68 

 
WDF 367.35 ± 12.47 220–595 65 731.53 ± 10.63 506–1029 95 

 
MTF 0.54 ± 0.06 0.09–2.02 65 4.39 ± 0.20 1.25–10.70 95 

 
LDM 179.12 ± 8.27 114–270 33 267.52 ± 4.53 175–333 44 

 
WDM 324.88 ± 7.50 205–450 66 431.14 ± 5.54 293–528 57 

 
MTM 0.33 ± 0.03 0.07–0.87 66 0.78 ± 0.03 0.24–1.65 56 

G. micrura Gulf of Mexico 

 
LDF 203.13 ± 17.44 145–302 8 368.55 ± 13.39 291–490 20 

 
WDF 364.25 ± 31.13 260–544 8 645.18 ± 15.33 412–856 44 

 
MTF 0.50 ± 0.16 0.14–1.49 8 2.80 ± 0.20 1.07–5.55 37 

 
LDM 162.00 ± 10.99 135–222 7 233.38 ± 3.65 166–285 40 

 
WDM 277.38 ± 14.13 242–364 8 381.45 ± 4.56 294–459 47 

  MTM 0.15 ± 0.02 0.09–0.23 7 0.51 ± 0.02 0.32–0.90 30 
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TABLE IV. (a) Mass-at-disk width model (MMW) results; (b) gonadosomatic index model (MIG) 
and hepatosomatic index model (MIH) results from beta regression analysis of the effect of month 
and sex; (c) oocyte diameter linear mixed effects model (MDO) results of the relationship between 
mean oocyte diameter (mm) and month with covariates for individual female and associated WD 
in Gymnura altavela and G. micrura. Sample sizes are provided in parentheses (nSex), and the 
selected models are indicated in bold. 

 

  
  Model LL Covariates No. of 

parameters AICc ∆AICc 

(a) Western N Atlantic  M-WD Regression 

  
G. altavela 
(58F, 63M) 

M1MW -40.69 None 4 -34.49 0 

  M2MW -41.54 αSex 5 -33.19 1.29 

   
M3MW -41.62 βSex 5 -33.27 1.22 

 
  M4MW -42.06 αSex βSex 6 -31.54 2.95 

  
G. micrura 

(166F, 128M) 
M1MW 419.39 None 4 413.3 14.06 

 
 M2MW 434.99 αSex 5 426.85 0.51 

 
  M3MW 435.5 βSex 5 427.36 0 

   
M4MW 436.92 αSex βSex 6 426.71 0.65 

 
Gulf of Mexico 

      
  

G. micrura 
(28F, 38M) 

M1MW -40.69 None 4 110.19 0 

 
 M2MW -41.54 αSex 5 109.12 1.07 

 
  M3MW -41.62 βSex 5 109.08 1.12 

 
  M4MW -42.06 αSex βSex 6 107.1 3.09 

(b) Western N Atlantic  IG, IH Beta regression 

  

G. altavela 
(39F, 26M) M1IG -425.11 Sex 4 -415.29 0 

   
M2IG -408.99 None 3 -401.81 13.48 

  
(12F, 27M) M1IH -266.08 Sex 4 -256.26 0.6 

   
M2IH -264.04 None 3 -256.86 0 

  

G. micrura 
(81F, 27M) M1IG 1171.51 Sex 9 1151.24 1.72 

   
M2IG 1170.8 None 8 1152.96 0 

  
(83F, 37M) M1IH -727.25 Sex 9 -707.23 2.18 

   
M2IH -727.05 None 8 -709.41 0 

 
Gulf of Mexico 

      

  

G. micrura 
(27F, 20M) M1IG -568.97 Sex 5 -556.87 0 

   
M2IG -562.38 None 4 -552.92 3.95 

  
(35F, 23M) M1IH -451.81 Sex 5 -440.16 0 
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M2IH -443.16 None 4 -434.01 6.15 

(c) Western N Atlantic  DO Linear mixed effects 

  

G. altavela 
(81F) 

M1Do 455.77 Ind WD 7 471.77 2.38 

   
M2Do 455.86 Ind 6 469.39 0 

  

G. micrura 
(218F) 

M1Do 834.04 Ind WD 9 853.1 2.12 

   
M2Do 834.12 Ind 8 850.9 0 

 
Gulf of Mexico 

      

  

G. micrura 
(176F) 

M1Do 88.17 Ind WD 6 100.84 0.5 

      M2Do 89.84 Ind 5 100.34 0 
LL is negative log-likelihood.  
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Table V. Parameter estimates, standard errors (S.E.), predicted means, and lower and upper 
confidence limits (C.L.) for the selected (a) mass-at-disk width (MW) models; (b) monthly 
gonadosomatic index (IG) and hepatosomatic index (IH) beta regression models; (c) monthly 
oocyte diameter linear mixed effects models (MDO) for Gymnura altavela and G. micrura. Model 
estimates and S.E. for MWα models are expressed as 10-10; S.E. for MWβ are expressed as 10-1; 
predicted mean and C.L. for IG are expressed as 10-2. 

 

      
Parameter Estimate S.E. Predicted 

mean 
C.L. 

(a) Western N Atlantic  M-WD Regression 

  
G. altavela MW1α 27.80 8.34 

  
 

  MW1β 3.17 0.45 
  

  
G. micrura MW3α 12.00 1.52 

  
 

  MW3βM 3.34 0.22 
  

 
  MW3βF 3.38 0.03 

  
 

Gulf of Mexico 
     

  
G. micrura MW1α 30.48 7.74 

  
 

  MW1β 3.18 0.41 
  (b) Western N Atlantic  IG, IH Beta regression 

 
 G. altavela IG1FSep -5.07 0.17 0.44 0.35–0.53 

   
IG1FOct -0.02 0.16 0.30 0.25–0.35 

   
IG1MSep -5.43 0.09 0.63 0.56–0.69 

 
 

 
IG1MOct -5.81 0.07 0.43 0.38–0.48 

   
IH2Sep -3.12 0.05 4.24 3.88–4.60 

   
IH2Oct -3.33 0.07 3.47 3.11–3.82 

  
G. micrura IG2May -5.97 0.12 0.25 0.21–0.30 

 
  IG2Jun -5.89 0.18 0.28 0.26–0.29 

 
  IG2Jul -5.29 0.16 0.50 0.32–0.68 

   
IG2Aug -5.71 0.17 0.33 0.22–0.44 

   
IG2Sep -5.93 0.18 0.38 0.24–0.53 

   
IG2Oct -5.78 0.13 0.31 0.28–0.33 

   
IG2Nov -5.42 0.17 0.44 0.31–0.57 

   
IH2May -2.87 0.08 5.38 4.66–6.09 

   
IH2Jun -3.31 0.14 3.53 3.24–3.82 

   
IH2Jul -3.44 0.16 3.10 2.38–3.82 

   
IH2Aug -3.73 0.17 2.35 1.87–2.84 

   
IH2Sep -3.50 0.18 2.94 2.49–3.38 

   
IH2Oct -3.09 0.09 4.36 4.04–4.68 
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 IH2Nov -3.13 0.15 4.18 3.05–5.31 

 
Gulf of Mexico 

     
  

G. micrura IG1FMay -6.61 0.25 0.19 0.15–0.24 

 
  IG1FJul -6.93 0.27 0.14 0.12–0.16 

   
IG1FOct -6.63 0.42 0.19 0.18–0.20 

   
IH1FMay -3.65 0.11 3.00 2.78–3.23 

   
IH1FJul -3.67 0.12 2.50 2.25–2.74 

   
IH1FOct -3.83 0.22 2.12 2.08–2.15 

  
 IG1MMay -6.24 0.11 0.14 0.06–0.21 

  
 IG1MJul -6.56 0.13 0.10 0.07–0.13 

   
IG1MOct -6.26 0.29 0.13 0.08–0.19 

   
IH1MMay -3.47 0.05 2.54 2.26–2.81 

   
IH1MJul -3.67 0.06 2.11 1.97–2.24 

   
IH1MOct -3.83 0.16 1.79 1.57–2.00 

(c) Western N Atlantic  DO Linear mixed effects 

  
G. altavela DO2Mar 24.16 5.15 24.16 14.07–34.25 

 
  DO2Aug 7.70 7.37 7.70 -2.64–18.04 

   
DO2Sep 18.71 5.76 18.71 13.66–23.75 

 
  DO2Oct 11.25 5.38 11.25 8.2–14.29 

  
G. micrura DO2May 5.10 1.59 5.10 0.86–9.34 

 
  DO2Jun 9.63 1.69 9.63 6.55–12.72 

 
  DO2Aug 4.21 1.74 4.21 1.02–7.42 

   
DO2Sep 14.96 2.25 14.96 10.72–19.20 

   
DO2Oct 4.00 1.61 4.00 1.07–6.92 

   
DO2Nov 2.78 2.25 2.78 -1.46–7.02 

 
Gulf of Mexico 

     
  

G. micrura DO2May 1.04 0.12 1.04 0.97–5.40 

  
 DO2Jul 1.01 0.15 1.01 0.95–5.22 

      DO2Oct 1.33 0.32 1.33 1.62–6.88 
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Figures 

 

FIG. 1. Map depicting the distribution of Gymnura altavela (North Atlantic ● n = 127) and G. 
micrura (North Atlantic ● n = 295; Gulf of Mexico ● n = 120) collected between 2012 and 2016. 
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FIG. 2. Life stages of western Atlantic Gymnura: young-of-year (a) G. altavela, (b) western 
North Atlantic G. micrura, and (c) Gulf of Mexico G. micrura; sexual dimorphism between (d) 
juvenile female and adult male western North Atlantic G. micrura; ontogenetic comparison of 
morphology between (e) adult and juvenile male Gulf of Mexico G. micrura; (f) adult female G. 
altavela.  
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FIG. 3. Gonads from mature western Atlantic Gymnura: (a) right and left ovaries of Gymnura 
altavela, (b) left and right ovaries of G. micrura, (c) left and right ovaries of G. micrura, with 
enlarged oocyte in the right ovary, (d) similarly developed left and right testes of G. micrura. 
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FIG. 4. Embryonic development stages: (a) dorsal and ventral view of early-stage Gymnura 
micrura, (b) dorsal and ventral view of mid-stage G. micrura, (c) ventral view of mid-stage G. 
altavela, and (d) dorsal and (e) ventral view of late-stage G. altavela. 
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FIG. 5. Maturity ogives for (a) female (n = 43 immature, 19 mature) and (b) male (n = 33 
immature, n = 30 mature) Gymnura altavela, (c) female (n = 65 immature, 94 mature) and (d) 
male (n = 66 immature, n = 57 mature) western North Atlantic G. micrura, and (e) female (n = 8 
immature, 44 mature) and (f) male (n = 8 immature, n = 47 mature) northern Gulf of Mexico G. 
micrura. 
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FIG. 6. Monthly mean gonadosomatic index (IG) of (a) female (n = 15 mature) and (b) male (n = 
27 mature) Gymnura altavela, (c) female (n = 114 mature) and male (n = 87 mature) western 
North Atlantic G. micrura (sex data are pooled), and (d) female (n = 27 mature) and (e) male (n = 
20 mature) northern Gulf of Mexico G. micrura. Error bars are 95% upper and lower confidence 
limits, and parentheses indicate sample size.    
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FIG. 7.  Monthly mean hepatosomatic index (IH) of (a) female (n = 19 mature) and male (n = 30 
mature) Gymnura altavela (b) female (n = 83 mature) and male (n = 38 mature) western North 
Atlantic G. micrura, and (c) female (n = 35 mature) and (d) male (n = 23 mature) northern Gulf 
of Mexico G. micrura. Error bars are 95% upper and lower confidence limits, and parentheses 
indicate sample size.   
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FIG. 8. Monthly variation in linear mixed effects model predicted DO of (a) Gymnura altavela, 
(b) western North Atlantic G. micrura, and (c) Gulf of Mexico G. micrura, with individual 
female treated as a random effect. Error bars are upper and lower 95% confidence intervals, and 
the number of individual females is indicated in parentheses.  
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FIG. 9. Monthly egg (a, c) and embryo (b, d, e) sizes observed in western North Atlantic (a, b) 
Gymnura altavela (a, b) and G. micrura (c, d), and Gulf of Mexico G. micrura (e). Boxes 
represent the upper and lower quartiles, and the black line indicates the median; error bars are the 
range, and outliers are indicated by open circles. In panel c, months when eggs were observed but 
not measurable are represented at 0 mm. 
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FIG. 10. Weight-at-disk width relationships for (a) male (n = 128) and (b) female (n = 166) 
western North Atlantic Gymnura micrura, and (c) male (n = 38) and (d) female (n = 48) Gulf of 
Mexico G. micrura. 
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CHAPTER 4 

Morphological and Genetic Analyses of Gymnura micrura (Myliobatiformes: Gymnuridae) from 
the Western North Atlantic Ocean Reveal Two New Species of Butterfly Ray
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Abstract 
 

Batoid fishes (skates, rays, and guitarfishes) are among the most threatened and least 

understood chondrichthyan species worldwide due to their large body size, conservative life-

history characteristics, and predominantly coastal distributions where fishing and habitat 

degradation threaten the stability of populations. Many taxa are in need of taxonomic re-

examination and species-specific population assessment. The Smooth Butterfly Ray (Gymnura 

micrura, Bloch & Schneider 1801) is widely distributed throughout the Atlantic Ocean, and 

considered ‘Data Deficient’ by the International Union for Conservation of Nature and Natural 

Resources. In shallow coastal regions, G. micrura is common bycatch in demersal trawl fisheries 

due to habitat overlap with commercially valuable marine resources; however incidental catch 

data and life history parameter estimates are lacking for this species in U.S. waters. Furthermore, 

the identification of G. micrura has been complicated by poorly described morphological 

variation. Previous descriptions do not fully account for sexual dimorphism or other variation in 

morphology and life history that are observed throughout its range, and type material is not 

available to evaluate the taxonomic status of the species. Resolving the taxonomy of G. micrura 

is essential for the assessment of populations and their vulnerability to extinction. In the present 

study, we revise the taxonomy of G. micrura based on life history, morphology, and molecular 

traits. Comparative morphometric and mitochondrial (ND2) and nuclear (RAG-1) genetic 

analyses revealed multiple distinct species in the western Atlantic. A re-description of G. micrura 

is presented, and two new species are described from the western Atlantic  and the northern Gulf 

of Mexico. A key to the identification of species in the region is also provided. The conservation 
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and sustainable management of Atlantic Gymnuridae requires careful consideration of species-

specific taxonomy and biology to accurately assess the status of contemporary populations, and to 

document and maintain the true biodiversity of this taxon. 

 

Key words: Batoidea; morphometric analyses; CCA; nasal curtain length; color pattern; ND2; 

RAG-1 
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Introduction 
 

The Butterfly Rays (Myliobatiformes: Gymnuridae: Gymnura van Hasselt, 1823) comprise at 

least 10 species that are distributed worldwide in tropical and warm temperate seas (Compagno et 

al. 1989; Last & Stevens 2009; McEachran & de Carvalho 2002; Eschmeyer & Fong 2015; Last et 

al. 2016; Weigmann 2016). Butterfly Rays are commonly associated with shallow marine and 

brackish waters, and prefer sandy and muddy substrates (Murdy et al. 2013). Members of the genus 

Gymnura are distinguished from other rays by a rhomboid and dorso-ventrally compressed body 

shape, in which the width of the disk is approximately twice the disk length, and a short tail that 

often has light and dark crossbars and one or more serrated spines, in some species (Compagno & 

Last 1999; Last & Stevens 2009).  

In the US Atlantic Ocean and Gulf of Mexico, two gymnurid species are currently 

recognized: the Spiny Butterfly Ray, Gymnura altavela (Linnaeus 1758), and the Smooth Butterfly 

Ray, G. micrura (Bloch & Schneider 1801). Both species are described as also occurring in the 

eastern Atlantic, and a third species, G. natalensis (Gilchrist & Thompson 1911) can be found off 

the coast of southwest Africa (Weigmann 2016). The validity of a fourth Atlantic species, G. 

hirundo (Lowe 1843), requires further taxonomic evaluation, and may represent a junior synonym 

of G. altavela (Weigmann 2016); this taxon was not included in the family account by Yokota et al. 

(2016). In the western Atlantic, the range of distribution of G. micrura extends from the 

northeastern US and Gulf of Mexico to Brazil (Last et al. 2016), while G. altavela can be found 

from the northeastern US and Gulf of Mexico to northern Argentina (Robins & Ray 1986; 

McEachran & Séret 1990; McEachran & de Carvalho 2002). Gymnura micrura and G. altavela are 
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distinguished by the lack of one or more serrated tail spines and spiracular tentacles in the former, 

and the maximum size of G. altavela (> 2000 mm DW), which greatly exceeds that of G. micrura 

(< 1200 mm DW). Both species are also reported from the eastern Atlantic, although recent studies 

suggest these populations may represent separate, undescribed species (e.g. Naylor et al. 2012; Last 

et al. 2016; Weigmann 2016). Body shape and coloration are highly conserved across the genus 

(Jacobsen & Bennett 2009; Smith et al. 2009), thus tail morphology has often been used as a 

primary diagnostic character for species identification (Bigelow & Schroeder 1953; Murdy et al. 

1997; Compagno & Last 1999). Original species descriptions with inadequate consideration for 

variation in body shape due to sexual dimorphism and ontogeny (e.g., Bigelow & Schroeder 1953; 

Smith et al. 2009) have contributed to taxonomic confusion and uncertainty in the status of many 

species, particularly in the absence of a holotype. Consequently, taxonomic revision of the 

Gymnuridae and re-descriptions of most taxa are needed (Muktha et al. 2016; Jacobsen & Bennett 

2009; Smith et al. 2009).   

Life history strategies of batoid fishes have been characterized by slow growth to 

maturation and low fecundity that increases the vulnerability of populations to depletion from 

overexploitation (e.g. Dulvy et al. 2008). Effective management and conservation of batoid 

populations relies on species-specific assessments, which to date have been hindered by a paucity 

of life-history information for nearly half of all taxa (Dulvy et al. 2014). Species with 

circumglobal distributions are in particular need of detailed reassessment, as many taxa have 

recently been found to belong to species complexes (White & Last 2012). Currently, G. micrura 

distributed in US waters have no commercial value, and the species is not targeted by fisheries, 

although incidental capture and release of the species occurs in trawl fisheries and may be 

substantial where densities are high. Biological information on G. micrura, including reproduction 

and diet, has been reported in several studies (Wood-Mason & Alcock 1891; Alcock 1892; Ranzi 

1934; Bigelow & Schroeder 1953; Amoroso 1960; Daiber & Booth 1960; Yokota & Lessa 2007; 
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Yokota et al. 2012; Parsons 2017). However, investigations into the life history of G. micrura in US 

waters were often constrained by low sample sizes and limited spatiotemporal representativeness, 

resulting in fragmented and potentially inaccurate biological characterization, and designation as 

globally ‘Data Deficient’ by the International Union for Conservation of Nature and Natural 

Resources (IUCN) (http://www.iucnredlist.org; Grubbs & Ha 2006). Due to the absence of direct 

threats to the species in U.S. waters, G. micrura are locally considered species of Least Concern 

(Grubbs & Ha 2006). Recent efforts to address knowledge gaps in the life history of this species 

revealed geographic variation in key population parameters (e.g., size at maturity, maximum size, 

fecundity) and morphology (e.g., disk and tail coloration, gonad size), and suggested possible 

structuring in the U.S. population and the potential for cryptic speciation within the species range of 

distribution (Yokota & Lessa 2006, 2007; Parsons 2017). In the Gulf of Mexico, for example, the 

species matures at a smaller size, attains smaller maximum sizes, and produces twice the number of 

offspring relative to individuals from the eastern coast of the US (Parsons 2017). Specimens from 

these regions also display dissimilar disk coloration and patterns, raising uncertainty in the 

taxonomic status of G. micrura throughout its western North Atlantic range of distribution.  

To clarify the taxonomic status of western Atlantic G. micrura, geographical variation in 

morphological and molecular (ND2 – mitochondrial NADH dehydrogenase 2; RAG-1 – nuclear 

recombination activating gene 1) characters from fresh and preserved specimens collected from 

U.S. waters were assessed and compared. This analysis incorporates the redescription of G. micrura 

and the descriptions of two new species. An updated species identification key for Gymnuridae of 

the western Atlantic is also included.    

      

 

  

http://www.iucnredlist.org/
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Materials and methods 
 

Fresh specimens (n = 138) of G. micrura were collected from commercial and fishery-

independent trawl surveys conducted in three geographical regions including the US coast from 

Maryland to Florida in the western North Atlantic (ATL), the Gulf of Mexico (GOM) coast  from 

Florida to Texas, and the northern South America coast of Suriname (SUR; this is the type 

locality for G. micrura) between 2012 and 2016 (Fig. 1). Tissue samples were collected for 

genetic analysis, and morphometric data were obtained from 153 fresh individuals. Morphometric 

data were also collected from preserved specimens of G. micrura (n = 110) and eight congener 

taxa (G. altavela, G. australis Ramsay & Ogilby 1886, G. crebripunctata Peters 1869, G. 

japonica Temminck & Schlegel 1850, G. marmorata Cooper 1864, G. poecilura Shaw 1804, G. 

tentaculata Müller & Henle 1841, G. zonura Bleeker 1852) held in the collections of the National 

Museum of Natural History, Smithsonian Institution, Washington, D.C. (USNM), the Harvard 

University Museum of Comparative Zoology, Cambridge, MA (MCZ), the Field Museum, 

Chicago, IL (FMNH), the Florida Museum of Natural History, Gainesville, FL (FLMNH), and 

the Muséum National d'Histoire Naturelle, Paris, France (MNHN). Specimens were photographed 

and disk and tail coloration was recorded. Observations on disk and tail coloration from an 

additional 295 fresh specimens of US G. micrura were also documented. New specimens were 

deposited in the Nunnally Ichthyology Collection at the Virginia Institute of Marine Science 

(VIMS), the MCZ, the FLMNH, and the National Zoological Collection of Suriname (NZCS), 

Paramaribo, Suriname.  

Terminology and abbreviations. Measurements and terminology for 23 characters in the 

present study follow Smith et al. (2009) (Fig. 2). Abbreviations for measurements include: DW: 

disk width; LD: disk length (tip of snout to posterior margin of disk); LB: body length (tip of 

snout to posterior margin of pelvic fins); LH: head length (tip of snout to apex of anterior 
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concavity of synarcual); LAP: anterior pectoral-fin length; LPP: posterior pectoral-fin length; 

LPOBS: pre-orbital snout length; WIO: inter-orbital width (anteriormost point of eyes); WIS: 

interspiracular width (anteriormost point of spiracles); LSV: snout to vent length (anteriormost 

point of vent); LSG1: snout to first gill length; DG5: 5th gill transverse distance; DG1: 1st gill 

transverse distance; LAPV: anterior pelvic-fin length; SP: pelvic-fin span; LPN: pre-narial length; 

LPOLS: pre-oral snout length; LNC: nasal curtain length; WIN: inter-narial length; WNC: nasal-

curtain width; WM: mouth width; ILCL: inner left-clasper length; OLCL: outer left clasper 

length. Sex was determined for each specimen, and life stage (i.e., juvenile or adult) was 

determined based on the presence of sexually mature, calcified claspers in males, and 

reproductively mature ovaries or the presence of embryos in females, when possible. 

Measurements were made to the nearest 1.0 mm for DW, LD, LB, LAP, LPP, and LSV, and the 

remaining characters were measured to the nearest 0.1 mm. 

 Morphometric analysis. Morphometric measurements of characters from immature 

juveniles and mature adults of G. micrura were converted to proportions of DW (% DW) to 

evaluate relative differences in metrics between specimens collected from four geographical 

regions: 1) Western North Atlantic (ATL), Delaware to southeast Florida, US; 2) Gulf of Mexico 

(GOM), Florida Keys to southern Texas, US; 3) Suriname (SUR), Venezuela to French Guiana, 

South America; 4) Eastern Atlantic, Senegal to Angola.  

To explore the relationship between metrics and the geographical origin of western 

Atlantic specimens, canonical correlation analysis (CCA) was used. CCA is a multivariate 

technique for direct gradient analysis (ter Braak, 1986), and for morphological analyses, can be 

applied to investigate how characters differ between specimens in relation to explanatory 

variables. Proportion metrics from females (n = 96) and males (n = 91) originating from the ATL, 

GOM, and the type locality (Suriname specimens only) were used for analysis and treated 

separately to account for sexual dimorphism. Correlation between metrics was evaluated using 
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the Pearson correlation coefficient, and highly correlated metrics (ρ > 0.85) were removed, 

resulting in a dataset of 10 metrics for females (WIO, WIS, LSV, DG5, DG1, SP, LNC, WIN, 

WNC, WM) and males (WIS, LSV, DG5, DG1, LAPV, SP, LNC, WIN, WNC, WM). Metrics 

were square root transformed and conspicuous outliers were removed to satisfy methodological 

assumptions. CCA was performed using a fully saturated model (i.e., 10 metrics), and ANOVA 

was used to assess statistical significance of the resulting canonical axes and the effect of region. 

All statistical analyses were performed in the R environment (R Development Core Team 2016). 

Molecular analysis. Tissue samples collected from G. micrura specimens were stored in 

95% EtOH for mitochondrial (ND2) and nuclear (RAG-1) DNA analysis. DNA was extracted 

from tissue samples using DNeasy Blood & Tissue Kits (QIAGEN, Valencia, CA). Polymerase 

chain reaction (PCR) amplification and Sanger sequencing was performed after testing DNA 

quality using a Nanodrop Spectrophotometer (ThermoFisher Scientific, Waltham, MA). 

Amplification of the mitochondrial ND2 locus was initially performed using primers published in 

Naylor et al. (2005, 2012), and the nuclear RAG-1 gene was amplified using previously 

developed primers (McDowell, unpubl. data). New primers were developed for the ND2 gene 

using Primer3 v 4.0 software (Koressaar & Remm 2007; Untergrasser et al. 2012) when 

established primers failed to amplify. PCR was performed on all samples and conditions were 

optimized for subsequent bi-directional cycle sequencing on an ABI 3130xl Genetic Analyzer 

(Applied Biosystems, Foster City, CA). Resulting DNA sequences were edited and forward and 

reverse sequences were assembled using the Sequencher 5.1 software (Gene Codes Corp. Ann 

Arbor, MI) with uncertainties in the chromatograms coded as ambiguities. Sequences were and 

aligned using the MAFFT v7 algorithm (Katoh et al. 2002; Katoh & Standley 2013) prior to 

phylogenetic analysis.  

Genetic relationships based on ND2 and RAG-1 sequences from individuals collected in 

the ATL, GOM, and SUR were investigated using PAUP (version 4.0a152; Swofford 1998). 
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Parsimony trees were generated using a heuristic search with stepwise addition and 100 random 

addition sequence replicates to construct 50% majority rule consensus trees for ND2 and RAG-1, 

respectively. Parsimony analysis of 711 base pairs (bp) of the ND2 region from 65 individuals, 

including the closely related species G. altavela and two representatives from the Myliobatoidea 

(Southern Stingray, Dasyatis americana Hildebrand & Schroeder 1928; Bullnose Ray, Myliobatis 

freminvillei Lesueur 1824) and one outgroup taxon (Sandbar Shark, Carcharhinus plumbeus 

Nardo 1827), identified 282 parsimony-informative characters and recovered 4 equally 

parsimonious trees. RAG-1 parsimony analysis of 728 bp from 26 taxa including the Longsnout 

Butterfly Ray (G. crebripunctata), the Bat Ray (M. californica Gill 1865), the Spinetail Devil 

Ray (Mobula japonica, Müller & Henle 1841) and one outgroup (Spiny Dogfish, Squalus 

acanthias Linnaeus 1758) resulted in 28 parsimony-informative characters and 966 equally 

parsimonious trees. Support values for ND2 and RAG-1 consensus trees were calculated using 

bootstrap resampling with 1000 replicates of the data and a heuristic search with 100 random 

addition sequence replicates for each replicate (Felsenstein 1985). 

To visualize genealogical relationships at the intraspecific level, haplotype networks were 

constructed for ND2 and RAG-1 sequence data. Sequences were collapsed into unique haplotypes 

as above and genetic relationships among species were inferred from sequence data using the 

Median Joining method of Bandelt et al. 1999, using the software package POPART (Leigh & 

Bryant 2015). Due to the limited amount of variation in RAG-1 sequences among individuals, 

sequences were collapsed into haplotypes using FaBox 1.41 (Villesen 2007), and a single 

exemplar of each unique sequence was retained for parsimony analysis. Geographic location of 

capture was included as a trait for each network. 
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Comparative material 
 

Gymnura altavela (Linnaeus 1758). Western North Atlantic USA (16 specimens) – MCZ 

160734.1, embryo female, 170 mm DW, North Carolina, 35°46’ N, 75°30’ W, 20 m depth, trawl, 

9 Sep 2001; MCZ 160734.2, embryo female, 170 mm DW, North Carolina, 35°46’ N, 75°30’ W, 

20 m depth, trawl, 9 Sep 2001; FLMNH 29994.5, female embryo, 363 mm DW, North Carolina, 

33°47’ N, 76°37’ W, 47.5 m depth, 17 Mar 1961; FLMNH 29994.8, embryo male, 326 mm DW, 

North Carolina, 33°47’ N, 76°37’ W, 47.5 m depth, 17 Mar 1961; FLMNH 40709.2, female, 593 

mm DW, North Carolina, 34°34’ N, 76°28’ W, 14.6 m depth, 13 May 1983; FLMNH 407019.3, 

female, 675 mm DW, North Carolina, 34°34’ N, 76°28’ W, 14.6 m depth, 13 May 1983; FLMNH 

40709.1, juvenile male, 546 mm DW, North Carolina, 34°34’ N, 76°28’ W, 14.6 m depth, 13 

May 1983; FLMNH 40709.6, juvenile male, 600 mm DW, North Carolina, 34°34’ N, 76°28’ W, 

14.6 m depth, 13 May 1983; VIMS 34809, juvenile female, 730 mm DW fresh, Virginia, 37°9’ 

N, 76°12’ W, 10.1 m depth, trawl, 19 Sep 2014. Western South Atlantic Brazil (2 specimens) – 

MCZ S-581, female, 381 mm DW, Rio de Janeiro, 22° 53’ S, 43° 17’ W, Jan 1872 – Feb 1872; 

MNHN 2324, juvenile male, 305 mm DW, Rio de Janeiro, 23° 0’ S, 43° 16’ W (specimen labeled 

as a type specimen, but is not from the type locality for species). Eastern North Atlantic 

Mauritania (1 specimen) – MNHN 1989-1231, adult female, 718 mm DW, 20° 46’ N, 16° 46’ E, 

6 m depth, Mar 1982.  Eastern North Atlantic Senegal (2 specimens) – MNHN 1989-1241, 

embryo female, 380 mm DW, 14° 19’ N, 17° 1’ W, 9 m depth, Apr 1979; MNHN 1981-0114, 

embryo male, 390 mm DW, 14° 19’ N, 17° 1’ W, 9 m depth, Apr 1979.  Eastern North Atlantic 

Guinea (1 specimen) – USNM 202761, adult male, 528 mm DW, 12° 10’ S, 17° 4’ W, 0 to 20 m 

depth, trawl, 11 Dec 1963. Eastern North Atlantic Côte d’Ivoire (1 specimen) – MNHN 1981-

0115, juvenile male, 488 mm DW, 4° 19’ N, 7° 22’ W, 40 m depth, Mar 1979. 
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 Gymnura australis (Ramsay & Ogilby 1886). Western South Pacific Australia (1 

specimen) – USNM 39978, female, 650 mm DW, New South Wales. 

 Gymnura crebripunctata (Peters 1869). Eastern North Pacific Mexico (2 specimens) – 

USNM 28298, adult male, 287 mm DW, Sinaloa; FMNH 62351, juvenile male, 279 mm DW, 

Baja California, 23 Sep 1954. 

 Gymnura japonica (Temminck & Schlegel 1850). Western Pacific China (1 specimen) (1 

specimen) – MNHN 6554, juvenile female, 268 mm DW, 25°0’ N, 125°0’ E. Western Pacific 

Korea (1 specimen) – FMNH 59307, juvenile male, 517 mm DW, Fusan. 

 Gymnura marmorata (Cooper 1864). Eastern North Pacific USA (6 specimens) – USNM 

62384, female, 391 mm DW, California; USNM 62382, female, 439 mm DW, California; FMNH 

33738, female, 327 mm DW, California, 1933; FMNH 42576, female, 297 mm DW, California, 

32°42’ N, 117°14’ W, seine, 26 Jul 1945; FMNH 52254, female, 209 mm DW, California, 24 

May 1911; USNM 8101, juvenile male, 361 mm DW, California. 

 Gymnura poecilura (Shaw 1804). Indian Sri Lanka (2 specimens) – FMNH 58888, 

juvenile male, 317 mm DW, Jan 1914; MCZ S-808, adult male, 371 mm DW, Ceylon, 7°38’ N, 

79°46’ E, received Jan 1884. Indian Malaysia (1 specimen) – MCZ S-242, juvenile male, 287 mm 

DW, Penang, 5°26’ N, 100°16’ E, 1 Feb 1860 – 31 Aug 1860.  

Gymnura tentaculata (Müller & Henle 1841). Indian India (2 specimens) – MNHN 2329, 

juvenile male, 245 mm DW, 1836; MNHN 2013-1220, juvenile female, 276 mm DW, Malabar, 

11°0’ N, 76°0’ E. 

 Gymnura zonura (Bleeker 1852). Western Pacific China (1 specimen) – USNM 86007, 

juvenile female, 210 mm DW, Fukien. Western Pacific Indonesia (1 specimen) – MNHN 4997, 

juvenile male, 287 mm DW, Java, 6°7’ S, 106°45’ E. Indian Malaysia (1 specimen) – MCZ S-
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245, female, 271 mm DW, Singapore, 1°20’ N, 103°50’ E. Pacific Taiwan (1 specimen) – 

MNHN 2013-0461, adult male, 542 mm DW, Tashi, 13 Mar 2012.  

 

Material examined but not retained. Gymnura altavela. Western North Atlantic USA 

(17 specimens) KPGAVT8-1, juvenile male, 573 mm DW, Virginia, 37°9’ N, 76°2’ W, 7.6 m 

depth, trawl, 5 Sep 2013; KPGAVT25-1, juvenile female, 575 mm DW fresh, Virginia, 37°12’ N, 

76°2’ W, 9.4 m depth, trawl, 1 Oct 2013; KPGAVT21-1, male, 506 mm DW fresh, Virginia, 

37°11’ N, 76°8’ W, 7.9 m depth, trawl, 3 Jul 2013; KPGAVT1611-1, juvenile female, 427 mm 

DW fresh, Virginia, 36°58’ N, 76°1’ W, 14 m depth, trawl, 8 Jul 2016; KPGAB71, juvenile male, 

549 mm DW fresh, North Carolina, 35°11’ N, 75°3’ W, 32 m depth, trawl, 11 Sep 2013; 

KPGAB74, juvenile male, 628 mm DW fresh, North Carolina, 35°4’ N, 75°9’ W, 69 m depth, 

trawl, 11 Sep 2013; KPGAB109, adult male, 1278 mm DW fresh, Virginia, 37°23’ N, 75°12’ W, 

17 m depth, trawl, 14 Sep 2013; KP20152, adult female, 1843 mm DW fresh, North Carolina, 

34°54’ N, 75°48’ W, 26 m depth, trawl, 18 Mar 2015; KPGA1376-1, juvenile male, 585 mm DW 

fresh, Virginia, 38°1’ N, 75°13’ W, 9.1 m depth, trawl, 26  Oct 2013; KPGA1388-1, juvenile 

female, 590 mm DW fresh, Virginia, 37°23’ N, 75°34’ W, 10.1 m depth, trawl, 28 Oct 2013; 

KPGA1396-1, juvenile female, 549 mm DW fresh, Virginia, 37°6’ N, 75°42’ W, 11 m depth, 

trawl, 29 Oct 2013; KPGA13105-1, adult female, 1905 mm DW fresh, Virginia, 36°56’ N, 

75°44’ W, 14.9 m depth, trawl, 29 Oct 2013; KPGA13X-1, juvenile male, 628 mm DW fresh, 

Virginia, 37°28’ N, 75°14’ W, 29 m depth, trawl, 29 Oct 2013; KPGA13122-3, adult female, 

1311 mm DW fresh, North Carolina, 35°37’ N, 75°23’ W, 17.1 m depth, trawl, 11 Nov 2013; 

KPGA56-1, juvenile female, 682 mm DW, Delaware, 38°40’ N, 74°58’ W, 18.4 m depth, trawl, 

12 Oct 2012; KPGA85-1, juvenile female, 567 mm DW, Virginia, 37°41’ N, 75°29’ W, 13.4 m 

depth, trawl, 15 Oct 2012; KPGA85-4, juvenile male, 620 mm DW, data same as KPGA85-1.   
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Morphometric analysis 
 

Canonical correlation analysis indicated significant variation in morphometric characters of both 

male and female among geographic regions. For males, the full suite of metrics significantly 

explained variability between regions (F = 11.96, p = 0.001), and collectively accounted for 22% 

of the variability in morphology. The first and second canonical axes (CA1, CA2) accounted for 

80% and 20% of the explained variation, respectively, and were statistically significant (CA1 F = 

19.06, p = 0.001; CA2 F = 4.87, p = 0.002). LNC had the greatest influence on the separation of 

regional groups on CA1 followed by LAPV, and SP loaded most heavily on CA2 (Fig. 3a). The 

strong negative loading of LNC corresponded to the centroid of GOM specimens, which had 

longer nasal curtains relative to ATL and SUR specimens, while the strong positive loading of SP 

reflects pelvic-fin spans that are broader in ATL specimens than GOM and SUR specimens 

(Table 2). Similarly, the positive loading of LAPV on CA1 and negative loading on CA2 aligns 

with the longest pelvic fins that are observed in SUR (Table 2). Overlap in the overall 

morphometric variation between ATL and GOM corresponds to greater morphometric similarity 

between these regions relative to SUR (Fig. 3b). To further explore regional differences between 

metrics, a second CCA was evaluated without LNC. The remaining metrics collectively 

accounted for 17% of morphological variation, which differed significantly between regions (F = 

8.95, p = 0.001). Metric variation explained by CA1 and CA2 was 73% and 27%, respectively, 

and statistically significant (CA1 F = 13.13, p = 0.001; CA2 F = 4.76, p = 0.003). The removal of 

LNC from the analysis had minimal impacts on the separation of regional centroids, but increased 

overlap of metrics variation between regions (Fig. 3c–3d), and suggests that a combination of 

LNC, LAPV, and SP metrics best differentiates regional groups of male rays.    
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 Regional differences in female morphometric characters were significant (F = 10.12, p = 

0.001), and metrics collectively accounted for 18% of the total variation present. CA1 and CA2 

were statistically significant (CA1 F = 15.83, p = 0.001; F = 4.40, p = 0.003), and accounted for 

78% and 22% of the explained variation, respectively. LNC and SP strongly loaded positively on 

CA1 and CA2 along with the centroid for ATL specimens, while the centroid for GOM loaded 

positively on CA1 and negatively on CA2 (Fig. 4a). This pattern reflects larger lengths of these 

characters in ATL relative to GOM specimens (Table 2). The negative loading of the SUR 

centroid on CA1 corresponds to smaller LNC and SP in this region, and the generally low overlap 

of variation in metrics between SUR and the other two regions supports the morphological 

distinction of G. micrura from the northern congeners (Fig. 4a, Table 2). Removal of LNC from 

subsequent analyses corresponded to only a 2% loss in the total variation explained by the model 

(16%). Variation due to region remained statistically significant (F = 8.82, p = 0.001), and CA1 

and CA2 were statistically significant (CA1 F = 12.55, p = 0.001; CA2 F = 5.10, p = 0.005), 

accounting for 71% and 29% of the total variation explained.   

 

 

Molecular analysis 
 

The final majority rule consensus trees for ND2 and RAG-1 sequences recovered three 

monophyletic lineages that correspond to ATL, GOM, and SUR specimens of Gymnura micrura. 

Western Atlantic G. altavela were recovered as genetically distinct from one sequence reported 

for a specimen from the type locality, and were therefore assigned Gymnura cf. altavela (Fig. 5–

6). Bootstrap results (i.e., percentages based on 1000 trials) for the ND2 tree suggested high 

reliability in the topology, and grouped ATL, GOM, and SUR Gymnura sequences into three 
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distinct clades with 100% bootstrap support for each node (Fig. 5). Support for branch nodes in 

the RAG-1 tree were less robust; there was 66% support for the GOM clade (Fig. 6).   

The ND2 haplotype network presented in Fig. 7 demonstrates that the magnitude of 

divergence between ATL, GOM and SUR specimens was significant (indicated by the large 

number of hash marks, or nucleotide differences, between regions), and greater than the 

differences within each region, corroborating the presence of unique taxa within the species 

complex. The ND2 network also suggests that SUR G. micrura is more closely related to the 

GOM species than to the ATL species (Fig. 7). The RAG-1 network clearly separated GOM and 

ATL Gymnura species, but failed to resolve the phylogenetic placement of SUR G. micrura 

based on the low number of parsimony informative characters available (Fig. 7).      

 

  

Systematic account 
 

Gymnura micrura (Bloch & Schneider 1801) 
Smooth Butterfly Ray 

Figs. 8–9; Tables 1–2 

 

Synonyms 

Raja micrura Bloch & Schneider 1801: 360. 

Trygon micrura Müller 1837: 40. 

Pteroplatea maclura Müller & Henle 1841: 169. 

Pteroplatea micrura Engelhardt 1913: 103. 

Gymnura altavela Fowler 1945: 162. 
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Neotype: USNM 440357, adult male, 330 mm DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 

m depth, shrimp trawl, 5 Oct 2015. A holotype was not designated in the original description of 

G. micrura. Therefore, to preserve the current usage of G. micrura and to offer a point of 

comparison for this study, we designate a neotype (USNM 440357) for this species that was 

collected in the present study from the type locality (Suriname, South America) 

 

Paratypes (16 specimens) - USNM 440356, female, 582 mm DW fresh, Suriname, 

06°24’ N, 54°29’ W, 20-25 m depth, shrimp trawl, 3 Oct 2015; MCZ 171858, adult male, 333 

mm DW fresh, 328 mm DW preserved, Suriname, 06°30’ N, 54°29’ W, 20-25 m depth, shrimp 

trawl, 5 Oct 2015; MCZ 171857, female, 442 mm DW fresh, 434 mm DW preserved, Suriname, 

06°26’ N, 54°32’ W, 20-25 m depth, shrimp trawl, 3 Oct 2015; FLMNH 238555, adult male, 351 

mm DW fresh, Suriname, 06°30’ N, 54°30’ W, 20-25 m depth, shrimp trawl, 3 Oct 2015; 

FLMNH 238688, female, 370 mm DW fresh, Suriname, 06°26’ N, 54°32’ W, 20-25 m depth, 

shrimp trawl, 3 Oct 2015; NZCS F 7099, female, 406 mm DW fresh, Suriname, 06°30’ N, 54°29’ 

W, 20-25 m depth, shrimp trawl, 5 Oct 2015; VIMS 35366, male, 348 mm DW fresh, Suriname, 

06°30’ N, 54°29’ W, 20-25 m depth, shrimp trawl, 5 Oct 2015; VIMS 35367, adult male, 325 mm 

DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 m depth, shrimp trawl, 5 Oct 2015; VIMS 

35368, female, 419 mm DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 m depth, shrimp trawl, 

5 Oct 2015; VIMS 35369, adult male, 319 mm DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 

m depth, shrimp trawl, 5 Oct 2015; VIMS 35370, juvenile female, 395 mm DW fresh, Suriname, 

06°26’ N, 54°32’ W, 20-25 m depth, shrimp trawl, 3 Oct 2015; VIMS 35371, adult male, 337 mm 

DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 m depth, shrimp trawl, 5 Oct 2015; VIMS 

35372, female, 498 mm DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 m depth, shrimp trawl, 

5 Oct 2015; VIMS 35373, female, 357 mm DW fresh, Suriname, 06°30’ N, 54°29’ W, 20-25 m 

depth, shrimp trawl, 5 Oct 2015; VIMS 35374, adult female, 561 mm DW fresh, Suriname, 
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06°26’ N, 54°32’ W, 20-25 m depth, shrimp trawl, 3 Oct 2015; VIMS 35375, female, 484 mm 

DW fresh, Suriname, 06°26’ N, 54°32’ W, 20-25 m depth, shrimp trawl, 3 Oct 2015.  

           

  Non-type specimens examined (69 specimens) – Caribbean Sea Mexico (1 specimen) - 

MCZ 37159, juvenile male, 220 mm DW, Carmen, 25°56’ N, 111°8’ W. Caribbean Sea 

Venezuela (4 specimens) - MCZ 51065, adult male, 303 mm DW, 10°29’ N, 62°21’ W, 14.6 m 

depth; MCZ 51051, juvenile male, 170 mm DW, 10°29’ N, 62°21’ W, 9.1 m depth; USNM 

222908 (n = 2), all juveniles, female, 245 mm DW, male, 205 mm DW,  08°55’ N, 60°10’ W, 

10.7 m depth, otter trawl, 27 Feb 1978. Western North Atlantic Suriname (19 specimens) – 

FLMNH 224447 (n = 2), juvenile male, 271 mm DW, adult male, 319 mm DW, 6°40’ N, 54°4’ 

W, 7 m depth, 10 Jul 1968; FMNH 89990, juvenile male, 244 mm DW; FMNH 89991, female, 

214 mm DW, 18 m depth, 3 May 1957; MCZ 40414, juvenile male, 293 mm DW, 6°24’ N, 

54°27’ W, 31.1 m depth, 15 Sep 1958; USNM 205354, female, 485 mm DW, 6°22’ N, 55°22’ W, 

29 m depth, 30 Apr 1969; USNM 156716 (n = 4), all juveniles, female, 184 mm, female, 221 mm 

DW, male, 266 mm, female, 277 mm DW, 6°24’ N, 55°1’ W, 27 m depth; USNM 156714 (n = 

9), female, 331 mm DW, female, 301 mm, juvenile male, 289 mm DW, juvenile female, 275 mm 

DW, juvenile female, 248 mm DW, juvenile male, 222 mm DW, juvenile male, 221 mm DW, 

juvenile male, 230 mm DW, juvenile female, 250 mm DW, 6°20’ N, 54°56’ W, 26 m depth, 30 

May 1957. Western North Atlantic French Guiana (6 specimens) – USNM 222622, juvenile male, 

317 mm DW, 4°25’ N, 50°55’ W, 37 to 40 m depth, twin flat trawls, 7 May 1975; USNM 

222615, juvenile male, 233 mm DW, 4°42’ N, 51°28’ W, 0 to 37 m depth, twin flat trawls, 6 May 

1975; USNM 222616, male, 242 mm DW, 4°25’ N, 50°55’ W, 37 to 40 m depth, twin flat trawls, 

7 May 1975; FLMNH 41642, female, 385 mm DW, 4°58’ N, 51°58’ W, 32.9 m depth, 3 Jul 

1972; FLMNH 35336, juvenile male, 231 mm DW, 5°5’ N, 51°58’ W, 11 Dec 1977; FLMNH 

101740, adult male, 295 mm DW, 4°30’ N, 51°30’ W, 21 Feb 1968. Western North Atlantic 
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Brazil (7 specimens) – USNM 222597 (n = 5), all juveniles, female, 373 mm female, 319 mm 

DW, male, 287 mm DW, male, 277 mm DW, male, 182 mm DW, 0°48’ N, 47°45’ W, 46 to 48 m 

depth, 14 May 1975; MCZ 40417, juvenile male, 265 mm DW, 2°29’ N, 48°58’ W, 14 Nov 1957; 

MCZ 40402, female, 234 mm DW, 2°31’ N, 49°10’ W, 27.4 m depth, 14 Nov 1958. Western 

South Atlantic Brazil (2 specimens) – MNHN 7972, juvenile male, 350 mm DW, 12°58’ N, 

38°28’ W; USNM 156822, juvenile male, 306 mm DW, 2°28’ N, 48°55’ W, 42 m depth, 15 Nov 

1957. Eastern North Atlantic Senegal (8 specimens) – FLMNH 176854, female, 545 mm DW, 

Fatick, 14°00’ N, 14°00’ W, fish market, 8 Dec 2009; MNHN 1989-1216, male, 489 mm DW, 

Saloum, 15°00’ N, 18°00’ W, 14 m depth, May 1983; MNHN 1989-1225, adult female, 660 mm 

DW, Saloum, 15°00’ N, 18°00’ W, 10 m depth, May 1983; MNHN 1989-1220, juvenile male, 

202 mm DW, 12°58’ N, 16°52’ W, 10 m depth, Feb 1980; MNHN 1989-1214, juvenile male, 215 

mm DW, Saloum, 15°00’ N, 18°00’ W, 12 m depth, May 1983; MNHN 1989-1224, adult male, 

400 mm DW, Saloum, 15°00’ N, 18°00’ W, 12 m depth, May 1983; MNHN 1989-1217, adult 

male, 525 mm DW, Saloum, 15°00’ N, 18°00’ W, 12 m depth, May 1983; MNHN 1989-1223, 

adult male, 446 mm DW, Saloum, 15°00’ N, 18°00’ W, 12 m depth, May 1983. Eastern North 

Atlantic Guinea-Bissau (1 specimen) – MNHN 1989-1232, adult female, 731 mm DW, Cacheu, 

12°12’ N, 16°10’ W, 3 m depth, Aug 1983.  Eastern North Atlantic Guinea (1 specimen) – 

MNHN 1985-0237, juvenile male, 279 mm DW. Eastern North Atlantic Sierra Leone (2 

specimens) – FLMNH 29993, female, 507 mm DW, Upper Sierra Leone River, 8°34’ N, 13°5’ 

W, 3.7 to 5.5 m depth, 7 Feb 1968; USNM 279558, juvenile female, 286 mm DW, St. Anne 

Banana Islands, Feb 1986. Eastern North Atlantic Liberia (4 specimens) – USNM 193896, male 

335 mm DW, Bushrod Island, 30 Oct 1952; USNM 193741, male, 379 mm DW, St. Paul River, 7 

to 13 m depth, 6 Jan 1953; USNM 222623 (n = 2), all juveniles, female, 285 mm DW, female, 

309 mm DW, 6°17’ N, 10°49’ W, 20 m depth, trawl, 8 Nov 1963. Eastern North Atlantic Côte 

d’Ivoire (4 specimens) – MNHN 1989-1227, male, 394 mm DW, 5°12’ N, 3°49’ W, 20 m depth, 
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Mar 1979; MNHN 1989-1226, female 475 mm DW, 5°12’ N, 4°21’ W, 15 m depth, Mar 1979; 

MNHN 1989-1229, female, 320 mm DW, 5°04’ N, 3°48’ W, 15 m depth, Mar 1979; MNHN 

1989-1242, juvenile male, 210 mm DW, 5°04’ N, 3°48’ W, 15 m depth, Mar 1979. Eastern North 

Atlantic Ghana (1 specimen) – MNHN 222600, juvenile female, 179 mm DW, Tema, 19 Jan 

1962. Eastern North Atlantic Togo (3 specimens) – MNHN 1989-1244, adult female 660 mm 

DW, 6°13’ N, 1°37’ E, 12 m depth, Jun 1983; MNHN 1989-1245, adult female, 692 mm DW, 

6°13’ N, 1°37’ E, 12 m depth, Jun 1983; MNHN 1989-1247, adult female, 750 mm DW, 6°13’ N, 

1°37’ E, 12 m depth, Jun 1983. Eastern North Atlantic Benin (2 specimens) – MNHN 1969-0211, 

juvenile male, 310 mm DW, 6°21’ N, 2°54’ E, 15 m depth, 19 Mar 1964; MNHN 1967-0737, 

juvenile male, 203 mm DW, 6°19’ N, 2°24’ E, 15 m depth, Jul 1964. Eastern North Atlantic 

Nigeria (2 specimens) – MNHN 1985-0217, juvenile female, 298 mm DW, 3°49’ N, 6°13’ E, 90 

m deep, 26 May 1956; USNM 198011, female, 327 mm DW, Lagos. Eastern South Atlantic 

Gabon (1 specimen) – KPGMGabon, male, 375 mm DW fresh, 2°16’ S, 9°30’ E, 13.5 m depth, 

shrimp trawl, 10 Aug 2015. Eastern South Atlantic Angola (1 specimen) – FMNH 118133, 

juvenile male, 365 mm DW, 11°16’ S, 13°42’ E, 20 m depth, trawl, 6 Mar 2002.  

                         

 Diagnosis.  Dimensions as percentages of DW are given in Table 1 and Table 2. 

Diagnosis and description based on juvenile and adult male specimens. 

 Gymnura micrura is distinguished from other western Atlantic Gymnura by the 

combination of the following characters: a rhomboid disk, 1.5 to 1.9 times wider than long (1.8 to 

1.9 times in females) and a short snout, pre-orbital snout length 8.8 – 14.2% of DW; moderate 

head length, one third of disk length; nasal curtain short (1.6% of DW), nasal curtain length 10.0 

– 16.5% of pre-oral snout length; posterior pectoral length 75.2 – 87.3% of anterior pectoral 

length; pelvic span 37.9 – 51.8% 1st gill transverse distance; tail moderately short (36 – 77 mm) 

without a serrated spine, about one quarter of total length (23.0 – 29.4% TL) and 32.3% body 
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length; in life dorsal surface marbled and marginal white spots absent; ventral surface pale copper 

to golden yellow and occasionally marbled with creamy white near midline, gills, or pectoral tips; 

darker to dusky coloration near mid-pectoral margins of large specimens; dorsal tail surface with 

three to four well-defined light crossbars, and posteriormost dark crossbar sometimes extending 

across ventral surface of tail.  

 

Description. Disk rhomboidal in shape, 1.5 to 1.9 times wider than long. Anterior margin 

medially concave and weakly convex before apex, anterior pectoral length 57.2 – 69.2% of DW; 

apex acutely pointed; posterior margin straight to moderately convex and weakly rounded near 

insertion, posterior pectoral length 45.5 – 53.2 % of DW. Moderate head length, about one third 

of disk length. Eyes small and barely elevated, interorbital width (7.9 – 9.7% DW) less than 

interspiracular width (8.3 – 9.7% DW); spiracle tentacle absent. Pelvic fins triangular with 

angular free rear tip that extends beyond inner margin, anterior pelvic length 6.9 – 11.5% DW. 

Tail moderately short, 25.1% of total length, with low finfold, low ventral keel, and vestigial 

dorsal fin rarely present. Claspers short and slightly dorsally depressed, tapering distally. Inner 

margin of the clasper straight, lateral margin slightly convex medially; left clasper outer length 

1.5 – 6.4% DW, left clasper inner length 4.7 – 13.5% DW.   

Mouth width (7.9 – 9.1% DW) broader than internarial width (5.5 – 7.3% DW), preoral 

snout length 10.1 – 15.9% DW. Symphysal region of the lower jaw smooth and flat to weakly 

concave, becoming arched laterally and slightly concave near corners. Upper jaw medially 

concealed by nasal curtain. Nostril openings subovate and slanting anterolaterally, interior margin 

concealed by nasal curtain. Nasal curtain short (1.2 – 2.1% DW) and moderately narrow (6.6 – 

8.2% DW), medially straight with moderately rounded posterolateral apices, prenarial snout 

length 8.0 – 12.8% DW. First gill slits posterior to mouth, with origins lateral of mouth corners 

and distance between successive gills slits decreasing; distance between 1st gill slits and snout 
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relatively short (17.7% DW), and transverse distance between 1st gill slits (16.0% DW) 1.5 times 

transverse distance between 5th gill slits (10.8% DW). 

 

Coloration. In fresh specimens, dorsal surface taupe to rosy brown, densely covered with 

lighter, large and irregular spots and blotches, and interspersed with smaller and darker brown 

spots, giving marbled appearance. Ventral surface pale copper to golden yellow with darker to 

dusky coloration near mid-pectoral margins of large specimens, and occasionally marbled with 

creamy white near midline, gills, or pectoral tips. Dorsolateral margin of pelvic fins white. Dorsal 

surface of tail with three to four well-defined light crossbars; ventral surface same as ventral disk 

surface, with posteriormost dark crossbar extending across ventral surface in some specimens. In 

preserved specimens, dorsal surface is uniformly light to dark brown, with faint marbled blotches 

occasionally retained and smaller dispersed dark spots rarely retained; ventral surface retains 

marbled pattern that is generally faded to pale pinkish orange, yellow, or white.  

 

Size. A small species of western Atlantic Gymnura, reaching a maximum disk width of 

351 mm in males and 582 mm in females. Males between 170-289 mm DW are immature; 

maturity was observed in males wider than 290 mm. Females 184-395 mm DW are immature, 

and only two specimens were mature at 561 and 582 mm DW. Size at birth is unknown. The disk 

width of the smallest post-embryonic specimens was 184-221 mm. 

 

Distribution. Northern coast of South America including at least Venezuela, Guyana, 

Suriname, and French Guiana; northwestern range boundary unknown. Currently includes Brazil, 

however genetic confirmation of the taxonomic identity of specimens occurring in the western 

South Atlantic is needed. 
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 Etymology. The generic name is derived from a combination of the words naked and tail 

(Greek gymnos and oura), and the specific name micrura is a combination of the Greek micro 

and oura, in reference to the short tail. 

 

Remarks. Coloration may be highly variable both between and within juvenile and adult 

life stages (Fig. 14). Several morphometric differences occur between males and females, as 

demonstrated in Table 2. 

 

 

Gymnura sp. nov. A  
 

Figures 10–11; Tables 1–2 

 

Synonyms 

Gymnura micrura Bloch & Schneider 1801 

Gymnura sp. nov. A Parsons 2017 

 

Holotype. USNM 440358, adult male, 406 mm DW, North Carolina, 36°13’ N, 75°45’ W, 8.8 m 

depth, trawl, 9 Nov 2013.  

 

Paratype. USNM 440359, adult female, 638 mm DW, Georgia, 32°31’ N, 80°30’ W, 6.4 

m depth, shrimp trawl, 25 Jun 2015. 

 

Non-type material examined. Western North Atlantic USA (28 specimens) – MCZ 

37059, adult female, 745 mm DW, North Carolina, 34°27’ N, 76°4’ W, 44 m depth; MCZ 37060, 
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adult female, 769 mm DW, North Carolina, 34°27’ N, 76°4’ W, 44 m depth; MCZ S-1344, 

juvenile male, 229 mm DW, North Carolina, 34°48’ N, 76°19' W; MCZ S-1345, juvenile male, 

266 mm DW, North Carolina, 34°48’ N, 76°19' W; MCZ S-239 juvenile female, 222 mm DW, 

South Carolina, 32°45’ N, 79°52’ W, 1847-1853; MNHN A-7938, juvenile female, 210 mm DW, 

New York, 40°40’ N, 73°49’ W, 1823; USNM 42502, adult male, 399 mm DW, Virginia; 

FLMNH 29943, adult female, 728 mm DW, Florida, 28°42’ N, 80°42’ W, 20 Nov 1976; FLMNH 

29981, adult female, 693 mm DW, Florida, 28°51’ N, 80°49’ W, 15 Jul 1976; FLMNH 233554, 

female, 496 mm DW, Florida, 25°42’ N, 80°14’ W, 30 Nov 1947; FLMNH 208562, juvenile 

male, 222 mm DW, Florida, 25°43’ N, 80°13’ W, shrimp trawl, 5 Apr 1958; FLMNH 29947, 

juvenile female, 305 mm DW, Florida, 28°42’ N, 80°42’ W, 2.8 m depth, 20 Apr 1978; FLMNH 

47495, juvenile male, 304 mm DW, Florida, 28°24’ N, 80°34’ W, 19 Dec 1978; FLMNH 

143163, juvenile male, 287 mm DW, Georgia, 30°56’ N, 81°26’ W, 14 Apr 1959; FLMNH 

101784, juvenile male, 252 mm DW, Georgia, 31°58’ N, 80°34’ W, 8.2 m, 11 Dec 1960; 

FLMNH 29977, juvenile female, 361 mm DW, Georgia, 31°3’ N, 81°24’ W, 6 Jul 1959; FLMNH 

184152, juvenile female, 254 mm DW, North Carolina, 22 May 1973; FMNH 18014, adult male, 

402 mm DW, North Carolina; VIMS 35246, adult female, 655 mm DW fresh, Georgia, 31°49’ N, 

80°57’ W, 6.4 m, shrimp trawl, 17 Jun 2015; VIMS 35254, female, 420 mm DW fresh, North 

Carolina, 36°13’ N, 75°45’ W, 8.8 m depth, trawl, 9 Nov 2013; VIMS 35255, juvenile male, 239 

mm DW fresh, Virginia, 36°59’ N, 76°19’ W, 19.2 m depth, trawl, 17 Sep  2014; VIMS 35256, 

juvenile female, 276 mm DW fresh, Virginia, 37°38’ N, 76°2’ W, 21 m depth, trawl, 15 Sep 

2014; VIMS 35258, adult female, 690 mm DW fresh, Georgia, 31°49’ N, 80°57’ W, 6.4 m depth, 

shrimp trawl, 17 Jun 2015; VIMS 35264, adult female, 789 mm DW fresh, Georgia, 31°49’ N, 

80°57’ W, 6.4 m depth, shrimp trawl, 17 Jun 2015; VIMS 35265, adult female, 810 mm DW 

fresh, Georgia, 31°49’ N, 80°57’ W, 6.4 m depth, shrimp trawl, 17 Jun 2015; VIMS 35269, adult 

female, 690 mm DW fresh, Georgia, 31°49’ N, 80°57’ W, 7 m depth, shrimp trawl, 16 Jun 2015; 
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VIMS 34829, adult female, 635 mm DW fresh, Georgia, 31°49’ N, 80°57’ W, 6.4 m depth, 

shrimp trawl, 17 Jun 2015; KPGM15121, female, 407 mm DW fresh, North Carolina, 35°29’ N, 

75°25’ W, 15.3 m depth, trawl, 4 May 2015. 

 

Material examined but not retained. Western North Atlantic USA (33 specimens) – 

KPGMVT101-1, juvenile male, 300 mm DW fresh, Virginia, 37°0’ N, 76°20’ W, 7.6 m depth, 

trawl, 7 Aug 2013; KPGMVT35-1, adult male, 410 mm DW fresh, Virginia, 37°26’ N, 76°12’ W, 

7.9 m depth, trawl, 2 Oct 2013; KPGMVT24-1, adult male, 435 mm DW fresh, Virginia, 37°20’ 

N, 76°2’ W, 7.9 m depth, trawl, Sep 3 2013; KPGMVT2-1, adult female, 610 mm DW fresh, 

Virginia, 37°6’ N, 76°10’ W, 11 m depth, trawl, 2 Oct 2014; KPGMVT14-1, adult male, 453 mm 

DW fresh, Virginia, 36°58’ N, 76°1’ W, 14.6 m depth, trawl, 1 Oct 2013; KPGMVT7-1, male, 

380 mm DW fresh, Virginia, 37°0’ N, 76°20’ W, 7.6 m depth, trawl, 16 Jul 2013; KPGMVT32-1, 

adult male, 420 mm DW fresh, Virginia, 37°23’ N, 76°10’ W, 15.2 m depth, trawl, 5 Aug 2013; 

KPGM13107-1, adult female, 797 mm DW fresh, Virginia, 36°43’ N, 75°49’ W, 14.3 m depth, 

trawl, 30 Oct 2013; KPGMTT02, adult female, 506 mm DW fresh, Georgia, 31°49’ N, 80°57’ W, 

6.4 m depth, shrimp trawl, 17 Jul 2015; KPJXM502-1, juvenile female, 221 mm DW fresh, 

Florida, 30°27’ N, 81°26’ W, 1.2 m depth, haul seine, 8 Aug 2013; KPJXM408-1, female, 450 

mm DW fresh, Florida, 30°31’ N, 81°30’ W, 2 m depth, trawl, 5 Sep 2013; KPJXM409-1, adult 

female, 624 mm DW fresh, Florida, 30°34’ N, 81°29’ W, 5.7 m depth, trawl, 12 Nov 2013; 

KPJXM201-1, adult male, 367 mm DW fresh, Florida, 30°42’ N, 81°26’ W, 1.7 m depth, haul 

seine, 23 Aug 2013; KPJXM201-2, adult female, 835 mm DW fresh, Florida, 30°42’ N, 81°26’ 

W, 1.7 m depth, haul seine, 23 Aug 2013; KPJXM201-3, adult female, 681 mm DW fresh, 

Florida, 30°42’ N, 81°26’ W, 1.7 m depth, haul seine, 23 Aug 2013; KPJXM201-4, adult female, 

725 mm DW fresh, Florida, 30°42’ N, 81°26’ W, 1.7 m depth, haul seine, 23 Aug 2013; 

KPJXM304-1, juvenile female, 220 mm DW fresh, Florida, 30°32’ N, 81°29’ W, 2.5 m depth, 
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haul seine, 29 Oct 2013; KPJXM304-2, juvenile male, 255 mm DW fresh, Florida, 30°32’ N, 

81°29’ W, 2.5 m depth, haul seine, 29 Oct 2013; KPJXM304-3, juvenile male, 246 mm DW 

fresh, Florida, 30°32’ N, 81°29’ W, 2.5 m depth, haul seine, 29 Oct 2013; KPJXM304-4, juvenile 

female, 246 mm DW fresh Florida, 30°32’ N, 81°29’ W, 2.5 m depth, haul seine, 29 Oct 2013; 

KPJXM304-5, juvenile female, 305 mm DW fresh, Florida, 30°42’ N, 81°31’ W, 2.3 m depth, 

haul seine, 21 Aug 2013; KPJXM102-3, male, 294 mm DW fresh, Florida, 30°42’ N, 81°31’ W, 

2.3 m depth, haul seine, 21 Aug 2013; KPGM1378-1, adult male, 487 mm DW fresh, Virginia, 

37°46’ N, 75°27’ W, 10.7 m depth, trawl, 27 Oct 2013; KPGM1389-1, female, 504 mm DW 

fresh, Virginia, 37°24’ N, 75°38’ W, 7.6 m depth, trawl, 28 Oct 2013; KPGM1391-1, juvenile 

male, 395 mm DW fresh, Virginia, 37°14’ N, 75°43’ W, 8.2 m depth, trawl, 28 Oct 2013; 

KPGM1397-1, adult male, 420 mm DW fresh, Virginia, 37°8’ N, 75°46’ W, 7.9 m depth, trawl, 

28 Oct 2013; KPGM1390-1, juvenile female, 478 mm DW fresh, Virginia, 37°19’ N, 75°39’ W, 

10.1 m depth, trawl, 28 Oct 2013; KPGM13X-1, adult male, 485 mm DW fresh, Virginia, 37°28’ 

N, 75°14’ W, 29 m depth, trawl, 29 Oct 2013; KPGM13109-1, adult female, 725 mm DW fresh, 

Virginia, 36°38’ N, 75°49’ W, 15.2 m depth, trawl, 30 Oct 2013; KPGM13118-1, adult female, 

740 mm DW fresh, North Carolina, 36°29’ N, 75°43’ W, 14.3 m depth, trawl, 30 Oct 2013; 

KPGM13107-2, adult female, 870 mm DW fresh, Virginia, 36°43’ N, 75°49’ W, 14.3 m depth, 

trawl, 30 Oct 2013; KPUNF13-2, juvenile female, 265 mm DW fresh, Florida, 30°43’ N, 81°31’ 

W, 6.2 m depth, bottom longline, 30 May 2013; KPGM1395-1, juvenile female, 544 mm DW 

fresh, Virginia, 37°16’ N, 75°40’ W, trawl, 28 Oct 2013.        .  

 

Diagnosis. Dimensions as percentages of DW are given in Table 1 and Table 2. 

Diagnosis and description based on juvenile and adult male specimens. 

 Gymnura sp. nov. A is distinguished from other western Atlantic Gymnura by the 

combination of the following characters: a rhomboid disk, 1.5 to 2.0 times wider than long (1.7 to 
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1.9 times in females) and a short snout, pre-orbital snout length 9.7 – 14.8% of DW; moderately 

long head length, greater than one third of disk length; nasal curtain moderately short (1.8% of 

DW), nasal curtain length 11.1 – 18.6% pre-oral snout length; posterior pectoral-fin length 74.1 – 

92.1% of anterior pectoral-fin length; pelvic-fin span 38.1 – 56.2% 1st gill transverse distance; tail 

short (32 – 80 mm) without a serrated spine, less than one quarter of total length (17.6 – 24.9% 

TL) and 25.1% of body length; dorsal surface with light and fine vermiculate pattern, speckled 

with numerous small and irregular creamy white spots, and disk margins lined with creamy white 

spots; ventral surface uniformly white, occasionally fading to pale yellow near posterior pectoral 

margins, with darker to dusky coloration near mid-pectoral margins of large specimens; dorsal 

tail surface with two to five light crossbars that are mottled in large specimens.  

 

Description. Disk rhomboidal in shape, 1.5 to 2.0 times wider than long. Anterior margin 

moderately concave medially and straight to slightly convex before apex, anterior pectoral length 

55.5 – 66.9% of DW; apex acutely pointed; posterior margin straight to weakly convex and 

weakly rounded near insertion, posterior pectoral-fin length 47.7 – 53.4% of DW. Moderate head 

length, greater than one third of disk length. Eyes small and barely elevated, interorbital width 

(7.8 – 11.3% DW) less than interspiracular width (8.7 – 10.5% DW); spiracle tentacle absent. 

Pelvic fins subtriangular with slightly rounded free rear tip, posterior margin straight to weakly 

angular, with lateral margin slightly shorter than inner margin, anterior pelvic length 6.6 – 9.2% 

DW. Tail short, 20.8% of total length, with moderately low dorsal finfold and ventral keel. 

Claspers short and conical, tapering distally. Clasper inner margin straight, lateral margin slightly 

convex medially; left clasper outer length 2.1 – 7.4% DW, left clasper inner length 3.0 – 13.1% 

DW.   

Mouth width (8.0 – 10.2% DW) broader than internarial width (5.7 – 7.0% DW), preoral 

snout length 10.7 – 15.5% DW. Lower jaw symphysal region moderately concave, broadly 
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arched laterally. Upper jaw medially concealed by nasal curtain. Nostril openings subovate and 

slanting anterolaterally, interior margin concealed by nasal curtain. Nasal curtain moderately 

short (1.3 – 2.5% DW) and moderately narrow (6.8 – 9.1% DW), medially straight with 

moderately rounded posterolateral apices, prenarial snout length 8.7 – 13.6% DW. First gill slits 

posterior to mouth, with origins lateral of mouth corners and distance between successive gills 

slits decreasing; distance between 1st gill slits and snout relatively short (17.8% DW), and 

transverse distance between 1st gill slits (15.7% DW) 1.4 times transverse distance between 5th 

gill slits (11.3% DW). 

 

Coloration. In fresh specimens, dorsal surface light to dark brown, grey, or olive green 

with lighter, fine vermiculate pattern, speckled with numerous small and irregular creamy white 

spots and larger tan to brown ephemeral spots of variable size, occasionally with large dark spots 

dispersed symmetrically in pairs of one to three on posterior half of disk; conspicuous creamy 

white spots line entire disk margin; ventral surface white fading to pale yellow near posterior 

pectoral margins, with darker to dusky coloration near mid-pectoral margins of large specimens; 

dorsolateral margin of pelvic fins white, extending along posterior margin in small specimens; 

dorsal tail surface with two to five light crossbars that are mottled in large specimens, ventral 

surface same as ventral disk surface. In preserved specimens, dorsal surface is uniformly light to 

dark tan or brown with yellowish, creamy white dispersed speckles and marginal spots (may be 

faded in very small and very large specimens), often without evidence of faint brown, grey, or 

black spots; ventral surface uniformly pinkish white or light grey; tail banding pattern retained. 

 

Size. A large species of the western Atlantic Gymnuridae reaching a maximum disk 

width of 870 mm in males and 1040 mm in females (NEFSC, unpublished data); maximum sizes 

of 487 and 838 mm DW were observed during the present study. Males between 222–395 mm 
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DW were immature, and maturity was observed in males wider than 367 mm. Females between 

210–478 mm DW were immature, and maturity was observed in females wider than 506 mm 

DW. Maximum observed fecundity is six, and size at birth is estimated between 205-239 mm 

DW (Parsons 2017). 

 

Distribution. Western North Atlantic, New Jersey to the southeast Florida coast in the 

US. 

 

Etymology. TBD. 

 

Remarks. Coloration is highly variable both between and within juvenile and adult life 

stages (Fig. 14). Ephemeral spots disappear with removal of dermal mucous during capture and 

post-mortem. Marginal white spots are retained throughout life, but may darken in large 

specimens. Several morphometric differences occur between males and females (Table 2), and 

become more dissimilar during ontogeny. Notably, the anterolateral angulation of the posterior 

margin of the pelvic fins, and elongation of the preorbital snout length of males occurs during and 

post-maturation relative to females that have straight posterior pelvic fin margins and retain a 

broad and relatively short snout (Fig. 10–11).  

 

Gymnura sp. nov. B 
 

Figures 12–13; Tables 1–2 

 

Synonyms 

Gymnura micrura Bloch & Schneider 1801 
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Gymnura sp. nov. B Parsons 2017 

 

Holotype. Gulf of Mexico, USA – USNM 440360, adult male, 331 mm DW fresh, Florida, 30°1’ 

N, 84°22’ W, 30 April 2016.  

 

Paratype (1). USNM 440361, adult female, 694 mm DW fresh, Alabama, 6 to 12 m 

depth, trawl, Jun to Jul 2013. 

 

Non-type material examined. Gulf of Mexico USA (91 specimens) – FLMNH 36834 (n 

= 2), juvenile female, 546 mm DW, female, 424 mm DW, Florida, 26°2’ N, 81°46’ W, 3.7 m 

depth, 1 Mar 1979; FLMNH 79937, adult male, 385 mm DW, Florida, 29°51’ N, 85°23’ W, 1.8-

3.7 m depth, 7 Jun 1989; FLMNH 51168 (n = 2), all juveniles, female, 415 mm DW, male, 252 

mm DW, Florida, 29°54’ N, 84°30’ W, 6 Sep 1952; FLMNH 180332, adult male, 368 mm DW, 

Florida, 26°42’ N, 82°10’ W, 12 Oct 1963; FLMNH 159627, adult male, 351 mm DW, Florida, 

25°1’ N, 80°22’ W, 23 Feb 1965; FLMNH 74623, juvenile male, 214 mm DW, Florida, 25°57’ 

N, 81°43’ W, Aug 1974; FLMNH 50363, juvenile female, 208 mm DW, Florida, 29°53’ N, 

84°21’ W, 20 May 1951; FLMNH 65132, juvenile female, 246 mm DW, Florida, 26°10’ N, 

81°48’ W, 8 Aug 1966; FLMNH 826, adult male, 295 mm DW, Florida, 29°5’ N, 83°3’ W, 27 

Mar 1954; FLMNH 2112, juvenile male, 243 mm DW, Florida, 29°7’ N, 83°3’ W, 7 Jun 1950; 

FLMNH 56231 (n = 3), all juveniles, male, 208 mm DW, female, 238 mm DW, male, 283 mm 

DW, Florida, 29°51’ N, 84°37’ W, 28 Apr 1960; FLMNH 74554, embryo male, 88 mm DW, 

Florida, 1 Aug 1974; FLMNH 56254, embryo male, 137 mm DW, Florida, 29°51’ N, 84°37’ W, 

3 Oct 1959; FLMNH 73634 (n = 2), all embryos, male, 141 mm DW, female, 157 mm DW, 

Florida, 29°36’ N, 84°57’ W, 26 Oct 1974; FLMNH 51265 (n = 2), all embryos; male, 106 mm 

DW, female, 105 mm DW, Florida, 29°54’ N, 84°30’ W, 6 Sep 1952; FLMNH 224493, juvenile 
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female, 318 mm DW, Florida, 25°32’ N, 81°14’ W, 4 Nov 1965; FLMNH 119176, adult male, 

377 mm DW, Florida, 24°45’ N, 82°43’ W, 18.3 m depth, 4 May 1989; FLMNH 81692, female 

530 mm DW, Florida, 24°43’ N, 82°10’ W, 19 m depth, 21 May 1989; FMNH 10636, adult male, 

378 mm DW, Louisiana, 3 May 1957; FMNH 10745 (n = 2), all embryos, female, 105 mm DW, 

female, 105 mm DW, Louisiana; FMNH 31889, juvenile male, 208 mm DW, Mississippi, 20 

May 1933; FMNH 11188, juvenile male, 159 mm DW, Texas, 1924; FMNH 37811 (n = 2), 

female, 403 mm DW, adult male, 320 mm DW, Texas, 1936; FMNH 11187, juvenile female, 290 

mm DW, Texas, 1924; MCZ S-95, female, 375 mm DW, Florida, 26°31’ N, 82°11’ W, received 

1857-59; MCZ 51060 (n = 4), all embryos; male, 170 mm DW, male, 185 mm DW, female, 188 

mm DW, female, 180 mm DW, Louisiana, 28°47’ N, 90°24’ W, 18.3 to 21.9 m depth; USNM 

127299, juvenile female, 233 mm DW, Florida; USNM 127334, female, 257 mm DW, Louisiana; 

USNM 143221, female, 326 mm DW, Mississippi; USNM 94545 (n = 2), all adults, male, 324 

mm DW, male, 332 mm DW, Texas; USNM 127073, juvenile female, 285 mm DW, Texas, 0 to 

18 m depth, 26 to 27 Feb 1917; VIMS 35235, adult male, 346 mm DW fresh, Florida, 30°1’ N, 

84°22’ W, 30 April 2016; VIMS 35236, adult male, 331 mm DW fresh, Florida, 30°1’ N, 84°22’ 

W, 30 April 2016; VIMS 34826, adult male, 341 mm DW fresh, Florida, 30°1’ N, 84°22’ W, 30 

April 2016; VIMS 34827, adult male, 397 mm DW fresh, Florida, 30°1’ N, 84°22’ W, 30 April 

2016; VIMS 34828, adult male, 377 mm DW fresh, Florida, 30°1’ N, 84°22’ W, 30 April 2016; 

KPGMFSUBB16-1, adult male, 430 mm DW fresh, Florida, 29°56’ N, 83°20’ W, 1.8 m depth, 

gillnet, 16 Aug 2016; KPGMFSUBB16-2, adult male, 406 mm DW fresh, Florida, 29°23’ N, 

83°16’ W, 1.6 m depth, 17 Aug 2016; VIMS 34811, adult male, 360 mm DW fresh, Alabama, 6 

to 12 m depth, trawl, Jun to Jul 2013; VIMS 34812, adult male, 383 mm DW fresh, data same as 

VIMS 34811; VIMS 34813, adult male, 355 mm DW fresh, data same as VIMS 34811; VIMS 

34814, juvenile male, 303 mm DW fresh, data same as VIMS 34811; VIMS 35244, adult female, 

612 mm DW fresh, data same as VIMS 34811; VIMS 35249, adult male, 294 mm DW fresh, data 
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same as VIMS 34811; VIMS 35248, juvenile male, 364 mm DW, fresh data same as VIMS 

34811; VIMS 35273, adult male, 354 mm DW fresh, data same as VIMS 34811; VIMS 35247, 

adult male, 422 mm DW fresh, data same as VIMS 34811; VIMS 35270, adult female, 838 mm 

DW fresh, data same as VIMS 34811; VIMS 35260, adult female, 684 mm DW fresh, data same 

as VIMS 34811; VIMS 35262, adult female, 675 mm DW fresh, data same as VIMS 34811; 

VIMS 35257, adult female, 705 mm DW fresh, data same as VIMS 34811; VIMS 35272, adult 

female, 654 mm DW fresh, data same as VIMS 34811; VIMS 35266, adult female, 709 mm DW 

fresh, data same as VIMS 34811; VIMS 35268, adult female, 746 mm DW fresh, data same as 

VIMS 34811; VIMS 35237, adult female, 563 mm DW fresh, data same as VIMS 34811; VIMS 

35245, adult female, 520 mm DW fresh, data same as VIMS 34811; VIMS 35263, adult female, 

754 mm DW fresh, data same as VIMS 34811; VIMS 35240, adult female, 518 mm DW fresh, 

data same as VIMS 34811; VIMS 35242, adult female, 566 mm DW fresh, data same as VIMS 

34811; VIMS 35243, adult female, 694 mm DW fresh, data same as VIMS 34811; VIMS 35252, 

adult female, 642 mm DW fresh, data same as VIMS 34811; VIMS 35271, adult female, 725 mm 

DW fresh, data same as VIMS 34811; VIMS 35250, adult female, 567 mm DW fresh, data same 

as VIMS 34811; VIMS 35259, adult female, 704 mm DW fresh, data same as VIMS 34811; 

VIMS 35267, adult female, 825 mm DW fresh, data same as VIMS 34811; VIMS 35238, adult 

male, 379 mm DW fresh, data same as VIMS 34811; VIMS 35239, adult male, 412 mm DW 

fresh, data same as VIMS 34811; VIMS 35241, adult female, 495 mm DW fresh, data same as 

VIMS 34811; VIMS 35253, juvenile male, 242 mm DW fresh, data same as VIMS 34811; VIMS 

35261, adult female, 694 mm DW fresh; VIMS 34816, adult male, 366 mm DW fresh, data same 

as VIMS 34811; VIMS 34818, adult male, 346 mm DW fresh, data same as VIMS 34811; VIMS 

34820, female, 451 mm DW fresh, data same as VIMS 34811; VIMS 34821, juvenile male, 276 

mm DW fresh, data same as VIMS 34811; VIMS 34822, adult male, 378 mm DW fresh, data 

same as VIMS 34811; VIMS 34823, adult male, 393 mm DW fresh, data same as VIMS 34811; 
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VIMS 34824, adult male, 377 mm DW fresh, data same as VIMS 34811; VIMS 34825, adult 

male, 407 mm DW fresh, data same as VIMS 34811.  

 

Specimens examined but not retained. Gulf of Mexico USA (35 specimens) – 

KPGMFSU814-1, juvenile female, 354 mm DW fresh, Florida, 29°53’ N, 84°30’ W, seine, 14 

Aug 2014; KPGMFSU814-2, juvenile female, 321 mm DW fresh, Florida, 29°53’ N, 84°30’ W, 

seine, 14 Aug 2014; KPTXGM13-1, juvenile female, 341 mm DW fresh, Texas, 26°9’ N, 97°17’ 

W, 0.7 m depth, gillnet, 1 Oct 2013; KPTXGM13-2, juvenile female, 387 mm DW fresh, Texas, 

26°5’ N, 97°12’ W, 2.1 m depth, trawl, 7 Oct 2013; KPTXGM13-5, adult female, 720 mm DW 

fresh, Texas, 26°10’ N, 97°15’ W, 2 m depth, trawl, 7 Oct 2013; KPTXGM13-4, adult female, 

707 mm DW fresh, Texas, hook and line, Oct 2013; KPTXGM13-3, juvenile female, 260 mm 

DW fresh, Texas, 26°7’ N, 97°16’ W, 0.4 m depth, gillnet, 2 Oct 2013; KPGMAL0713-10, 

juvenile female, 291 mm DW fresh, Alabama, 6 to 12 m depth, trawl, Jun to Jul 2013; 

KPGMAL0713-11, juvenile female, 475 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-12, adult male, 370 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-13, adult male, 459 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-14, juvenile male, 250 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-15, juvenile male, 270 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-16, adult male, 352 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-17, adult male, 353 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-18, adult male, 404 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-19, adult male, 369 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-24, adult male, 435 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-25, adult female, 532 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-26, adult female, 556 mm DW fresh, data same as KPGMAL0713-10; 
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KPGMAL0713-39, adult male, 425 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-43, adult male, 380 mm DW fresh, data same as KPGMAL0713-10; 

KPGMAL0713-40, female, 484 mm DW fresh, data same as KPGMAL0713-10; KPGMAL0713-

41, adult male, 376 mm DW fresh, data same as KPGMAL0713-10; KPGMAL0713-38, adult 

female, 568 mm DW fresh, data same as KPGMAL0713-10; KPGMAL0713-60, adult female, 

655 mm DW fresh, data same as KPGMAL0713-10; KPGMAL0713-46, adult female, 612 mm 

DW fresh, data same as KPGMAL0713-10; KPGMAL0713-54, adult male, 415 mm DW fresh, 

data same as KPGMAL0713-10; KPGMAL0713-53, adult male, 343 mm DW fresh, data same as 

KPGMAL0713-10; KPGMAL0713-48, adult male, 414 mm DW fresh, data same as 

KPGMAL0713-10; KPGMAL0713-37, adult female, 544 mm DW fresh, data same as 

KPGMAL0713-10; KPGMAL0713-31, adult female, 620 mm DW fresh, data same as 

KPGMAL0713-10; KPGMFSU0612-1, male, 377 mm DW fresh, Florida, 29°53’ N, 84°30’ W, 

gillnet, 1 Jun 2012; KPGMMML-1, juvenile female, 260 mm DW fresh, Florida, 26°32’ N, 82°7’ 

W, 2.8 m depth, gillnet, 22 Jul 2015; KPGMMMK16, female, 585 mm DW fresh, Florida, 29°44’ 

N, 84°56’ W, gillnet, 2012; KPGMMMK17, female, 445 mm DW fresh, data same as 

KPGMMK16. 

            

Diagnosis. Dimensions as percentages of DW are given in Table 1 and Table 2. 

Diagnosis and description based on juvenile and adult male specimens. 

 Gymnura sp. nov. B is distinguished from other western Atlantic Gymnura by the 

combination of the following characters: a rhomboid disk, 1.5 to 2.0 times wider than long (1.7 to 

2.0 times in females) and a moderate snout, pre-orbital snout length 8.7 – 15.9% of DW; head 

length moderately short, less than one third of disk length; nasal curtain medium to short (2.1% of 

DW), nasal curtain length 12.0 – 18.8% pre-oral snout length; posterior pectoral length 72.5 – 

87.6% of anterior pectoral length; pelvic span 29.3 – 51.9% of 1st gill transverse distance; tail 
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short (11 – 90 mm) without a serrated spine, less than one quarter of total length (11.0 – 26.3% 

TL) and 26.2% body length, caudal spine absent; dorsal surface with mosaic of dark brown 

minute spots becoming fine vermiculate pattern in adults, and dark brown to black spots on 

posterior half of pectoral fins, dispersed symmetrically in one to three pairs, and marginal white 

spots absent; ventral surface pinkish white fading to yellowish gold from mid-pectoral to pectoral 

tip, or marbled yellowish gold throughout, with darker and dusky mid-anterior pectoral margin; 

dorsal tail surface with two to four light crossbars that become mottled in large specimens.  

 

Description. Disk rhomboidal in shape, 1.5 to 2.0 times wider than long. Anterior margin 

concave medially, and moderately convex before apex, anterior pectoral length 59.5 – 69.5% of 

DW; apex acutely pointed; posterior pectoral margin straight to weakly convex and rounded near 

insertion, posterior pectoral length 46.5 – 53.5 % of DW. Head length short, less than one third of 

disk length. Eyes small and barely elevated, interorbital width (7.6 – 11.1% DW) less than 

interspiracular width (8.8 – 11.1% DW); spiracle tentacle absent. Pelvic fins subtriangular with 

angular free rear tip, posterior margin straight to weakly angular, with lateral margin slightly 

shorter than inner margin, anterior pelvic length 5.6 – 9.6% DW. Tail short (11-90 mm) without 

serrated spine, 21.7% of total length and 26.2% body length, with low finfold and ventral keel. 

Claspers short and slightly conical, straight inner and lateral margins, tapering distally; left 

clasper outer length 1.7 – 7.6% DW, left clasper inner length 5.3 – 12.8% DW.   

Mouth width (8.4 – 10.5% DW) broader than internarial width (6.0 – 8.4% DW), preoral 

snout length relatively long, 10.0 – 16.7% DW. Symphysal region of lower jaw slightly concave, 

broadly arched laterally. Upper jaw medially concealed by nasal curtain. Nostril openings 

subovate and slanting slightly anterolaterally, interior margin concealed by nasal curtain. Nasal 

curtain medium to short (1.5 – 2.5% DW) and relatively broad (6.4 – 10.0% DW), slightly 

concave posterior margin with rounded posterolateral apices, prenarial snout length 8.0 – 14.2% 
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DW. First gill slits posterior to mouth, with origins lateral to mouth corners and distance between 

successive gills slits decreasing; distance between 1st gill slits and snout relatively long (19.1% 

DW), and transverse distance between 1st gill slits (16.4% DW) 1.4 times transverse distance 

between 5th gill slits (12.1% DW). 

 

 Coloration. In fresh specimens, dorsal surface taupe to pinkish brown or greyish green, 

with mosaic of dark brown minute spots becoming fine vermiculate pattern in adults, and dark 

brown to black spots on posterior half of pectoral fins, dispersed symmetrically in pairs (typically 

between one and three pairs, but sometimes absent) and most prevalent near tail base, peppering 

of black spots of variable size in small specimens, and faint brown to grey spots occasionally 

dispersed throughout in large specimens; ventral surface pinkish white fading to yellowish gold 

from mid-pectoral to pectoral-fin tip, or marbled yellowish gold throughout, with darker and 

dusky mid-anterior pectoral margin; dorsolateral margin of pelvic fins white, extending along 

posterior margin in small specimens; dorsal tail surface with two to four light crossbars that 

become mottled in large specimens; ventral tail surface same as ventral disk surface. In preserved 

specimens, dorsal surface is uniformly light to dark tan or brown, typically with evidence of 

symmetrical faint brown to black spots but may be absent; ventral surface pinkish white, often 

retaining pale and darker yellowish orange marbled pattern; tail banding pattern retained. 

 

Size. A medium-sized species of western Atlantic Gymnuridae, with observed maximum 

disk widths of 459 mm in males and 856 mm in females. Males between 159 – 364 mm DW were 

immature, and maturity was observed in males wider than 294 mm. Females between 208 – 387 

mm DW were immature, and maturity was observed in females wider than 348 mm DW. 

Maximum observed fecundity is 12, and size at birth is estimated between 120 – 242 mm DW 

(Parsons 2017). 
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Distribution. Northern Gulf of Mexico, Florida Keys to southern Texas border in the 

USA. Extent of southern range boundary unknown. 

 

Etymology. TBD. 

  

Remarks. Coloration is variable both between and within juvenile and adult life stages 

(Fig. 12–14). Spot pairs on posterior dorsal surface and faint dispersed spots are lost with removal 

of dermal mucous during capture and post-mortem. Several morphometric differences occur 

between males and females, as demonstrated in Table 2, and these differences become greater 

throughout ontogeny. Notably, the anterolateral angulation of the posterior margin of the pelvic 

fins, and elongation of the preorbital snout length of males occurs during and post-maturation 

relative to females that have straight posterior pelvic fin margins and retain a broad and relatively 

short snout (Fig. 12–13). 
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Key to species of western Atlantic Gymnuridae: 

 

1 Tail with one or more serrated spines; posterior margin of spiracle with distinct tentacle 

……….................................................................................................................. Gymnura altavela 

- Tail without serrated spines; no tentacle on posterior margin of spiracle .................................... 2 

2 Dorsal disk marbled with irregular blotches; margin lacks white spots ……... Gymnura micrura 

- Dorsal disk with white speckles and marginal white spots ............................ Gymnura sp. nov. A 

- Dorsal disk lacks white speckles and marginal white spot ............................ Gymnura sp. nov. B 

 

 

Discussion 
 

Morphological variation of taxa is manifested through ontogenetic changes, differences due to 

sexual dimorphism and individual variability, and taxonomic characters (Grande 2004; Hilton & 

Bemis 2012). The present study identifies each category as contributing to the variability 

observed among specimens of western Atlantic G. micrura. Variation in overall body shape 

during ontogeny diverges by sex as gymnurids grow, and intraspecific inconsistencies in 

taxonomic characters (e.g., disk coloration, tail banding patterns, presence or absence of dorsal 

fin), have contributed to substantial taxonomic confusion within the family. Gymnura micrura 

was one of the first described species of Gymnuridae. In the original description, Bloch and 

Schneider (1801) provided few diagnostic details for the species from Suriname, except for a 

characterization of the tail as short, slender, and black- and white-barred; a holotype was not 

documented for reference or comparison to congeners. Consequently, this nominal species has 

been reported from several locations throughout the Atlantic and Indo-West Pacific, further 

obfuscating the validity of G. micrura. There has recently been significant progress in the 
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taxonomic resolution of the genus and several species based on morphological and molecular 

characters. Jacobsen & Bennett (2009) provided morphological and molecular evidence that all 

species belong to a single genus (Gymnura), thus reducing Aetoplatea (Valenciennes in Müller & 

Henle 1841) to a junior synonym. Definitive identification of the eastern Pacific congeners G. 

crebripunctata and G. marmorata, and delineation of their respective geographical distributions, 

was provided by Smith et al. (2009). In the western Pacific, differentiation of G. bimaculata from 

G. japonica based on the presence of dorsal spots was first contradicted by Isouchi (1977), 

followed by Shen et al. (2012) using mitochondrial DNA sequences, confirming the junior 

synonymy of the former with G. japonica. In the Indo-Pacific, G. poecilura (Shaw) was re-

described by Muktha et al. (2016), and ND2 and cytochrome C oxidase 1 (COI) data revealed 

that reports of G. micrura and G. japonica in the Indian Ocean were erroneous. An on-going 

family-level revision of Gymnuridae will help to address many of the remaining taxonomic issues 

of this family (Yokota, pers. comm., 2017).  

In a study of the life history of G. micrura that began in 2012 (Parsons, 2017), it became 

clear that there was significant variation in reproductive biology, growth patterns, as well as 

morphology of G. micrura from the northern Gulf of Mexico and the Atlantic coast of North 

America. In the absence of a type specimen, however, and adequate consideration for variation in 

the morphology of G. micrura, vague and often inaccurate information for the species has 

persisted from early descriptions to contemporary identification keys, biodiversity inventories, 

and population status assessments. Without species-specific information, effective management 

strategies for the conservation of populations and the biodiversity of ecosystems are challenging.  

 The three species of the proposed western Atlantic G. micrura complex are readily 

distinguished from G. altavela by the absence of spiracular tentacles and caudal spines. Gymnura  

sp. nov. A is easily differentiated from G. micrura and Gymnura sp. nov. B by the presence of 

white spots along the disk margin. Disk coloration differences between Gymnura sp. nov. B and 
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G. micrura may be less discernible in post-mortem specimens; fresh specimens of the latter 

generally have a marbled dorsal surface and a nearly uniform golden yellow ventral surface, with 

well-defined light crossbars on the tail, while fresh Gymnura sp. nov. B often present a small 

number of dark paired spots on the posterior dorsal surface and have less intense and 

discontinuous coloration on the ventral disk surface, and have tail crossbars that become mottled 

and indiscernible with age.  

Multivariate analyses suggested that a combination of morphometrics can be used to 

classify specimens by their region of origin, but also revealed overlap in the variability of size-

corrected measurements between regions, particularly among the newly described species. 

Variation in the majority of characters evaluated in the present study follow a trend in which size-

corrected measurements were generally smallest in G. micrura and largest in Gymnura sp. nov. B 

among males. Female G. micrura also had the smallest character measurements relative to the 

two new species, and metrics from female Gymnura sp. nov. A were often larger than those 

recorded for Gymnura sp. nov. B. Despite attempts to include a representative range of sizes for 

both sexes by using both fresh and preserved material, data from early life stages and very large 

specimens was limited, and additional data from these size classes is needed to refine the range of 

%DW morphometrics presented here.     

Nasal curtain length contributed most to the discrimination of species, however the 

magnitude of change in the size of this character during ontogeny is relatively small (i.e., < 20 

mm) (Fig. 15). Nasal curtain length has previously been identified as the most significant 

character differentiating the eastern Pacific species G. crebripunctata and G. marmorata (Smith 

et al. 2009), and the present study supports the importance of this character in the identification of 

Gymnuridae. Although tail morphology and color pattern are often used to differentiate Gymnura, 

these characters were highly variable and inconsistent both within and between Atlantic 

specimens examined (Fig. 16), and are not reliable as diagnostic characters for the complex. The 
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otherwise conserved morphology of Gymnura requires complementary evaluation of genetic 

character divergence to accurately describe these cryptic species.  

Mitochondrial and nuclear DNA analyses corroborated the phenotypic and geographic 

discontinuity within the western Atlantic species complex. Supplementary analyses based on COI 

and cyt-b sequences from Gymnura sp. nov. A and Gymnura sp. nov. B agreed with ND2 and 

RAG-1 results (data not presented here), further supporting the division of Atlantic and Gulf of 

Mexico individuals into unique taxa that are genetically and morphologically dissimilar to G. 

micrura from the northern coast of South America. Genotype and haplotype data analysis also 

recovered US G. altavela  from the western Atlantic as genetically distinct from an eastern 

Atlantic G. altavela (GenBank NADH2 sequence JQ518833), concurring with previous reports 

that the western Atlantic population is probably an undescribed species (Naylor et al. 2012; 

Weigmann 2016). Although direct morphometric analysis of eastern Atlantic Gymnura was 

outside the scope of the present study, morphometrics of G. micrura from this region clearly 

differ from the three species evaluated (see Table 2), and the observed geographical variation in 

metrics and traits warrant closer investigation. Interestingly, some eastern Atlantic morphotypes 

shared the white marginal disk spots diagnostic of the western Atlantic Gymnura sp. nov. A, 

although spots were generally smaller, fewer in number, and dispersed along the margin at greater 

intervals in the former (Fig. 17).  

Preserved material from the southern distribution of G. micrura (e.g., Brazil) was 

examined during this study. However, genetic material was unavailable for direct comparison, 

and thus morphometrics for Brazil specimens were excluded from the canonical correlation 

analysis. The coastal dynamics of northern Brazil are strongly influenced by the freshwater and 

sediment discharge from the Amazon River, and this area represents the largest source of riverine 

sediment input into the world ocean (Degens et al. 1991). Interactions between the turbid 

freshwater plume from the Amazon and the northwestern flowing North Brazil Current divert 
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most of the sediment north, where it is deposited in mudbanks along the northern coast of South 

America (Kuehl et al. 1986; Peterson & Stramma 1991; Allison et al. 2000), and provides habitat 

preferred by gymnurids (e.g. Last et al. 2016). The Amazon shelf area has been considered a 

biogeographical barrier to coastal marine species, and is hypothesized to play a role in the genetic 

divergence between Brazilian and Caribbean populations of many invertebrates and fishes, 

including spiny lobster (Panulirus argus Latreille), ocean surgeonfish (Acanthurus bahianu 

Castelnau), and the endemic Brazilian large-eyed stingray (Hypanus marianae Gomes, Rosa & 

Gadig) (Sarver et al. 1998; Rocha et al. 2002; Rocha 2003; Rosa & Furtado 2004; Yokota & 

Lessa 2006). Given the potential but unknown influence of this barrier on the distribution of G. 

micrura from Suriname, and in the absence of genetic material, the southern range boundary for 

the species cannot be inferred from the present study and needs confirmation. Future efforts to 

resolve uncertainty in the taxonomic status of southwest and eastern Atlantic Gymnura will 

benefit from complimentary morphological and molecular analyses, and are crucial for 

delineating the range of distribution of G. micrura, and determining the true biodiversity of this 

group. 

Accurate taxonomy provides the foundation for all biological studies of species, and is 

essential for: (1) addressing knowledge gaps of chondrichthyan species (and others) that are 

poorly known, and 2) improving the conservation management of all species to maintain the 

biodiversity and overall health of ecosystems worldwide. The vulnerability of coastal batoid 

populations to threats, including direct and indirect fishing pressure and habitat degradation, is 

dependent on specifies-specific life history strategies, ecological considerations, and the current 

size of populations—information that remains largely unknown for nearly one quarter of all 

batoids that are considered data deficient (Dulvy et al. 2014), including G. micrura, Gymnura sp. 

nov. A, and Gymnura sp. nov. B. Interspecific differences reported in the life histories of these 

species, including maximum size, size at reproductive maturity, and fecundity (Yokota & Lessa 
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2006, 2007; Yokota et al. 2012; Parsons 2017) require species-specific assessments and 

management considerations. Although the US populations are presently categorized as species of 

Least Concern based on sparse population data and presumed low post-release mortality from 

indirect fisheries (Grubbs & Ha 2006), other Atlantic gymnurids with similar life histories are 

threatened (Vooren et al. 2007; Walls et al. 2015). Off South Africa, mortality rates near 50% 

were reported for G. natalensis due to shrimp trawl bycatch between 1989 and 1992 (Fennessy 

1994). Decades of intense coastal fishing pressure in the southwest Atlantic off the coast of Brazil 

have also contributed to the depletion of G. altavela, such that the species is now Critically 

Endangered in this region (Vooren et al. 2007). In US waters, Gymnura sp. nov. A may be more 

vulnerable to indirect fishing mortality than Gymnura sp. nov. B due to its larger size, potential 

older age at sexual maturity, and lower fecundity (Parsons 2017), since recruitment to fishing 

gear before successfully reproducing is likely greater. Reductions in the bottom trawl bycatch of 

large, reproductively mature Butterfly Rays have been demonstrated through the use of bycatch 

reduction devices. In the shrimp trawl fisheries off Suriname, for example, the bycatch of large G. 

micrura was reduced by 32% in trawls with turtle exclusion devices (TEDs) relative to trawls 

without TEDs (Willems 2013), and offers a promising solution for decreasing the risk of post-

release mortality and stress impacts on gymnurids and other batoid species vulnerable to mobile 

fishing gears. Without empirical data on the physiological impacts of capture and release on the 

Gymnuridae, conservative management measures are encouraged and re-assessment of all species 

should be prioritized to address data deficiencies, and to evaluate potential threats to discrete 

populations with geographic distributions that are much smaller than previously thought. Careful 

consideration of taxonomic and biological information for each Atlantic species is vital to 

facilitate the effective management and conservation of populations in US waters. 
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Tables 

 

TABLE 1. Morphometric values in mm and percentage of disk width (%DW) for adult Gymnura micrura from Suriname, Gymnura sp. 

nov. A from the U.S. western North Atlantic, and Gymnura sp. nov. B from the U.S. Gulf of Mexico. Abbreviations for morphometrics 

provided in Figure 2. 
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  Gymnura micrura   Gymnura sp. nov. A   Gymnura sp. nov. B 

 

male     
neotype 

female 
paratype  

male    
holotype 

female 
paratype  

male    
holotype 

female 
paratype 

 
USNM 440357 USNM 440356 

 
USNM 440358 USNM 440359  

 
USNM 440360 USNM 440361  

  mm %DW mm %DW   Mm %DW mm %DW   mm %DW mm %DW 
DW 330 

 
582 

  
406 

 
638 

  
331 

 
694 

 LT 261 79.1 420 72.2 
 

304 74.9 480 75.2 
 

damaged 525 75.6 
LAP 210 63.6 351 60.3 

 
257 63.3 388 60.8 

 
216 65.3 413 59.5 

LPP 168 50.9 295 50.7 
 

210 51.7 336 52.7 
 

161 48.6 370 53.3 
LB 210 63.6 323 55.5 

 
246 60.6 396 62.1 

 
207 62.5 407 58.6 

LD 201 60.9 319 54.8 
 

241 59.4 375 58.8 
 

202 61.0 395 56.9 
LH 68.4 20.7 94.4 16.2 

 
79.2 19.5 101 15.8 

 
72.7 22.0 116 16.6 

LPOBS 42.8 13.0 52.3 9.0 
 

48.3 11.9 60.8 9.5 
 

45 13.6 66.2 9.5 
WIO 27.4 8.3 46.6 8.0 

 
33.1 8.2 59.9 9.4 

 
32.1 9.7 60.9 8.8 

WIS 28.6 8.7 48.1 8.3 
 

39.2 9.7 61.5 9.6 
 

32.5 9.8 60.6 8.7 
LSV 175 53.0 273 46.9 

 
209 51.5 343 53.8 

 
178 53.8 349 50.3 

LSG1 63.4 19.2 84.6 14.5 
 

71.7 17.7 94.4 14.8 
 

66 19.9 102 14.8 
DG5 32.9 10.0 63.0 10.8 

 
46 11.3 73.1 11.5 

 
39.8 12.0 78.4 11.3 

DG1 50.1 15.2 93.5 16.1 
 

64.5 15.9 108 17.0 
 

53.3 16.1 109 15.7 
LAPV 28.7 8.7 40.2 6.9 

 
32.6 8.0 55.9 8.8 

 
25 7.6 53.3 7.7 

SP 22.1 6.7 40.2 6.9 
 

29.7 7.3 59.7 9.4 
 

25 7.6 57.8 8.3 
LPN 38.8 11.8 44.3 7.6 

 
41.5 10.2 52.2 8.2 

 
40.7 12.3 58.7 8.5 

LPOLS 46.4 14.1 55.9 9.6 
 

53 13.1 63.5 10.0 
 

48.7 14.7 70.6 10.2 
LNC 4.8 1.5 7.7 1.3 

 
8.8 2.2 10.9 1.7 

 
6.7 2.0 10.8 1.6 

WIN 20.5 6.2 32.5 5.6 
 

26.1 6.4 41.2 6.5 
 

22.7 6.9 43.8 6.3 
WNC 24.1 7.3 37.9 6.5 

 
32.1 7.9 48.4 7.6 

 
27.9 8.4 52.6 7.6 

WM 27.7 8.4 46.2 7.9 
 

36.2 8.9 60.8 9.5 
 

31.9 9.6 64.9 9.4 
ILCL 16.9 5.1 

   
25.3 6.2 

   
22.1 6.7 

  OLCL 32.4 9.8       46.1 11.4       40.5 12.2     
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TABLE 2. Morphometrics for fresh and preserved juvenile and adult specimens of the Atlantic Gymnura species complex by region. 

Measurement mean and range expressed as percentage of disk width (DW) unless otherwise indicated; samples size in parentheses. 

Regional coverage: Western North Atlantic (Delaware to Florida, USA); Gulf of Mexico (Florida to Texas, USA); Suriname (Venezuela, 

Suriname, French Guiana); Eastern Atlantic (Mauritania, Senegal, Guinea-Bissau, Guinea, Sierra-Leone, Liberia, Côte d’Ivoire, Ghana, 

Togo, Benin, Nigeria, Angola). Abbreviations for morphometrics provided in Figure 2. 

 

  Male   Female 

 

Western 
North 

Atlantic     
(23) 

Gulf of 
Mexico 

(57) 
Suriname 

(24) 

Eastern 
Atlantic 

(14) 
 

Western 
North 

Atlantic     
(36) 

Gulf of 
Mexico 

(53) 
Suriname 

(22) 

Eastern 
Atlantic 

(15) 

          LT (mm) 253.7 263.4 219.4 259.2 
 

400.7 382.8 254.6 325.9 

 
150-372 100-375 126-190 151-389 

 
133-633 136-642 132-420 130-544 

DW (mm) 342.1 343.4 278.9 339.4 
 

557.3 514.2 360.5 468.3 

 
222-487 159-459 170-351 202-525 

 
210-870 208-838 184-582 179-750 

TL (mm) 52.7 56.8 55.3 66.8 
 

89.1 92.7 59.7 81.1 

 
32-80 11 to 90 36-77 41-103 

 
22-150 27-169 30-101 34-139 

LAP 62.1 63.8 62.2 61.1 
 

60.4 60.4 59.5 59.4 

 
55.5-66.9 59.5-69.5 57.2-69.2 58.6-63.4 

 
57.7-63.2 42.9-63.4 55.4-62.0 57.0-61.1 

LPP 50.6 50.5 50.5 50.7 
 

51.2 50.8 50.4 50.5 

 
47.7-53.4 46.5-53.5 45.5-53.2 49.0-52.6 

 
49.6-53.3 47.4-53.8 49.2-53.0 48.0-53.5 

LB 59.6 62.6 60.7 56.9 
 

57.9 58.0 54.6 54.6 

 
52.0-66.7 53.2-67.3 52.3-68.5 53.5-60.1 

 
51.4-62.1 53.4-61.9 53.2-56.5 52.6-58.5 

LD 58.2 60.4 58.5 56.1 
 

56.3 56.2 54.0 54.3 
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51.1-64.9 50.9-68.4 51.4-65.1 53.0-59.2 

 
52.0-59.3 51.3-58.9 52.0-55.8 52.4-56.8 

LH  18.6 20.9 19.6 18.1 
 

18.2 16.6 16.6 16.4 

 
15.9-22.3 15.9-24.3 16.6-22.5 16.9-19.2 

 
13.6-64.6 14.2-19.0 15.0-19.4 13.0-19.1 

LPOBS  11.6 12.9 11.4 10.1 
 

9.8 9.3 8.8 8.9 

 
9.7-14.8 8.7-15.9 8.8-14.2 8.7-12.5 

 
8.9-10.6 7.7-11.3 8.1-9.6 8.1-9.5 

WIO  8.7 8.8 8.6 9.6 
 

8.7 8.6 8.2 9.2 

 
7.8-11.3 7.6-11.1 7.9-9.7 9.1-10.3 

 
7.7-9.8 7.7-10.3 7.3-8.7 8.5-9.7 

WIS  9.4 9.7 8.9 9.3 
 

9.2 9.1 8.6 8.8 

 
8.7-10.5 8.8-11.1 8.3-9.7 8.7-10.3 

 
8.4-9.8 8.4-10.2 7.8-9.7 7.9-9.7 

LSV 52.7 53.8 51.8 48.8 
 

52.2 49.9 46.4 46.5 

 
44.5-71.1 45.9-64.9 46.6-58.3 45.2-52.5 

 
45.9-84.4 46.4-52.9 45.1-48.1 44.6-50.0 

LSG1  17.8 19.1 17.7 16.9 
 

15.2 14.9 15.1 15.0 

 
16.1-21.3 15.8-22.5 10.3-21.5 15.3-18.1 

 
14.0-16.3 13.8-17.0 13.8-17.3 14.1-17.2 

DG5 11.3 12.1 10.8 11.8 
 

11.8 12.1 10.6 11.4 

 
10.2-13.5 10.6-16.1 9.4-12.2 11.0-13.4 

 
10.4-15.7 11.0-16.8 9.1-11.4 10.4-12.3 

DG1 15.7 16.4 16.0 17.4 
 

16.4 16.4 16.3 17.2 

 
14.4-18.4 14.4-27.0 14.7-17.5 16.8-19.4 

 
14.5-17.7 11.8-18.2 15.3-18.0 16.4-19.6 

LAPV  7.8 8.2 8.8 7.3 
 

7.2 7.4 6.9 6.7 

 
6.6-9.2 5.6-9.6 6.9-11.5 5.8-9.1 

 
5.5-8.8 5.2-11.7 5.9-7.6 5.5-7.6 

SP  7.5 7.4 7.0 7.2 
 

8.3 7.8 6.9 7.6 

 
6.4-8.6 6.1-9.0 6.0-8.1 6.7-7.7 

 
6.5-9.6 6.2-9.7 5.9-8.0 6.2-9.7 

LPN  10.4 11.6 10.4 9.0 
 

8.4 8.1 8.0 7.9 

 
8.7-13.6 8.0-14.2 8.0-12.8 8.1-9.8 

 
7.7-9.1 6.3-9.8 7.4-8.8 7.2-8.6 

LPOLS  12.6 14.0 12.7 11.1 
 

10.3 10.0 9.8 9.9 

 
10.7-15.5 10.0-16.7 10.1-15.9 10.0-12.0 

 
9.2-11.1 8.7-11.4 9.0-10.7 8.5-13.3 

LNC  1.8 2.1 1.6 1.8 
 

1.7 1.6 1.4 1.6 

 
1.3-2.5 1.5-2.5 1.2-2.1 1.5-2.1 

 
1.4-1.9 1.2-2.0 1.1-1.7 1.5-1.9 

WIN  6.2 6.8 6.3 6.5 
 

6.3 6.5 5.9 6.2 

 
5.7-7.0 6.0-8.4 5.5-7.3 6.0-7.0 

 
5.5-7.0 6.0-8.2 5.5-6.4 5.4-7.4 

WNC  7.7 8.2 7.3 7.9 
 

7.6 7.6 6.9 7.3 
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6.8-9.1 6.4-10.0 6.6-8.2 7.3-8.4 

 
6.5-8.7 7.1-8.6 6.1-8.6 6.2-8.0 

WM  8.7 9.3 8.6 8.8 
 

9.1 9.3 8.5 8.3 

 
8.0-10.2 8.4-10.5 7.9-9.1 7.8-9.9 

 
7.8-10.1 8.1-10.4 7.9-9.2 7.7-9.4 

OLCL 5.0 5.5 3.9 3.5 
     

 
2.1-7.4 1.7-7.6 1.5-6.4 2.0-5.2 

     ILCL 9.1 10.3 8.2 6.3 
     

 
3.0-13.1 5.3-12.8 4.7-13.5 4.0-8.9 

     TL % LT 20.8 21.7 25.1 26.2 
 

21.5 23.7 23.4 25.0 

 
17.6-24.9 11.0-26.3 23.0-29.4 22.1-28.8 

 
14.2-25.6 14.5-27.2 15.0-26.6 22.7-26.5 

LPP % LAP 81.7 79.2 81.2 83.2 
 

84.9 83.9 84.7 85.2 

 
74.1-92.1 72.5-87.6 75.2-87.3 79.6-87.2 

 
79.4-90.4 76.2-91.6 79.3-92.9 79.1-92.0 

WIN % LPN 60.3 59.1 60.8 72.4 
 

75.2 80.0 74.3 78.2 

 
49.7-68.8 47.5-80.8 49.1-72.5 66.0-82.5 

 
62.4-87.2 67.3-100.0 67.6-82.7 72.0-89.9 

LNC % LPOLS 14.2 14.9 12.8 16.2 
 

16.5 16.2 14.0 16.6 

 
11.1-18.6 12.0-18.8 10.0-16.5 13.4-19.8 

 
12.9-19.7 11.5-19.8 11.9-16.5 11.9-18.9 

SP % DG1 48.0 45.0 43.7 41.0 
 

50.6 48.1 42.2 44.1 

 
38.1-56.2 29.3-51.9 37.9-51.8 38.4-43.6 

 
37.9-60.6 36.6-66.9 36.5-48.1 35.6-56.1 

DW:LD 1.7 1.7 1.7 1.8 
 

1.8 1.8 1.9 1.8 
  1.5-2.0 1.5-2.0 1.5-1.9 1.7-1.9   1.7-1.9 1.7-2.0 1.8-1.9 1.8-1.9 
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FIGURE 1. Map of North America, South America, and Africa locations of fresh (filled circle) and preserved (open circle) Gymnura 

specimens used for morphometric and genetic analysis. The type locality (Suriname, South America) for Gymnura micrura is indicated by 

the star.
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FIGURE 2. Morphometric characters and abbreviations used in this study, adapted from Smith et 

al. 2009. (a) 1, disc width (DW); 2, anterior pectoral length (LAP); 3, posterior pectoral length 

(LPP); 4, body length (LB); 5, disc length (LD); 6, head length (LH). (b) 7, pre-orbital snout 

length (LPOBS); 8, inter-orbital width (WIO); 9, interspiracular width (WIS). (c) 10, snouft to 

vent length (LSV); 11, snout to first gill length (LSG1); 12, fifth gill transverse distance (DG5); 

13, first gill transverse distance (DG1); 14, anterior pelvic length (LAPV); 15, pelvic span (SP). 

(d) 16, pre-narial length (LPN); 17, pre-oral snout length (LPOLS); 18, nasal curtain length 

(LNC); 19, inter-narial width (WIN); 20, nasal curtain width (WNC); 21, mouth width (WM). 
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FIGURE 3. Canonical Correlation Analysis plots of 10 morphometric characters (WIS, LSV, 

DG5, DG1, LAPV, SP, LNC, WIN, WNC, WM) of juvenile and adult male specimens of the 

Gymnura complex from the western North Atlantic (ATL), Gulf of Mexico (GOM), and 

Suriname (SUR – including Venezuela and French Guiana). The first canonical axis (CA1) and 

CA2 accounted for 80% and 20% of the variation explained, respectively, and LNC and SP 

contributed most to differences between geographic regions (a) and individual variability (b). The 

proportion of variation explained without LNC was 73% and 27% for CA1 and CA2, 

respectively, and significant regional separation of specimens was retained by the remaining nine 

characters (c, d). 
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FIGURE 4. Canonical Correlation Analysis plots of 10 morphometric characters (WIO, WIS, 

LSV, DG5, DG1, SP, LNC, WIN, WNC, WM) of juvenile and adult female specimens of the 

Gymnura complex from the western North Atlantic (ATL), Gulf of Mexico (GOM), and 

Suriname (SUR – including Venezuela and French Guiana). The first canonical axis (CA1) and 

CA2 accounted for 78% and 22% of the variation explained, respectively, and LNC and SP 

contributed most to differences between geographic regions (a) and individual variability (b). The 

proportion of variation explained without LNC was 71% and 29% for CA1 and CA2, 

respectively, and significant regional separation of specimens was retained by the remaining nine 

characters (c, d).
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FIGURE 5. Majority rule bootstrap consensus tree of mitochondrial ND2 sequences for 67 taxa, 

including the outgroup shark Carcharhinus plumbeus. Specimen localities are abbreviated: DE – 

Delaware; VA – Virginia; SC – South Carolina; GA – Georgia; FL – Florida; AL – Alabama; MS 

– Mississippi; TX – Texas; SUR – Suriname; GAB – Gabon; SEN – Senegal; WNA – western 

North Atlantic; EP – East Pacific. Data from GenBank indicated by *. 



175 
 

 
 



176 
 



177 
 

 

FIGURE 6. Majority rule bootstrap consensus tree of nuclear RAG-1 sequences for 27 taxa, 

including the outgroup shark Squalus acanthias. Specimen localities are abbreviated: VA – 

Virginia; GA – Georgia; FL – Florida; AL – Alabama; TX – Texas; SUR – Suriname; GAB – 

Gabon; EP – East Pacific. Boostrap support values are indicated at branch nodes. Data from 

GenBank indicated by *.
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FIGURE 7. Median joining haplotype networks of mitochondrial ND2 (a) and nuclear RAG-1 

(b) sequences from western North Atlantic Gymnura  sp. nov. A (red), Gulf of Mexico Gymnura 

sp. nov. B (green), and Suriname G. micrura (purple). Branch lengths correspond to the 

magnitude of genetic divergence between sequences, and hash marks indicate the number of 

nucleotide differences. Specimen locality abbreviations are provided in Figure 5. 
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FIGURE 8. Dorsal (A) and ventral (B) view of Gymnura micrura neotype USNM 440357, 

adult male 330 mm DW, Suriname, South America. 
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FIGURE 9. Dorsal (A) and ventral (B) view of Gymnura micrura paratype USNM 440356, 

adult female, 582 mm DW, Suriname, South America. 
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FIGURE 10. Dorsal (A) and ventral (B) view of Gymnura sp. nov. A holotype USNM 

440358, adult male 406 mm DW, North Carolina, USA. 
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FIGURE 11. Dorsal (A) and ventral (B) view of Gymnura sp. nov. A paratype USNM 

440359, adult female, 638 mm DW, Georgia, USA. 
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FIGURE 12. Dorsal (A) and ventral (B) view of Gymnura sp. nov. B holotype USNM 

440360, adult male, 331 mm DW, Florida, USA. 
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FIGURE 13. Dorsal (A) and ventral (B) view of Gymnura sp. nov. B paratype USNM 440361, 

adult female 694 mm DW, Alabama, USA. 
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FIGURE 14. Variation in disk coloration and patterns between (a) juvenile male Gymnura sp. 

nov. A, Florida east coast (b) juvenile female Gulf of Mexico Gymnura sp. nov. B, Florida west 

coast, and (c) juvenile male Gymnura sp. nov. B, Alabama. Panals a and c are not to scale.  



186 
 

 

 

FIGURE 15. Ontogenetic and geographical variation in Atlantic Gymnura tail morphology and 

coloration: Gymnura sp. nov. A (a) young-of-year and (b) adult female; Suriname G. micrura 

adult female (c); Gymnura sp. nov. A adult male (d); Gymnura sp. nov. B adult male (e); Gabon 

G. micrura adult male (f); Suriname G. micrura female dorsal (g) and ventral view (h). 
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CONCLUSIONS
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CONCLUSIONS 

Summary 
 This dissertation was designed to address the generally poor understanding of U.S. batoid 

populations in the western North Atlantic through life history and taxonomic investigations of a 

common and widely distributed family of rays, the Gymnuridae. In order to achieve the 

objectives of each chapter, adequate empirical data from Gymnura altavela and G. micrura 

specimens collected throughout their range of distribution, across ontogeny, and throughout the 

year was necessary to answer biological questions at the species and population levels. Due to 

their broad U.S. distribution (New York to Texas), undocumented seasonal migration and 

movement patterns, and large body sizes, specimen acquisition was dependent on a broad-scale 

collaboration between a network of agencies, institutions, and laboratories. Notably, fishery-

independent survey programs were key to obtaining sufficient data to accomplish research goals, 

reflecting the valuable but underutilized resource that such programs offer. This approach 

provided data used in Chapters 2 and 3 to describe age and growth patterns, size and timing of 

maturation, seasonality of critical reproductive stages, embryonic development, and fecundity for 

three Gymnuridae in the western North Atlantic Ocean. While rough life history parameter 

estimates and reproductive biology have been previously reported in the literature, this 

dissertation provides improved estimates based on a broader spatiotemporal sampling of 

populations, sexes, and life stages occurring in U.S. waters. Knowledge of the patterns of growth, 

the time required to reach reproductive maturity, and the reproductive capacity (i.e. lifetime 

fecundity) of female rays can directly be used by assessors to update the status of Gymnura 

populations, and to identify critical research areas to prioritize in the future. 

Improved understanding of the population dynamics of the batoid assemblage of the 

western North Atlantic relies on species-specific life history information for which accurate 
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species identification is fundamental. In Chapter 3, life history information for G. 

micrura differed between two adjacent regions along the U.S. coast, and provided the first 

indication of structuring in this population. Consistent geographic differences in body metrics 

including maximum size, maturity size, and fecundity were complimented by distinct 

morphologies of rays collected from the Mid-Atlantic region and from the northern Gulf of 

Mexico. These results lead to a pilot study conducted by William & Mary student intern Meredith 

Seitz, which revealed that inconsistencies in the biology and morphology of Atlantic and Gulf of 

Mexico rays were also present in the genetic structure of the species based on mitochondrial 

DNA analysis. A formal investigation into the taxonomy of G. micrura was undertaken in 

Chapter 4, and the contributions of Chapter 3 ultimately represent the first reports on the life 

history of two newly described species (Gymnura sp nov. A and Gymnura sp. nov. B) in U.S. 

waters. This dissertation can serve as a model for addressing the biological and taxonomic 

deficiencies in our knowledge of other batoid species using existing survey platforms and a 

multidisciplinary approach. Without accurate species identifications and basic life history 

information, the dynamics of these batoid populations cannot be fully understood and the 

vulnerability of species to extinction remains difficult to predict.  

Relative to teleostean fishes, chondrichthyans including batoid species generally display 

slower growth to maturity and have lower annual fecundity (Fisher et al. 2013; Frisk 2010), 

which reduces lifetime productivity. Among batoids, the gymnurids demonstrate moderately fast 

growth rates over average lifespans based on the age and growth of G. altavela, however this 

species is the largest of the genus, and results presented here may therefore differ from the 

sympatric Gymnura sp. nov. A and other congeners. The oldest specimen in this study was 

conservatively aged to be 18 years old, and provides the first estimate of longevity for the entire 

family. Sexually-dimorphic changes were observed during ontogeny of G. altavela, with a shift 

from males and females of a similar size and shape during early life stages to males that reach 
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maximum size as females continue growing for several years. This pattern was also observed in 

the morphology of male and female G. micrura (i.e., Gymnura sp. nov. A and B). Sex-specific 

morphological differences associated with maturity were more extreme in these rays, with head 

shape becoming angular and more elongate in mature males, while female head shape remained 

broadly obtuse. While sexual dimorphism varies across batoid taxa, it has been reported for some 

other species of Gymnura (Bigelow and Schroeder 1953; Raje 2003; White and Dharmadi 2007; 

Jacobsen et al. 2009; Alkusairy et al. 2014), and is important to identify since such variable body 

shapes can lead to taxonomic confusion. 

Life history information contained in this dissertation represent current populations of G. 

altavela, Gymnura sp. nov. A in the western North Atlantic Ocean, and Gymnura sp. nov. B in 

the northern Gulf of Mexico. Unfortunately, catch and abundance data for these populations are 

sparse, making inferences on the status of gymnurid species in U.S. waters challenging. Since 

Gymnura sp. nov. A grows to larger sizes, matures later, and has fewer offspring than Gymnura 

sp. nov. B, the risk of this species interacting with fishing gear before successfully reproducing is 

likely greater. Based on these results and generally declining trends in the abundance of 

gymnurids worldwide, a conservative approach to managing these species in U.S. waters is 

recommended, and efforts to improve monitoring are essential moving forward. Given that the 

state of research for many other U.S. batoid species is still in its infancy, a similar approach to 

their management is warranted until adequate species and population level data become available. 

 

Future research and recommendations 
 

 There is much to be learned about the biology, ecology, and physiology of batoid fishes 

including the Gymnuridae. Age analyses demonstrated the utility of high resolution micro-

computed tomography as an alternative method to visualize growth bands in G. altavela, although 
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this technique was not adequate for performing similar analyses on Gymnura sp. nov. A and B 

based on pilot study results (not presented here). Efforts to age the latter two species are needed 

to better understand growth patterns that may differ significantly from G. altavela, which grow 

nearly twice as large. Additionally, age estimates resulting from Chapter 2 require validation. For 

this study, I attempted to indirectly verify the seasonal periodicity of growth band formation 

through marginal increment analysis, however results were inconclusive due to inadequate 

monthly sampling of specimens. Validation of growth band formation using mark-recapture 

techniques should be explored in the near future, as this approach could also provide valuable 

data on seasonal movements and residency which have not been described for western North 

Atlantic gymnurids. During the summer, large and gravid G. altavela take up residency in the 

bays and inlets of the Virginia Eastern Shore and Chesapeake Bay (Vooren et al. 2007, J. Smith 

pers.comm.), providing the opportunity to conduct such studies. Investigations into the role that 

these Mid-Atlantic habitats play in the life cycle of G. altavela and other batoid species are 

needed, particularly if they represent critical nursery areas for early life stages.  

Results presented in Chapter 3 on the reproductive biology of G. altavela could benefit from 

better temporal sampling of the population, since the timing and frequency of surveys limited the 

availability of specimens across all months. Reproductive periodicity and gestation cycles cannot 

be accurately described without monthly data on the condition of females. The frequency and 

abundance of this species along the U.S. east coast was low relative to Gymnura sp. nov. A, 

therefore a long term sampling effort across the species’ range of distribution is needed. 

Furthermore, a taxonomic re-evaluation of this species is needed to determine if genetic 

differences reported between eastern and western Atlantic populations (Chapter 4) are indicative 

of a cryptic species present in U.S. waters (Naylor et al. 2012; Alkusairy et al. 2014). 

Future research needs identified for G. altavela, including improved temporal sampling, 

habitat use, and migration studies are also warranted for Gymnura sp. nov. A and B. Additionally, 
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trends in the variation of reproductive characters across the family, such as gonad asymmetry, 

may provide insight on the systematics and evolutionary biology of the Gymnuridae. Therefore, 

histological analysis of the functionality of similar sized gonads observed in the newly described 

species (Chapter 3) is recommended.  

For all three species, improved monitoring of populations and analysis of survey catch data is 

urgently needed. Data on seasonal and spatial occurrence, trends in abundance, and sex and life 

stage composition of catches is easily attainable from existing trawl surveys. Additionally, a 

multitude of studies across a variety of disciplines can be supported by these surveys to improve 

our understanding of western North Atlantic Gymnura and other batoid species. The effects of 

trawl fishing and bycatch practices on the physiology of the Gymnuridae should also be a 

priority, given the high prevalence of these animals in trawl catches. In a recent study examining 

sub-lethal effects of trawl capture stress on the reproductive capacity of Fiddler Ray 

(Trygonorrhina dumerilii), neonates from stress-exposed mothers were significantly smaller and 

less fit than neonates from control mothers, highlighting the potential impacts of trawl fishing on 

the reproductive success and recruitment of other viviparous batoids (Guida et al. 2017). While 

post-release mortality of U.S. Gymnura sp. is assumed to be low, investigations into the 

physiological effects of common capture and release practices on Butterfly Rays have not been 

performed. To adequately assess the present status of these populations, species-specific 

knowledge of the impacts of bycatch fishing practices on the health and survival of gymnurids is 

vital.  
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