Characterization of soft-bottom benthic habitats of the Aland islands, northern Baltic sea

E Bonsdorff

R. J. Diaz

Virginia Institute of Marine Science

R Rosenberg

A Norkko

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles

Part of the Marine Biology Commons

Recommended Citation

Bonsdorff, E; Diaz, R. J.; Rosenberg, R; and Norkko, A, Characterization of soft-bottom benthic habitats of the Aland islands, northern Baltic sea (1996). MARINE ECOLOGY PROGRESS SERIES, 142, 235-245. 10.3354/meps142235

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Characterization of soft-bottom benthic habitats of
the Åland Islands, northern Baltic Sea

E. Bonsdorff1*, R. J. Diaz2, R. Rosenberg3, A. Norkko1, G. R. Cutter Jr2

1Huso Biological Station, Department of Biology, Åbo Akademi University, FIN-22220 Emkarby, Åland, Finland
2The College of William & Mary, School of Marine Science, Virginia Institute of Marine Science, Gloucester Point, Virginia 23062, USA
3Kristineberg Marine Research Station, Göteborg University, S-450 34 Fiskebäcksull, Sweden

ABSTRACT: Sediment surface and profile imaging (SPI) was used in combination with grab sampling
of sediment (sediment type, organic content, benthic infauna) and hydrography (temperature, oxygen
saturation of bottom water) to analyze and describe the soft-bottom benthic habitats of the Åland arch-
ipelago (60° 00' to 60° 30' N, 19° 30' to 20° 30' E) in the northern Baltic Sea. The SPI analysis covered 42
stations (5 to 263 m depth), from inner sheltered bays to open coastal waters, with varying sediment
types (soft mud with high organic content to sandy substrates with low organic content; loss on ign~tion:
0.5 to 12.4%). Clustering of the sampled stations (sediment properties) yielded 3 distinct categories of
sedimentary habitats: (1) inner archipelago areas and bays with high organic content of the sediment
and reduced oxygen saturation in the bottom water, (2) archipelago waters with intermediate values of
all analyzed parameters, and (3) open coastal sediments with low organic content and high oxygen sat-
uration (2 deep offshore stations formed an additional group based primarily on depth). Visual analysis
of the images provided information on several additional abiotic and biotic characteristics of the
sediment, and significant correlations were found mainly between oxygen saturation, organic content,
sediment type, shear strength (penetration of gear), surface relief and the depth of the redox potential
discontinuity layer in the sediment. The sediment properties were also reflected in the zoobenthos. The
correlations between parameters measured are discussed in relation to applicability of the SPI method,
monitoring demands, and basic understanding of the sediment-animal relationships.

KEY WORDS: Sediment profile imaging · Benthic habitats · Zoobenthos · Hydrography · Baltic Sea

INTRODUCTION

Benthic studies have traditionally involved a visual
description of the sediment (sediment type, colour,
smell, etc.) in relation to the infaunal assemblages
recorded. In order to explain functional aspects of the
biota, the need for a more detailed analysis and under-
standing of both the pelagic and the sedimentary envi-
rónments is obvious (Graf 1992, Snelgrove & Butman
1994, and references in them). Thus, the perception of
benthic ecology has become more complex, gradually
involving more sophisticated field methods. Further,
the need for rapid and accurate measurements and
subsequent classification of the benthic environment
has evolved with increasing environmental problems
and demands for impact studies. To meet some of these
demands, various methods of sediment photography
have been developed, leading to the present sediment
profile imaging techniques used both in monitoring
and basic research, enabling in situ characterization of
sediment habitats including the fauna (Rhoads &
Cande 1971, Rhoads & Germano 1982, 1986, O'Connor
et al. 1989, Diaz & Capcynski 1991, Grizzle & Penni-
man 1991, Grehan et al. 1992, Rumohr & Schomann
1993).

Large areas of the open Baltic Sea are in a more or
less persistent anoxic state. When infauna is present in
adjacent hypoxic areas, diversity is low and most indi-
Niemistö & Winterhalter (1977) provided the first attempt in the northern Baltic Sea to study the sediment surface oxygen conditions by sediment photography. Rumohr et al. (1992), Schaffner et al. (1992), Rosenberg & Diaz (1993) and Rumohr (1993) were the first to use sediment profile imaging to analyze both the sediment and the biota in Baltic waters.

The objective in the present study was to classify the benthic environments in the Åland archipelago (Fig. 1). The aims of this study were to (1) characterize the sediment and zoobenthic habitats in the Åland archipelago, (2) describe qualitatively and quantitatively the benthic infauna, (3) test for connections between hydrographic features, sediment quality and zoobenthos, and (4) discuss the relevance of sediment surface and profile imaging (SPI) in the low-saline, species-poor Baltic Sea in relation to other sea areas.

MATERIAL AND METHODS

Study area. The investigated area (Fig. 1) was the extensive Åland archipelago, SW coast of Finland, northern Baltic Sea (60°00' to 60°30' N, 19°30' to 20°30' E), covering approximately 7000 km². The area is characterized by about 6500 islands, forming a mosaic of more or less distinct zonation ranging from the innermost sheltered bays to the open coastal areas. Average water depth is 20 to 25 m, with a shoreline of over 8000 km, emphasizing the importance of littoral, nearshore, shallow areas for the functioning of the ecosystem (Bonsdorff & Blomqvist 1993). The sea is non-tidal,
but characterized by a strong seasonality, including high summer temperatures (surface waters reach 18 to 20°C), and a more than 90% probability of annual ice cover during winter (Leppäkoski & Bonsdorff 1989). Further, the land uplift after the last glaciation still prevails at 50 to 60 cm per 100 yr in the Åland Islands, continuously forming new littoral areas. Due to the relatively high degree of isolation from the fully marine environment and as a consequence of the large riverine input of freshwater (Carlsson & Bergström 1983, Pitkänen 1994), the northern Baltic Sea of today is characterized by low salinities (4 to 8% S). Regular anoxic conditions occur in the bottom waters in the open sea (Andersson & Sandler 1989, 1991). In the archipelago areas, however, stratification due to rapid warming of the surface waters occurs annually. Generally, the Baltic Sea ecosystems are governed by prevailing latitudinal (horizontal: N-S, E-W) and vertical (depth: topography, stratification) gradients in the sea (Leppäkoski & Bonsdorff 1989).

Field methods. In all, 42 stations (Fig. 1, Table 1) in the Åland archipelago and the adjacent Åland Sea were visited during 1 week in June 1993, and at each station (at Stns 41 and 42 SPI only; Table 1) the following sampling procedure was carried out: basic hydrography (temperature, salinity, oxygen saturation of the bottom water 50 cm above the sediment surface), zoobenthos (1 Ekman-Birge grab sample sieved on a 1 mm sieve and immediately analyzed to record dominant infauna), sediment for analysis of organic content (% ignition loss), and sediment surface and profile imaging. The present study utilized the camera and analytical methodology described in Diaz & Gapczynski (1991) and Rosenberg & Diaz (1993).

Sediment profile photographs were obtained from all 42 stations (Table 1, 5 to 263 m depth). Stns 28, 29 and 30 were in the vicinity of a fish farm, all others were located off local point source disturbance. The camera pod contains a surface camera (photographing approximately 1 m² of the bottom before the pod arrives at the bottom), a sediment profile camera with a 12 x 22 cm prism, and an oxygen probe (YSI Environmental Monitoring Systems) for measurements of oxygen content of the near-bottom water. Agfa Chrome CT100 slide film was used in both cameras. Three replicate deployments of the camera pod were made at each station. During each deployment, 1 photograph was taken of the sediment surface to identify objects at the sediment surface, and 3 successive pictures were taken at 2 s intervals as the prism penetrated into the sediment (for details of camera and camera pod, as well as sampling procedure, see Rosenberg & Diaz 1993).

Laboratory methods. Surface and sediment profile images were stored digitally in Kodak Photo CD format. Visual and computerized analysis of the images was done using Adobe Photoshop 2.5 and NIH Image 1.52 on an Apple Macintosh Quadra 900 computer. For computerized measurement of image features, preprocessing of the original images involved intensity histogram stretching and adjustment of gamma value, brightness and contrast. This enhanced most of the colour contrast of the original sediments with little artificial hues or gradients. From each image the following parameters were analyzed: bottom water oxygen saturation (electrode reading in photograph calibrated against measurements made from a separate bottom-water sample), penetration depth in cm of the camera pod (as an estimate of shear strength and compaction of the sediment), sediment surface relief (the difference between the highest and lowest overall points in a sediment profile image) as a measure of small-scale sediment structure and biotic activity, depth of the apparent colour redox potential discontinuity layer (RPD) and other laminated sediment structures (Table 1). Visual analysis of the SPI images (Table 2) was done for sediment type (also from the grab samples), occurrence of mollusc shells, surface structures (tubes and/or fauna), subsurface structures (burrows and/or infauna), and the presence of voids (anoxic or oxic; their size and area were estimated) according to Diaz & Gapczynski (1991), Rumohr & Schumann (1992) and Diaz et al. (1993). The grouping of stations was done by clustering using SYSTAT 5.0 for Macintosh computers (Euclidian distance using single linkage and the nearest neighbour method based on physical and chemical parameters: depth, oxygen saturation of bottom water, organic content of surface sediment, penetration of camera prism, surface relief, and depth of redox potential discontinuity layer; Burd et al. 1990).

Zoobenthos. In addition to the qualitative analysis of the benthic fauna done in connection with the sediment photography, quantitative data was obtained by grab sampling (5 replicate Ekman-Birge grab samples sieved on a 0.5 mm screen sampled in June and July 1994; Norkko & Bonsdorff 1994). The SPI results were compared with the infaunal community data (species, abundance and biomass) through linear regression for the entire range of all data collected. Benthic habitats were compared by 1-way ANOVA.

RESULTS

Basic environmental characteristics

The oxygen saturation correlated negatively with temperature and depth (p < 0.05; linear regression analysis). The organic content of the sediment was significantly negatively correlated to the oxygen satura-
Table 1. Station data and sediment profile imaging (SPI) results from the 42 stations in the Åland archipelago, northern Baltic Sea, June 1993. Near-bottom oxygen saturation (O2 %), sediment type, organic content of the sediment (org. %, measured as loss on ignition), penetration depth of the camera prism (PEN), surface relief (SURF), depth of redox potential discontinuity layer (RPD).

<table>
<thead>
<tr>
<th>Stn</th>
<th>Depth (m)</th>
<th>Coordinates (N, E)</th>
<th>O2 %</th>
<th>Sediment type</th>
<th>Org. %</th>
<th>Dominant fauna</th>
<th>PEN (cm)</th>
<th>SURF (cm)</th>
<th>RPD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>60° 06' 30", 19° 55' 63"</td>
<td>84</td>
<td>Mud</td>
<td>9.1</td>
<td>Mac, Sad, Ner, Chlr</td>
<td>9.5</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>60° 05' 03", 19° 66' 68"</td>
<td>89</td>
<td>Mud</td>
<td>5.6</td>
<td>Mac, Monop, Olig, Hydr</td>
<td>10.7</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>60° 04' 45", 19° 55' 63"</td>
<td>86</td>
<td>Clay</td>
<td>9.5</td>
<td>Mac, Chlr, Olig, Mya</td>
<td>3.9</td>
<td>2.1</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>60° 05' 38", 19° 58' 05"</td>
<td>89</td>
<td>Mud</td>
<td>8.2</td>
<td>Mac, Hydr, Cra, Mya</td>
<td>8.9</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>60° 05' 16", 19° 58' 86"</td>
<td>54</td>
<td>Mud</td>
<td>12.4</td>
<td>Chlr pl, Monop</td>
<td>19.1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>60° 01' 86", 20° 01' 74"</td>
<td>81</td>
<td>Clay</td>
<td>7.8</td>
<td>Mac, Monop</td>
<td>7.8</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>60° 02' 35", 19° 56' 67"</td>
<td>84</td>
<td>Clay/fine sand</td>
<td>4.5</td>
<td>Mac, Pyg, Halicr</td>
<td>5.2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Sediment surface and profile imaging

The grouping (clustering) of stations delimited 4 distinct habitats (Fig. 1, Table 3): inner bays and sheltered archipelago waters (8 stations), archipelago areas (20 stations), the open coastal zone (12 stations), and the open sea (2 stations). The open coastal zone was deeper than the archipelago zone, but the difference was only a few meters. The oxygen saturation varied...
Table 2. Visual analysis of the sediment profile images from the the 42 stations in Åland archipelago, June 1993 (n = 1-3 per station). NA: not analyzable, +: present, -- not present

<table>
<thead>
<tr>
<th>Stn</th>
<th>Dark layer (cm)</th>
<th>Shells</th>
<th>Surface structures</th>
<th>Subsurface structures</th>
<th>Voids</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tubes</td>
<td>Fauna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0-7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Oil-spot</td>
</tr>
<tr>
<td>2</td>
<td>0-4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>+ Fecal pellets</td>
</tr>
<tr>
<td>4</td>
<td>1-4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3-7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Chironomid burrows</td>
</tr>
<tr>
<td>10</td>
<td>3-5</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2-3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Chir. surface and burrows</td>
</tr>
<tr>
<td>12</td>
<td>3-4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Macoma</td>
</tr>
<tr>
<td>13</td>
<td>0-2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Burrows in clay</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3-5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>21</td>
<td>2-7</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Pelletized surface</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Chir. burrow to 15 cm</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Chir. burrow to 15 cm</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Fecal pellets</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Flounder feeding pit</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Pure sand</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Monoporeia surface</td>
</tr>
<tr>
<td>35</td>
<td>1-3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Macoma, Monoporeia</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Pure sand</td>
</tr>
<tr>
<td>37</td>
<td>NA</td>
<td>+</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Pure sand</td>
</tr>
<tr>
<td>38</td>
<td>NA</td>
<td>+</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Pure sand</td>
</tr>
<tr>
<td>39</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Pure sand</td>
</tr>
<tr>
<td>40</td>
<td>NA</td>
<td>+</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Pygospio tubes</td>
</tr>
<tr>
<td>41</td>
<td>1-2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Saduria at surface</td>
</tr>
<tr>
<td>42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Mean 4.0 ± 0.3 1.4 ± 0.1 1.2 ± 0.09

significantly between zones (the inner bays had lower values than the other 2 areas; p < 0.05; 1-way ANOVA). SPI-parameters displayed significant differences between zones; penetration and surface relief both decreased while the depth of the RPD layer increased from the inner bays towards the open coast (p < 0.05).

The visual analysis of the sediment surface and profile images (Table 2) showed that shells were registered in the sediment at 26% of the stations, primarily at sandy bottoms with low penetration depth (Stns 34 to 39). Surface tubes (mainly from small polychaetes such as *Pygospio elegans*) were noted at 5 stations in the Mariehamn-area (Stns 2 to 7), which are influenced by frequent ferry traffic regularly disturbing the sediment surface through increased turbulence (Norkko & Bonsdorff 1994). Fauna at the sediment surface was recorded at 6 stations of varying depth and sediment
Hallcryptus spinulosus were revealed by image enhancement next to what is believed to be a flounder feeding pit. (d) Enlargement of a profile image from Stn 25, where 2 of the priapulid associated with recent burrowing activity. (c) Enlargement of a profile image from Stn 36 with a crushed Macoma balthica shell reworked surface. (b) Enlargement of a SPI from Stn 11, revealing 2 chironomid larvae (reddish coloured) and oxidized sediments ing muddy sediments, an average redox potential discontinuity (RPD) layer depth of 0.6 cm, and a fairly rough, biologically SEDiment surface and profile imaging. (a) SPI from Stn 26, enhanced as it would be for computerized measurement, reveal-

DISCUSSION

Using SPI in the northern Baltic Sea

The SPI methodology has previously been used mainly in monitoring pollution and organic enrich-

Table 3. Grouping of the 42 stations in the Åland archipelago based on physical and chemical parameters: depth, oxygen saturation of bottom water (%), occurrence of seasonal hypoxia (+ or –), organic content of surface sediment (%), penetration of camera (cm), surface relief (cm), and depth of redox potential discontinuity layer (cm). All values are averages ± 1 SE. Faunal data from Norkko & Bonsdorff (1994)

<table>
<thead>
<tr>
<th>Area: Inner archipelago (Stns)</th>
<th>Archipelago (1, 2, 3, 4, 6, 10, 11, 13, 14, 16, 17, 18, 19, 20, 25, 26, 27, 31, 33)</th>
<th>Open coastal zone (7, 21, 22, 23, 24, 34, 35, 36, 37, 38, 39, 40)</th>
<th>Open sea (41, 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>17.3 ± 2.4</td>
<td>16.9 ± 1.2</td>
<td>24.8 ± 2.9</td>
</tr>
<tr>
<td>Oxygen saturation (%)</td>
<td>60.6 ± 7.3</td>
<td>81.5 ± 1.7</td>
<td>88.1 ± 1.0</td>
</tr>
<tr>
<td>Seasonal hypoxia (+/-)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Organic content (%)</td>
<td>9.6 ± 0.5</td>
<td>7.3 ± 0.4</td>
<td>2.9 ± 0.8</td>
</tr>
<tr>
<td>Sediment type</td>
<td>Mud</td>
<td>Mud/clay</td>
<td>Sand/clay</td>
</tr>
<tr>
<td>Penetration (cm)</td>
<td>17.8 ± 0.6</td>
<td>11.2 ± 0.8</td>
<td>4.8 ± 1.8</td>
</tr>
<tr>
<td>Surface relief (cm)</td>
<td>1.8 ± 0.2</td>
<td>1.3 ± 0.1</td>
<td>0.9 ± 0.009</td>
</tr>
<tr>
<td>RPD layer (cm)</td>
<td>0.4 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td>No. of species</td>
<td>9.0 ± 1.7</td>
<td>9.4 ± 1.0</td>
<td>10.4 ± 1.4</td>
</tr>
<tr>
<td>Dominant species</td>
<td>Macoma, Chironomus</td>
<td>Macoma, Monoporeia</td>
<td>Monoporeia, Macoma</td>
</tr>
<tr>
<td>Abundance (ind. m²⁻¹)</td>
<td>2816 ± 531</td>
<td>2340 ± 756</td>
<td>7872 ± 2199</td>
</tr>
<tr>
<td>Biomass (g wet wt m⁻²)</td>
<td>125.8 ± 39.4</td>
<td>120.4 ± 38.1</td>
<td>196.7 ± 45.6</td>
</tr>
</tbody>
</table>

The qualitative samples taken in connection with the SPI analysis (Table 1) showed no major differences in faunal dominance in the various areas. The fauna was dominated by *Macoma balitica, Monoporeia affinis* and *Idotea baltica*, and chironomid larvae. The quantitative sampling (Table 3) showed that the number of species and total community biomass did not differ between groups of stations (Table 3, and Norkko & Bonsdorff 1994). Total abundance was significantly (p < 0.05, 1-way ANOVA) higher in the open coastal zone, where the sandy bottoms were dominated by amphipods (primarily *Monoporeia affinis*) and the polychaete *Pygospio elegans*.

Benthic infauna

The qualitative samples taken in connection with the SPI analysis (Table 1) showed no major differences in faunal dominance in the various areas. The fauna was dominated by *Macoma balitica, Monoporeia affinis* and *Idotea baltica*, and chironomid larvae. The quantitative sampling (Table 3) showed that the number of species and total community biomass did not differ between groups of stations (Table 3, and Norkko & Bonsdorff 1994). Total abundance was significantly (p < 0.05, 1-way ANOVA) higher in the open coastal zone, where the sandy bottoms were dominated by amphipods (primarily *Monoporeia affinis*) and the polychaete *Pygospio elegans*.

Using SPI in the northern Baltic Sea

The SPI methodology has previously been used mainly in monitoring pollution and organic enrich-
(a) Sediment profile image (enhanced)

(b) Chironomid larvae

(c) Bivalve shell (*Macoma balthica*)

(d) *Halicryptus spinulosus*
Sediment characteristics, hydrography and infauna

Penetration of the prism is highly dependent on the sediment type, with little or no penetration in sandy sediments and down to 20 cm in soft mud (Table 1). The apparent colour RPD is shallow (0.8 ± 0.1 cm, total mean), which is not only a result of low oxygen levels, but primarily of the lack of large sediment dwelling organisms that would rework the sediment. Thus, the use of the OSI as proposed by Rhoads & Germano (1982, 1986), Valente et al. (1992), and Nilsson & Rosenberg (1995) is not directly applicable in the Baltic Sea, mainly due to the absence of a late successional stage fauna. Low salinity, sediment type, and organic enrichment are all factors contributing to the lower successional stage fauna in the Baltic Sea (Pearson & Rosenberg 1978, Bonsdorff & Blomqvist 1993, Bonsdorff et al. 1997). Among the environmental parameters, oxygen saturation is of prime importance, and hypoxia (or periodic oxygen deficiency) seems to be a main factor structuring benthic communities (Rosenberg & Loo 1988, Andersin & Sandler 1991, Schaffner et al. 1992, Diaz & Rosenberg 1995). However, areas which sustain macrofauna may be in close proximity to areas with anoxic sediments devoid of macrofauna and covered by bacterial mats (Rosenberg & Diaz 1993, Diaz & Rosenberg 1995).

Comparing the SPI analysis from the non-polluted but clearly eutrophic Åland archipelago with the polluted and highly eutrophic inner Stockholm archipelago, northern Baltic Sea, where the sediments were largely anoxic (Rosenberg & Diaz 1993) showed that the main difference in visual sediment properties was in the frequency of feeding voids. A higher frequency was recorded in the present study; and, as these voids are linked to burrowing infauna, the difference is expected. Based on the present SPI analysis, the sediment habitats of the Åland archipelago, although significantly affected by eutrophication (Bonsdorff et al. 1991, 1992, 1997, Norkko & Bonsdorff 1994), are not yet hypertrophic. The major exceptions, grouped as 'inner archipelago' (Table 3), are stations situated in the vicinity of fish farms (Stns 28, 29 and 30), in enclosed bays surrounded by extensive farming and large drainage areas (Stns 8, 9, and 12), and stagnating basins in enclosed areas (Stns 5, and 32), i.e. areas close to local point sources of excess nutrients (Bonsdorff et al. 1991, 1992). These areas show some similarity to the stressed habitats of the Stockholm archipelago as described by Rosenberg & Diaz (1993). The overall long-term trend in the area shows a significant increase (p < 0.01, 1-way ANOVA) in abundance and biomass of the zoobenthos from the 1970s to the 1990s (Norkko & Bonsdorff 1994, Bonsdorff et al. 1997), with seasonal (annual) changes generally being small (Bonsdorff & Blomqvist 1989).
In situ observation of the geological and biological aspects of sediment fabric using SPI (for example, sediment laminations, shells, tubes, burrows, infauna, and voids) provides additional information that traditional faunal sampling and rough sediment analysis cannot provide (Grizzle & Penniman 1991, Diaz et al. 1993). While grab samples confirmed the presence of the amphipods Monoporeia affinis and Pontoporeia femorata, SPI determined the importance of these amphipods to surface sediment reworking of Baltic sediments (Hill & Elmgren 1987, Lopez & Elmgren 1989, Lehtonen 1995). The chironomid burrows observed down to 15 cm in the soft muddy habitats with low oxygen content illustrate the role of burrowers in oxygenating deep layers of the sediment and participating in the remineralization of nutrients from the sediment to the water column (Leppäkoski 1975, Rosenberg et al. 1975, Pearson & Rosenberg 1978, Diaz & Rosenberg 1995). Seasonality in abundance and biomass of the chironomid larvae in the Åland region is marked, and large seasonal variations in their role as bioturbators can be expected (Bonsdorff & Storberg 1990). Chironomus plumosus larvae contain haemoglobin in their blood and are well adapted for hypoxic conditions, and they are known to favour soft sediments rich in organic matter, although little is known about their tube-building behaviour (McLachlan & Cantrell 1976, Koskenniemi 1994). Diaz et al. (1993) illustrated similar conditions regarding the detection of opportunistic spionid polychaetes that in some ways are equivalent to the chironomid burrows seen in the present images. The bulldozing tracks left by the isopod Saduria entomon underline the importance of the role of the biotic activity by this large isopod for the sediment surface at deep water stations (Haahelä 1990, Vismann 1991, Sandberg 1994, Sandberg & Bonsdorff 1996).

Concluding remarks

The SPI methodology proved very useful in describing and classifying the sediment habitats in the archipelago areas of the brackish Baltic Sea. The method is easy and cheap to use and gives rapid results. In combination with the information on basic hydrography (primarily oxygen saturation of the bottom water), sediment chemistry (organic content of the surface sediment), and quantitative information on the benthic infauna (including information on bioturbation), clear groupings of the environment could be made. Such groupings can be of great value when comparing the Baltic ecosystem with other sea areas analysed by imaging techniques (Hongguang et al. 1995, Rumohr et al. 1996). As the main parameters showed significant correlations both within methods (the SPI data) and between biotic (zoobenthos) and abiotic environmental information, we conclude that the method used here added valuable knowledge to our understanding of the structuring and distribution of the benthic communities. Also, from an environmental monitoring point of view, the sediment surface and profile imaging clearly demonstrated its potential as a rapid means of classifying and grouping large areas of varying depth, exposure, and degree of human impact (Rumohr et al. 1996). The high levels of correlation between the SPI analysis and the traditional information is encouraging for future application of sediment surface and profile imaging in the Baltic Sea, providing the possibility of direct and rapid comparison with other areas impacted to varying degrees by human activity and with radically different aquatic environments.

Acknowledgements. We thank Per Jonsson and the crew of the R/V 'Sunbeam' for excellent working conditions during the SPI analysis in the Åland archipelago. We also thank the Academy of Finland for financial support. Comments by Brendan Keegan, Tom Pearson, and Heye Rumohrd on an earlier draft are gratefully acknowledged.

LITERATURE CITED

Niemisto L, Winterhalter B (1977) Bottom photography used to study oxygen conditions in the northern Baltic Sea. Meritutkimuslait Julk/Havsforskningsinst Skr 241:91–95

This article was presented by J. Gray (Senior Editorial Advisor), Oslo, Norway

Westerberg J (1978) Benthic community structure in the Åland archipelago (N. Baltic) represented by samples of different sizes. Kieler Meeresforsch; Sonderh 4:53–60

Manuscript first received: April 4, 1996
Revised version accepted: July 23, 1996