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Characterization of soft-bottom benthic habitats of 
the   land Islands, northern Baltic Sea 

E. B o n s d o r f f l - * ,  R. J. ~ i a z ' ,  R. Rosenberg3, A. ~ o r k k o ' ,  G .  R. Cutter ~r~ 

'Huso Biological Station, Department of Biology, Abo Akademi University, FIN-22220 Emkarby. h a n d ,  Finland 
 he College of William & Mary, School of Marine Science, Virginia Institute of Marine Science, Gloucester Point, 

Virginia 23062, USA 
'Kristineberg Marine Research Station, Goteborg University, S-450 34 Fiskebiickskil, Sweden 

ABSTRACT: Sediment surface and profile imaging (SPI) was used in combination with grab sampling 
of sediment (sediment type, organic content, benthic infauna) and hydrography (temperature, oxygen 
saturation of bottom water) to analyze and describe the soft-bottom benthic habitats of the Aland arch- 
ipelago (60" 00' to 60'30' N, 19O30' to 20'30' E) in the northern Baltic Sea. The SPI analysis covered 42 
stations (5 to 263 m depth), from inner sheltered bays to open coastal waters, with varying sediment 
types (soft mud with high organic content to sandy substrates with low organic content; loss on ign~tion: 
0.5 to 12 4 %) Clustering of the sampled stations (sediment properties) yielded 3 distinct categories of 
sedimentary habitats: (1) inner archipelago areas and bays with high organic content of the sediment 
and reduced oxygen saturation in the bottom water, (2) archipelago waters with intermediate values of 
all analyzed parameters, and (3) open coastal sediments with low organic content and high oxygen sat- 
uration (2 deep offshore stations formed an additional group based primarily on depth). Visual analysis 
of the images provided information on several additional abiotic and biotic characteristics of the 
sediment, and significant correlations were found mainly between oxygen saturation, organic content, 
sediment type, shear strength (penetration of gear), surface relief and the depth of the redox potential 
discontinuity layer in the sediment. The sediment properties were also reflected in the zoobenthos. The 
correlations between parameters measured are discussed in relation to applicability of the SPI method, 
monitoring demands, and basic understanding of the sediment-animal relationships. 

KEY WORDS: Sediment profile imaging . Benthic habitats . Zoobenthos . Hydrography . Baltic Sea 

INTRODUCTION 

Benthic studies have traditionally involved a visual 
description of the sediment (sediment type, colour, 
smell, etc.) in relation to the infaunal assemblages 
recorded. In order to explain functional aspects of the 
biota, the need for a more detailed analysis and under- 
standing of both the pelagic and the sedimentary envi- 
ronments is obvious (Graf 1992, Snelgrove & Butman 
1994, and references in them). Thus, the perception of 
benthic ecology has become more complex, gradually 
involving more sophisticated field methods. Further, 
the need for rapid and accurate measurements and 
subsequent classification of the benthic environment 

has evolved with increasing environmental problems 
and demands for impact studies. To meet some of these 
demands, various methods of sediment photography 
have been developed, leading to the present sediment 
profile imaging techniques used both in monitoring 
and basic research, enabling in situ characterization of 
sediment habitats including the fauna (Rhoads & 
Cande 19-11, Rhoads & Germano 1982,1986, O'Connor 
et al. 1989, Diaz & Gapcynski 1991, Grizzle & Penni- 
man 1991, Grehan et al. 1992, Rumohr & Schomann 
1992, Rumohr et al. 1992, Valente et al. 1992, Diaz et al. 
1993). 

Large areas of the open Baltic Sea are in a more or 
less persistent anoxic state. When infauna is present in 
adjacent hypoxic areas, diversity is low and most indi- 
viduals are small (Andersin & Sandler 1989, 1991). 
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Niemisto & Winterhalter (1977) provided the first 
attempt in the northern Baltic Sea to study the sedi- 
ment surface oxygen conditions by sediment photogra- 
phy. Rumohr et  al. (1992), Schaffner et al. (1992), 
Rosenberg & Diaz (1993) and Rumohr (1993) were the 
first to use sediment profile imaging to analyze both 
the sediment and, the biota in Baltic waters. 

The objective in the present study was to classify 
the benthic environments in the Aland archipelago 
(Fig. 1). The aims of this study were to (1) characterize 
the sediment and zoobenthic habitats in the h a n d  
archipelago, (2) describe qualitatively and quantita- 
tively the benthic infauna, (3) test for connections 
between hydrographic features, sediment quality and 
zoobenthos, and (4) discuss the relevance of sediment 
surface and profile imaging (SPI) in the low-saline, 
species-poor Baltic Sea in relation to other sea areas. 
The results from this study are compared with quanti- 
tative sampling of zoobenthos that was carried out at  
25 of the 42 stations studied during June and July 
1992-1994 (Norkko & Bonsdorff 1994, Bonsdorff et al. 
1997). Zoobenthic communities of the &and area are 
already well documented (Westerberg 1978, Bonsdorff 
et al. 1991, 1992, 1997, Bonsdorff & Blomqvist 1993, 
Norkko & Bonsdorff 1994). The northern Baltic coasts 
and archipelago are influenced by eutrophication 

(Cederwall & Elm.gren 1990, Bonsdorff et a1 1991, 
1992, 1997, HELCOM 1993, Jumppanen & Mattila 
1994) which leads to periodic and seasonal hypoxia in 
some areas. This seems to be due to large-scale 
eutrophication and impact by fish-farms and agricul- 
ture rather than local point sources. The energy trans- 
fers in the system are basically known (Elmgren 1984, 
Leppakoski & Bonsdorff 1989), as are the geology and 
the general distri.bution of sediment types (Tulkki 
1977, Voipio 1981, Jonsson et al. 1990, Leivuori & 
Niemistij 1993, Jonsson & Carman 1994). 

MATERIAL AND METHODS 

Study area. The investigated area (Fig. 1) was the 
extensive &and archipelago, S W  coast of Finland, 
northern Baltic Sea (60°00' to 60°30' N, 19'30' to 20°30' 
E), covering approximately 7000 km2 The area is char- 
acterized by about 6500 islands, forming a mosaic of 
more or less distinct zonation ranging from the inner- 
most sheltered bays to the open coastal areas. Average 
water depth is 20 to 25 m, with a shoreline of over 
8000 km, emphasizing the importance of littoral, near- 
shore, shallow areas for the functioning of the ecosys- 
tem (Bonsdorff & Blomqvist 1993). The sea is non-tidal, 

Fig. 1 Study area in the &and archl- 
pelago, northern Baltic Sea.  (m) SPI 
hydrography and qualitative zooben- 
thos; (v) SPI and quantitative zooben- 
thos (Norkko & Bonsdorff 1994. Bons- 
dorff et  al. 1992, 1997). Sediment 
habitats were divlded into 4 groups: 
Group I ,  inner areas,  soft mud, Stns 5, 
8, 9, 12, 28-30, 32; Group 11, archlpel- 
ago, Stns 1-4, 6. 10, 11, 13-20. 25-27, 
31, 33; Group 111, open coastal ?one, 
Stns 7, 21-24, 34-40; Group 4, open 
sea. Stns 41. 42 (position outside map 
indicated by arrow). M: Mariehamn 
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but characterized by a strong seasonality, including 
high summer temperatures (surface waters reach 18 to 
20°C), and a more than 90% probability of annual ice 
cover during winter (Leppiikoski & Bonsdorff 1989). 
Further, the land uplift after the last glaciation still pre- 
vails at 50 to 60 cm per 100 yr in the &and Islands, con- 
tinuously forming new littoral areas. Due to the rela- 
tively high degree of isolation from the fully marine 
environment and as a consequence of the large nver- 
ine input of freshwater (Carlsson & Bergstrom 1993, 
Pitkdnen 1994), the northern Baltic Sea of today is 
characterized by low salinities (4 to 8%0 S). Regular 
anoxic conditions occur in the bottom waters in the 
open sea (Andersin & Sandler 1989, 1991). In the arch- 
ipelago areas, however, stratification due to rapid 
warming of the surface waters occurs annually. Gener- 
ally, the Baltic Sea ecosystems are governed by pre- 
vailing latitudinal (horizontal: N-S, E-W) and vertical 
(depth: topography, stratification) gradients in the sea 
(Leppakoski & Bonsdorff 1989). 

Field methods. In all, 42 stations (Fig. 1, Table 1) in 
the &and archipelago and the adjacent h a n d  Sea 
were visited during 1 week in June 1993, and at each 
station (at Stns 41 and 42 SPI only; Table 1) the follow- 
ing sampling procedure was carried out: basic hydro- 
graphy (temperature, salinity, oxygen saturation of the 
bottom water 50 cm above the sediment surface), 
zoobenthos (l Ekman-Birge grab sample sieved on a 
1 mm sieve and immediately analyzed to record domi- 
nant infauna), sediment for analysis of organic content 
(% ignition loss), and sediment surface and profile 
imaging. The present study utilized the camera and 
analytical methodology described in Diaz & Gapcynski 
(1991) and Rosenberg & Diaz (1993). 

Sediment profile photographs were obtained from 
all 42 stations (Table 1, 5 to 263 m depth). Stns 28, 29 
and 30 were in the vicinity of a fish farm, all others 
were located off local point source disturbance. The 
camera pod contains a surface camera (photographing 
approximately 1 m2 of the bottom before the pod 
arrives at  the bottom), a sediment profile camera with 
a 12 X 22 cm prism, and an oxygen probe (YSI Envi- 
ronmental Monitoring Systems) for measurements of 
oxygen content of the near-bottom water. Agfa 
Chrome CTlOO slide film was used in both cameras. 
Three replicate deployments of the camera pod were 
made at each station. During each deployment, 1 pho- 
tograph was taken of the sediment surface to identify 
objects at  the sediment surface, and 3 successive pic- 
tures were taken at 2 s intervals as the prism pene- 
trated into the sediment (for details of camera and 
camera pod, as well as sampling procedure, see Rosen- 
berg & Diaz 1993). 

Laboratory methods. Surface and sediment profile 
images were stored digitally in Kodak Photo CD for- 

mat. Visual and computerized analysis of the images 
was done using Adobe Photoshop 2.5 and NIH Image 
1.52 on an Apple Macintosh Quadra 900 computer. For 
computerized measurement of image features, pre- 
processing of the original images involved intensity 
histogram stretching and adjustment of gamma value, 
brightness and contrast. This enhanced most of the 
colour contrast of the original sediments with little arti- 
ficial hues or gradients. From each image the following 
parameters were analyzed: bottom water oxygen satu- 
ration (electrode reading in photograph calibrated 
against measurements made from a separate bottom- 
water sample), penetration depth in cm of the camera 
pod (as an estimate of shear strength and compaction 
of the sediment), sediment surface relief (the differ- 
ence between the highest and lowest overall points in 
a sediment profile image) as a measure of small-scale 
sediment structure and biotic activity, depth of the 
apparent colour redox potential discontinuity layer 
(RPD) and other laminated sediment structures 
(Table 1).  Visual analysis of the SPI images (Table 2) 
was done for sediment type (also from the grab sam- 
ples), occurrence of mollusc shells, surface structures 
(tubes and/or fauna), subsurface structures (burrows 
and/or infauna), and the presence of voids (anoxic or 
oxic; their size and area were estimated) according to 
Diaz & Gapcynski (1991), Rumohr & Schomann (1992) 
and Diaz et al. (1993). The grouping of stations was 
done by clustering using SYSTAT 5.0 for Macintosh 
con~puters (Euclidian distance using single linkage 
and the nearest neighbour method based on physical 
and chemical parameters: depth, oxygen saturation of 
bottom water, organic content of surface sediment, 
penetration of camera prism, surface relief, and depth 
of redox potential discontinuity layer; Burd et al. 1990). 

Zoobenthos. In addition to the qualitative analysis of 
the benthic fauna done in connection with the sedi- 
ment photography, quantitative data was obtained by 
grab sampling (5 replicate Ekn~an-Birge grab samples 
sieved on a 0.5 mm screen sampled in June and July 
1994; Norkko & Bonsdorff 1994). The SPI results were 
compared with the infaunal community data (species, 
abundance and biomass) through linear regression for 
the entire range of all data collected. Benthic habitats 
were compared by l-way ANOVA. 

RESULTS 

Basic environmental characteristics 

The oxygen saturation correlated negatively with 
temperature and depth (p  < 0.05; linear regression 
analysis). The organic content of the sediment was sig- 
nificantly negatively correlated to the oxygen satura- 



238 Mar Ecol Prog Ser 142: 235-245, 1996 

Table 1. Station data and sediment profile lmaging (SPI) results from the 42 stations in the &and archipelago, northern Baltic Sea, 
June 1993. Near-bottom oxygen saturation ( 0 2  " , , l ,  sediment type, organic content of the sediment (org. Oh, measured as loss on 
ignition), penetration depth of the camera prism (PEW), surface relief (SURF), depth of redox potential discontinuity layer (RPD). 
Mac: Alacoma balthica, Sad: Saduria enton~on, Ner: Nereis dlversicolor, Chir: Chironomidae. Chir pl: Chironomus plumosus- 
type, Monop: Monoporeia affinis, Olig: Ol~gochaeta,  Mya: Mya arenaria, Hydr: Hydrobia spp.. Cra: Crangon crangon, Pyg: 

Pygospio elegans, Hallcr: Hal~cryptus spinulosus, Myt: Mytilus edulis. -: no data 

Stn Depth Coord~nates 0: Sediment Org. " n  Dominant PEN SURF RPD 

(m)  ( N ,  E)  type fauna (cm) (cm) (cm) 

1 11 60" 06' 30", 19" 55' 63" 84 Mud 9.1 Mac, Sad, Ner, Chlr 9.5 0.8 0.7 
2 22 60" 05' 03". 19" 66' 68" 89 Mud 5.6 Mac, hdonop, Olig, Hydr 10.7 0.9 0.7 
3 15 60" 04' 45". 19" 55' 63" 86 Clay 9.5 Mac. Chir. Olig, Mya 3.9 2.1 0.2 
4 5 60" 05' 38". 19" 58' 05" 89 Mud 8.2 Mac, Hydr, Cra. Mya 8.9 1.5 0.4 
5 28 60' 05' 16". 1g058' 86" 54 Mud 12.4 Chir p1 19.1 2.0 0.4 
6 21 60°01' 86". 20" 01'74" 81 Clay 7.8  mac, Monop 7.8 1.0 0.5 
7 28 60" 02' 35". 19" 56' 67" 84 Clay/fine sand 4.5 Mac. Pyg, Halicr 5.2 0.4 0.6 
8 19 60" 05' 90". 20" 03' 78" 40 Mud 9.1 Chir p1 20.1 1.5 - 

9 9 60°16 '68" ,19058 '52"  64 Mud 8.3 Chir p1 18.1 1.8 - 

10 14 60" 15' 89". 19' 59' 37" 73 Mud 7.6 Mac, Chir 14.9 1.3 l 1 
11 17 60" 14' 54", 20' 00' 61" 67 Mud 8.9 Chir pl. Mac 15.6 1.2 0.5 
12 18 60" 13' 88", 20°01.' 37" 50 Mud 8.7 Chir pl, Mac 16.1 0.9 0.3 
13 13 60" 11' 06", 20" 03' 17" 75 Mud/clay 4.9 Monop, Chlr, Mac. Hydr 9.9 1.0 0 6 
14 19 60" 08' 85". 20" 04' 87" 73 Mud/clay 7.9 Chir p1 13.0 0.7 0.6 
15 18 60" 08' 91",  20" 07' 91" 73 Mud/clay 7.3 Mac, Monop 10.5 1.1 0.5 
16 19 60" 07 '48" ,  20°07'57" 83 Mud 7.6 Mac 13.4 1.0 0.6 
17 22 60" 07' 91", 20' 10' l l n  79 Mud 6.9 Mac, Monop, OLig 12.8 0.7 0.7 
18 20 60" 08' 73", 20°09' 29" 76 Mud 7.2 Monop, Chir pl, Mac 14.9 1.5 0.6 
19 15 60" 08' 09", 20' 10' 88" 88 Mud/clay 5.2 Monop, Chir pl, Mac 9.8 2.1 1.2 
20 21 60" 11' 12", 20" 12' 04" 70 Mud 6.5 Mac, Chir. Hydr, Sad 14.5 1.4 2.9 
21 32 60" 13' 12", 20" 17' 10" 88 Clay 7.1 Monop, Mac. Chir. Olig 5.8 1.4 0.3 
22 32 60" 18' 40", 20" 18' 65" 82 Clay/fine sand 1.9 Monop, Mac, Halicr. Sad 1.8 0.9 1.8 
23 32 60" 21' 99". 20" 08' 70" 85 Mud/clay 4.6 Monop, Mac, Halicr 10.9 1.3 1.0 
24 30 60" 25' 36". 19" 45' 00" 92 Mud/clay 1.7 Mac, Halicr 4.5 0.7 0.4 
25 27 60" 24' 18", 19'45' 34" 92 Mud 9.7 Mac, Hydr 14.2 1.4 0 6 
26 21 60" 22' 88", 19'46' 09" 93 Mud 10.8 Mac 13.5 0.9 0 6 
27 14 60" 22 '01",  19'45' 95" 89 Mud 5.8 Mac 10.0 1.0 1.0 
28 12 60" 21' 27", 19" 47' 12" 93 Mud 9.3 Mac, Ch p1 16.8 2.4 0 7 
29 12 60°21' 15", 1g046' 94" - Mud 10.1 Mac, Ch p1 18.0 1.3 0 5  
30 14 60" 20' 87",  19" 46' 87" - Mud 9.6 Ch p1 18.0 2.8 0 7 
31 15 60" 19' 99",  19" 46' 85" 82 Mud/clay/stones 2.8 Mac, Chir 2.7 2.8 0.2 
32 26 60" 17'71". 19"47'91° 61 Mud 8.9 Mac, Ch p1 15.8 1.6 0.7 
33 8 60°16 '50" .19047 '99"  83 Mud 7.2 Mac. Ch p1 14.0 0.9 0.5 
34 7 60°21 '41" ,19"42 '21"  92 Mediumsand 0.8 Mac. Pyg, Hydr, Mya 1.4 1.0 1.4 
35 35 60" 21'74", 19" 40'94" 87 Mud 9.5 Mac 13.2 1.1 0.5 
36 32 60" 23' 77". 19* 38' 24" 87 Medium sand/clay 0.9 Monop. Mac. Pyg 10.7 1.1 3.1 
37 7 60" 23' 80". 19" 40' 15" 93 Medium sand 0.5 Mac, Pyg 0.3 0.8 0.3 
38 25 60" 19' 99". 19' 30' 83" 89 Medium sand 0.6 Mac. Monop. Pyg. Halicr 2.3 0.7 2.3 
39 25 60" 13' 10". 19' 29' 00" 87 Medlum sand 1.8 Mac, Monop, Halicr 0.4 0.6 0 4 
40 13 60" 13' 55", 19'31' 01" 89 Flne sand 1.4 Pyg, Mac, Myt 1.2 0.6 1.2 
41 263 60" 09' 86", 19' 08' 58" - Mud/clay - - 15.8 1.5 0.7 
42 130 GO0 06' 78", 18" 56' 72" - Ivlud/cldy - - 7.6 1.0 1 9 

tion of the near-bottom water (p  < 0.05). The oxygen 
conditions are partly explained by depth and tempera- 
ture, but also by exposure, with high oxygen satura- 
tions at  open coastal stations and reduced oxygen con- 
ditions at sheltered inshore localities (Table 1). The 
sediment at the investigated stations is dominated by 
mud (at 74 % of the stations at 5 to 263 m; Table l ) ,  clay 
( 3 6 % ,  15 to 263 m),  and sandy habitats (19%, 7 to 
32 m) .  

Sediment surface and profile imaging 

The grouping (clustering) of stations delimited 4 dis- 
tinct habitats (Fig. 1, Table 3): inner bays and sheltered 
archipelago waters (8 stations), archipelago areas (20 
stations), the open coastal zone (12 stations), and the 
open sea (2 stations) The open coastal zone was 
deeper than the archipelago zone, but the difference 
was only a few meters. The oxygen saturat~on varied 
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Table 2. Visual analysis of the sediment profile images from the the 42 stations in h a n d  archipelago, June  1993 (n = 1-3 per 
station). NA: not analyzable, +: present. - -  not present 

Stn Dark layer Shells 
(cm) 

- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10  
11 
12 
13  
14 
15  
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
27 
28 
29 
30  
31 
32 
33 
34 
35 
36 
37 
38  
39  
40 
4 1 
4 2 

Mean 

Surface structures Subsurface structures Voids Comments 
Tubes Fauna Burrow Infauna Oxic Anox~c  

P- P 
P- 

+ - 
- - Oil-spot 
- - 'Fecal pellets 
- - 
- - 
- - 
+ - 

+ 
- Chironomid burrows 
- 
- 
- Chir. surface and burrows 
- Macoma 
- 
+ Burrows in clay 
- 

Monoporeia surface 
Monoporeia surface 
Monoporeia surface 
Monoporeia surface 
Halicryptus spin ulosus 
Pelletized surface 

Chir burrow to 15  cm 

Chir. burrow to 15  cm 

Monoporeia surface 

Pure sand 
Monoporeia surface 
Flounder feeding p ~ t  
Pure sand 
Macoma, Monoporeia 
Pure sand 
Pygospio tubes 
Saduda at  surface 

4.0 * 0 . 3  1.4 * 0.1 1 .2  * 0.09 
5.4 * 0.7 cm deep in sediment 
0.38 r 0.12 cm2 in size 

significantly between zones (the inner bays had lower 
values than the other 2 areas; p < 0.05; l-way 
ANOVA). SPI-parameters displayed significant differ- 
ences between zones; penetration and surface relief 
both decreased while the depth of the RPD layer 
increased from the inner bays towards the open coast 
(p < 0.05). 

The visual analysis of the sediment surface and pro- 
file images (Table 2) showed that shells were regis- 

tered in the sediment a t  26 % of the stations, primarily 
a t  sandy bottoms with low penetration depth (Stns 34 
to 39). Surface tubes (mainly from small polychaetes 
such as Pygospio elegans) were noted at 5 stations in 
the Mariehamn-area (Stns 2 to 7 ) ,  which are influenced 
by frequent ferry traffic regularly disturbing the sedi- 
ment surface through increased turbulence (Norkko & 
Bonsdorff 1994). Fauna at the sediment surface was 
recorded at 6 stations of varying depth and sediment 
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Table 3. Grouping of the 42 stat~ons In the Aland archipelago based on physical and chemical parameters: depth, oxygen satu- 
ration of bottom water ( ' X ) ,  occurrence of seasonal hypoxia (+ or -), organic content of surface sediment (%), penetration of cam- 
era (cm), surface relief (cm), and depth of redox potential discontinuity layer (cm). All values are averages + 1 SE. Faunal data 

from Norkko & Bonsdorff (1994) 

Area: Inner archipelago Archipelago Open coastal zone Open sea 
(Stns) (5, 8, 9, 12, (l, 2, 3, 4, 6, 10, 11, (7. 21. 22, 23. 24, (41, 42) 

28, 29, 30, 32) 13, 14, 14, 16, 17, 18, 34, 35, 36, 37, 
19, 20, 25, 26, 27, 31, 33) 38, 39, 401 

Depth (m) 17.3 * 2.4 16.9 i 1.2 24 8 + 2.9 197 
Oxygen saturation (96) 60.6 * 7.3 81.5 t 1.7 8 8 1 + 1 0  Oxic 
Seasonal hypoxia (+/-) + + - - 
Organic content (X) 9.6 * 0.5 7.3 + 0.4 2.9 + 0.8 Mud/clay 

Sediment type Mud Mud/clay Sand/clay Mud/clay 
Penetration (cm) 17.8 * 0.6 11.2 t 0.8 4.8 & 1.8 11.7 
Surface relief (cm) 1.8 T 0.2 1.3 & 0.1 0.9 2 0.009 1.3 
RPD layer (cm) 0.4 + 0.1 0.7 2 0.1 1.1 * 0.3 1.3 

No. of species: 9.0 + 1.7 9.4 lt 1.0 10.4 * 1.4 N A 
Dominant species Macoma, Chironornus Macoma, Monoporeia Monoporeia, Macoma 
Abundance (ind.-2) 2816 i 531 2340 i 756 7872 + 2199 N A 
Biomass (g \vet wt m-') 125.8 * 39.4 120.4 * 38.1 196 7 5 45.6 N A 

quality. The animals registered were the bivalve Ma- abundant at the surface layer of the sediment (0 to 
coma balthica, the crustaceans Sadnria entomon (sur- 3 cm), and the sediment surface was well bioturbated. 
face image at  Stn 41), Monoporeia affinis and Idotea 
balthica, and chironomid larvae. Surface images also 
showed feeding pits of flounder Platichthys flesus on Benthic infauna 
sandy bottoms (Fig. 2). Subsurface structures were 
common in images, with distinct burrows appearing at The qualitative samples taken in connection with the 
31 of the stations (on average 4.0 & 0.3 burrows per im- SPI analysis (Table 1) showed no major differences in 
age when present; Table 2). The burrows appeared to fauna1 dominance in the various areas. The fauna was 
be constructed by M. balthica, amphipods, polychaetes dominated by Macoma balthica, Monoporeia affinis 
and chironomid larvae, and penetrated to a maximum and chironomid larvae. The quantitative sampling 
depth of 15 cm in the sediment. In 2 instances adult M. (Table 3) showed that the number of species and total 
balthica were seen in the burrows (Fig. 2). The bur- community biomass did not differ between groups of 
rows were recorded mainly at Stns 9 to 20 on central stations (Table 3, and Norkko & Bonsdorff 1994). Total 
&and and 25 to 32 in the northwestern archipelago abundance was significantly (p < 0.05, l-way ANOVA) 
(Tables 1 & 2). Both areas are sheltered and dominated higher in the open coastal zone, where the sandy bot- 
by soft bottoms. Infauna (1.4 + 0.13 individuals per toms were dominated by amphipods (primarily Mono- 
image when present; chironomids, unidentified worms, poreia affinis) and the polychaete Pygospio elegans. 
M. balthica and the priapulid Halicryptus spinulosus) 
was seen in the images from 14 stations from all areas 
(except the sandy bottoms with low penetration). Voids 
(anoxic or oxic) were recorded at 16 stations (1.2 + 0.09 
per frame when present). They were on  average 0.38 * Using SPI in the northern Baltic Sea 
0.12 cm2 in size and situated. 5.4 +. 0.7 cm below the 
sediment surface. At some stations (21 to 24, 32 and 35; The SPI methodology has previously been u.sed 
Table 2), burrows of the amphipod M. affinis were mainly in monitoring pollution and organic enrich- 

DISCUSSION 

Fig. 2. Sediment surface and profile imaglng. (a) SPI from Stn 26, enhanced as it would be for computerized measurement, reveal- 
ing muddy sedlments, an average redox potential discontinuity (RPD) layer depth of 0.6 cm, and a falrly rough, biologically 
reworked surface. (b)  Enlargement of a SPI from Stn 11, revealing 2 chironomid larvae (reddish coloured) and oxidlzed sediments 
associated with recent burrowing activity. (c) Enlargement of a profile image from Stn 36 with a crushed Macoma balthica shell 
next to what is believed to be a flounder feeding pit. (d) Enlargement of a profile image from Stn 25, where 2 of the priapulid 

Hallcryptus spinulosus were revealed by image enhancement 
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(a) Sediment profile image (enhanced) (b) Chironomid larvae 
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ment and in mapping sediment habitats (Rhoads & 
Germano 1986, Valente et al. 1992, Diaz et al. 1993, 
Rumohr 1993). It has often been linked to an Organ- 
ism-Sediment Index (OSI) and to apparent succes- 
sional stages (sensu Pearson & Rosenberg 1978) of 
the infauna (Valente et al. 1992) as suggested by 
Rhoads & Germano (1982, 1986). In the northern 
Baltic Sea these criteria are not as easily applicable 
as they might be in organically enriched marine soft 
sedirnents where changes in size distribution among 
the sediment-dwelling infauna is an  apparent effect 
of changes in the benthic habitats. In the Baltic Sea 
most infaunal organisms are small and most of the 
biomass is found in the top few cm of the sediment 
(Dold 1980, Romero 1983, Hill & Elmgren 1987). Fur- 
ther, the deep areas are often structured by periodic 
anoxia (Andersin & Sandler 1989, 1991), emphasizing 
the importance of the coastal and archipelago areas 
for benthic production (Elmgren 1984, Bonsdorff & 
Blomqvist 1993). The basic sediment types in the 
northern Baltic Sea are glacial clay covered by mud 
or sand, or substrates dominated by coarse sand, 
gravel and nodules of ferro-manganese (Voipio 1981). 
The RPD is located close to the sedim.ent surface in 
the northern Baltic Sea; this is due to the lack of 
deep-burrowing animals, rather than just organic 
enrichment (Rosenberg & Diaz 1993, Rumohr et al. 
1996). Hence, the SPI methodology and habitat char- 
acterization benefit from being associated with 
hydrographical, chemical and biological methods. 
Snelgrove & Butman (1994) concluded that the 
organic content of the sediment seems to be a more 
likely causal factor than grain size (sediment type) for 
the infauna, and Pearson & Rosenberg (1978, 1987) 
illustrated similar aspects. Grizzle & Penniman (1991) 
also showed that the SPI is useful as a tool along an 
enrichment gradient, illustrating the links between 
organic content, RPD, and infauna, and Rosenberg 
(1995) linked sediment characteristics and camera 
image observations to the distribution of fauna1 com- 
munities. Hence, parameters found to correlate sig- 
nificantly with organic content would be of prime 
interest from the SPI analysis 

Jonsson & Carman (1994) found that the organic con- 
tent of the sediment has increased more than 1.7-fold 
in the Baltic since the 1920s, which would partly 
explain long-term changes (primarily increasing abun- 
dance and biomass) in the zoobenthos recorded in the 
archipelago areas (Bonsdorff et al. 1991, 1992, 1997, 
Norkko & Bonsdorff 1994). Their estimate of the aver- 
age organlc content (loss on ignition) for the Bothnian 
Sea adjacent to the &and archipelago is very close to 
our estimate (8.3 +. 1.4% in their study from the open 
sea vs 6.5 + 0.5% in our analysis of coastal and archi- 
pelago waters). 

Sediment characteristics, hydrography and infauna 

Penetration of the prism is highly dependent on the 
sediment type, with little or no penetration in sandy 
sediments and down to 20 cm in soft mud (Table 1). 
The apparent colour RPD is shallow (0.8 + 0.1 cm, total 
mean), which is not only a result of low oxygen levels, 
but primarily of the lack of large sediment dwelling 
organisms that would rework the sediment. Thus, the 
use of the OS1 as proposed by Rhoads & Germano 
(1982, 1986), Valente et al. (1992), and Nilsson & 
Rosenberg (1995) is not directly applicable in the Baltic 
Sea, mainly due to the absence of a late successional 
stage fauna. Low salinity, sediment type, and organic 
enrichment are all factors contributing to the lower 
successional stage fauna in the Baltic Sea (Pearson & 
Rosenberg 1978, Bonsdorff & Blomqvist 1993, Bons- 
dorff et al. 1997). Among the environmental parame- 
ters, oxygen saturation is of prime importance, and 
hypoxia (or periodic oxygen deficiency) seems to be a 
main factor structuring benthic communities (Rosen- 
berg & Loo 1988, Andersin & Sandler 1991, Schaffner 
et al. 1992, Diaz & Rosenberg 1995). However, areas 
which sustain macrofauna may be in close proximity to 
areas with anoxic sediments devoid of macrofauna and 
covered by bacterial mats (Rosenberg & Diaz 1993, 
Diaz & Rosenberg 1995). 

Comparing the SPI analysis from the non-polluted 
but clearly eutrophic Aland archipelago with the pol- 
luted and highly eutrophic inner Stockholm archipel- 
ago, northern Baltic Sea, where the sedirnents were 
largely anoxic (Rosenberg & Diaz 1993) showed that 
the main difference in visual sediment properties was 
in the frequency of feeding voids. A higher frequency 
was recorded in the present study; and, as these voids 
are linked to burrowing infauna, the difference is ex- 
pected. Based on the present SPI analysis, the sediment 
habitats of the h a n d  archipelago, although signifi- 
cantly affected by eutrophication (Bonsdorff et al. 1991, 
1992, 1997, Norkko & Bonsdorff 1994), are not yet hy- 
pertrophic. The major exceptions, grouped as 'inner 
archipelago' (Table 3), are stations situated in the vicin- 
ity of fish farms (Stns 28, 29 and 30), in enclosed bays 
surrounded by extensive farming and large drainage 
areas (Stns 8, 9, and 12), and stagnating basins in en- 
closed areas (Stns 5, and 3 2 ) ,  i.e, areas close to local 
point sources of excess nutrients (Bonsdorff et al. 1991, 
1992). These areas show some similarity to the stressed 
habitats of the Stockholm archipelago as described by 
Rosenberg & Diaz (1993). The overall long-term trend 
in, the area shows a significant increase (p < 0.01, l-way 
ANOVA) in abundance and biomass of the zoobenthos 
from the 1970s to the 1990s (Norkko & Bonsdorff 1994, 
Bonsdorff et al. 1997), with seasonal (annual) changes 
generally being small (Bonsdorff & Blomqvist 1989). 
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In situ observation of the geological and biological 
aspects of sediment fabric using SPI (for example, sed- 
iment laminations, shells, tubes, burrows, infauna, and 
voids) provides additional information that traditional 
fauna1 sampling and rough sediment analysis cannot 
provide (Grizzle & Penniman 1991, Diaz et al. 1993). 
While grab samples confirmed the presence of the 
amphipods Monoporeis affinis and Pontoporeia 
femorata, SPI determined the importance of these 
amphipods to surface sediment reworking of Baltic 
sediments (Hill & Elmgren 1987, Lopez & Elmgren 
1989, Lehtonen 1995). The chironomid burrows 
observed down to 15 cm in the soft muddy habitats 
with low oxygen content illustrate the role of burrow- 
ers in oxygenating deep layers of the sediment and 
participating in the remineralization of nutrients from 
the sediment to the water column (Leppakoski 1975, 
Rosenberg et al. 1975, Pearson & Rosenberg 1978, Diaz 
& Rosenberg 1995). Seasonality in abundance and bio- 
mass of the chironomid larvae in the h a n d  region is 
marked, and large seasonal variations in their role as 
bioturbators can be expected (Bonsdorff & Storberg 
1990). Chironomus plumosus larvae contain haemo- 
globin in their blood and are well adapted for hypoxic 
conditions, and they are known to favour soft sedi- 
ments rich in organic matter, although little is known 
about their tube-building behaviour (McLachlan & 
Cantrell 1976, Koskennieml 1994) .  Diaz et al. (1993) 
illustrated similar conditions regarding the detection of 
opportunistic spionid polychaetes that in some ways 
are equivalent to the chironomid burrows seen in the 
present images. The bulldozing tracks left by the iso- 
pod Saduria entomon underline the importance of the 
role of the biotic activity by this large isopod for the 
sediment surface at deep water stations (Haahtela 
1990, Vismann 1991, Sandberg 1994, Sandberg & 
Bonsdorff 1996) .  

Concluding remarks 

The SPI methodology proved very useful in describ- 
ing and classifying the sediment habitats in the archi- 
pelago areas of the brackish Baltic Sea. The method is 
easy and cheap to use and gives rapid results. In com- 
bination with the information on basic hydrography 
(primarily oxygen saturation of the bottom water), sed- 
iment chemistry (organic content of the surface sedi- 
ment), and quantitative information on the benthic 
infauna (including information on bioturbation), clear 
groupings of the environment could be made. Such 
groupings can be of great value when comparing the 
Baltic ecosystem with other sea areas analysed by 
imaging techniques (Hongguang et al. 1995, Rumohr 
et al. 1996). As the main parameters showed significant 

correlations both within methods (the SPI data) and 
between biotic (zoobenthos) and abiotic envlronmen- 
tal information, we conclude that the method used 
here added valuable knowledge to our understanding 
of the structuring and distribution of the benthic com- 
munities. Also, from an environmental monitoring 
point of view, the sediment surface and profile imaging 
clearly demon.strated its potential as a rapid means of 
classifying and grouping large areas of varying depth, 
exposure, and degree of human impact (Rumohr et al. 
1996). The high levels of correlation between the SPI 
analysis and the traditional information is encouraging 
for future application of sediment surface and profile 
imaging in the Baltic Sea, providing the possibility of 
direct and rapid con~parison with other areas impacted 
to varying degrees by human activity and with radi- 
cally different aquatic environments. 
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