1990

Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus

DB Eggleston
RN Lipcius
Swimming rate and responses of larvae
DL Miller
L Cobacetina

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles
Part of the Marine Biology Commons

Recommended Citation
Eggleston, DB; Lipcius, RN; Miller, DL; and Cobacetina, L, "Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus" (1990). VIMS Articles. 217.
https://scholarworks.wm.edu/vimsarticles/217

This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Shelter scaling regulates survival of juvenile Caribbean spiny lobster *Panulirus argus*

David B. Eggleston¹,², Romuald N. Lipcius¹,², David L. Miller³, Luis Coba-Cetina⁴

¹ The College of William and Mary, School of Marine Science, Virginia Institute of Marine Science, Gloucester Point, Virginia 23062, USA
² Caribbean Marine Research Center, Lee Stocking Island, Exuma Cays, Bahamas
³ Department of Geography, State University of New York at Cortland, Cortland, New York 13045, USA
⁴ Centro de Investigaciones de Quintana Roo, Apartado Postal 424, Chetumal, Quintana Roo, Mexico

ABSTRACT. Marine habitats with limited refugia from predation but adequate food may support increases in prey abundance if artificial shelters placed in these habitats reduce predation-induced mortality. Moreover, the protective capacity of shelters may vary according to the scaling between shelter size and prey size. We tested these hypotheses with field tethering experiments in Bahia de la Ascension, Mexico, by examining the impact of different-sized artificial shelters upon mortality rates of 3 juvenile size-classes of the Caribbean spiny lobster *Panulirus argus* at 2 sites (inner-bay sand-seagrass flat and outer-bay seagrass bed adjacent to coral reefs). The artificial shelters were sunken concrete structures (casitas) that simulate lobster dens. We also quantified potential predators and estimated the physical features of casitas that influence den choice by juvenile spiny lobster. In the tethering experiments, spiny lobster survival was (1) higher in casitas than seagrass meadows, irrespective of casita size; (2) generally higher in smaller than larger casitas, though the effect depended upon the relationship between lobster and shelter size; and (3) independent of site. Thus, spiny lobster survival depends not only upon the availability of shelter, but also on the scaling between shelter size and lobster size. Predator observations indicated that the size range, maximum size and species diversity of predators increased with casita size, thereby imposing higher predation intensity in larger casitas. Furthermore, since shelter appears to limit spiny lobster abundance in habitats such as reefs and seagrass meadows, placement of appropriately-scaled artificial shelters (e.g. casitas) in nursery areas like the study site is likely to augment habitat carrying capacity by increasing protection from predators.

INTRODUCTION

Habitat structural complexity affects predator-prey dynamics by providing refugia from predation (Gause 1934, Huffaker 1958, Smith 1972, Murdoch & Oaten 1975). Reduced predator foraging efficiency in portions of a habitat may provide refugia that are partial (Huffaker 1958, Smith 1972) or absolute (Gause 1934). Recent experiments have emphasized structural complexity within habitats and its impact upon prey survival (Vince et al. 1976, Van Dolah 1978, Brock 1979, Nelson 1979, Coen et al. 1981, Heck & Thoman 1981, Crowder & Cooper 1982, Peterson 1982, Coull & Wells 1983, Ryer 1988, Gotceitas & Colgan 1989). The general conclusion of these studies has been that increasing structural complexity (i.e. density or biomass of plants) decreases predator foraging efficiency. Whereas numerous investigators have examined different physical aspects of aquatic habitats providing structural complexity [e.g. submerged macrophytes (Crowder & Cooper 1982, Coull & Wells 1983), emergent macrophytes (Van Dolah 1978), worm tubes (Bell & Coen 1982), and substrate type (Lipcius & Hines 1986, Smith & Coull 1987)], little work has focused on the effects of scaling of refugia according to prey size.

The geometry of natural surfaces suggests a scaled relationship between shelter dimensions and organism size, such that some specified scaling offers maximal protection to a sheltering individual (Morse et al. 1985, Caddy 1986). An obligate crevice dweller (e.g. spiny lobster, stomatopods, reef fish) is faced for all or part of its life history with a decline in the number of crevices as it grows (Caddy 1986, Moran & Reaka

¹ Address for correspondence

© Inter-Research/Printed in F. R. Germany
possibly leading to a population 'bottleneck' (Caddy 1986). Placement of artificial shelters at the appropriate scale could increase the effective number of crevices, thus alleviating the population bottleneck (Caddy 1986). However, a prerequisite to addressing shelter-related bottlenecks is more detailed knowledge of how scaling of refuges affects size-specific survivorship.

Intra- and interspecific aggression for suitable dens can force smaller juvenile *Panulirus argus* to find another den (Berrill 1975). Information on the physical properties that constitute a suitable den for *P. argus* is limited; however, den preferences of the California spiny lobster *Panulirus interruptus* include structures having shaded cover and multiple den openings (Spanier & Zimmer-Faust 1988). Predation represents a major source of mortality for *P. argus* (Munro 1974, Herrnkind & Butler 1986), and when individuals are displaced or forced to shelter in an inadequate den, they may be subject to increased predation rates (Herrnkind & Butler 1986). Besides affording intermolt lobsters protection from predators and storm surge, dens provide refuge during molting (Lipcius & Herrnkind 1982). Premolt individuals typically seek isolation during ecdysis, a period when they are extremely vulnerable to predation (Lipcius & Herrnkind 1982, D.B. Eggleston unpubl.).

Studies on recruitment and population dynamics indicate that habitat may be limiting for some palinurids. For example, recruitment of *Panulirus cygnus* in Western Australian waters is characterized by density-dependent mortality in nursery areas as a consequence of limitations in food or shelter (Chittleborough 1970, Chittleborough & Phillips 1975, Ford et al. 1988). Thus, in areas of adequate food supply but limited shelter, placement of artificial lobster shelters of an appropriate design and size seems a feasible approach for augmenting habitat carrying capacity by increasing protection from predators. Yet, little information exists on the key biological and habitat variables useful in the design, construction, and placement of artificial lobster shelters, particularly with reference to protection from predators. Below we describe a series of field experiments which evaluate the efficacy of scaled artificial shelters in reducing size-specific mortality rates of juvenile *Panulirus argus* within 2 habitats. We also identify potential predators and estimate the physical features of the artificial shelters that influence den choice by juvenile *P. argus* in Bahía de la Ascension, Mexico.

METHODS AND MATERIALS

Shelter scaling. Our design of artificial lobster shelters was based on 'casitas'—sunken wood and concrete structures that simulate crevices in rocks and reefs (Miller 1982, 1989) (Fig. 1) and are used to concentrate lobsters for harvest in Cuba and the Mexican Caribbean (Miller 1982, 1989, Aguilar & Gonzalez 1984, Cruz & Brito 1986). Previous experiments in Bahía de la Ascension, Mexico indicate that casitas provide large juvenile lobsters greater protection from predators than seagrass habitats (Eggleston, Lipcius and Miller unpubl.). Thus, we hypothesized that scaling down the size of existing casitas would enhance the protective attributes of the casita for smaller lobsters (Fig. 1).

Our scaling of smaller casitas began with a reduction in the height of casita openings (Fig. 1). We assumed that existing large casitas (Fig. 1; 177 cm length × 118 cm width × 6 cm height of opening) were suitable for concentrating large juveniles and adults (>65 mm CL: carapace length) entering the fishery. We then assigned casita opening heights of 3.8 cm (medium casita) and 1.9 cm (small casita) to smaller casitas (mini-casitas) to correspond to medium (46 to 55 mm CL) and small (35 to 45 mm CL) juveniles, respectively. Reductions in casita opening height allowed for adequate entry of the targeted lobster size-class, but was also assumed to exclude larger predators.

Next we scaled the 'mini-casita' roofs according to reductions in casita height. A 2-dimensional scaling equation, $R = \frac{1}{N^{1/2}}$ (Eq. 1) (Peitgen & Saupe 1988), was employed to construct casita roofs that were identi-

![Fig. 1. A large 'casita' constructed with a frame of thatch palm and roof of cement](image-url)
cally scaled. The value N was calculated by determining the ratio of large casita height to mini-casita height. For example, N for the medium casita was calculated as 6 cm/3.8 cm = 1.6. R was then computed according to Eq. (1) \[R = 1/(1.6)^{1/2} \] with the resulting scaling factor (R) multiplied by the area \(cm^2 \) of the large casita roof \[i.e. 0.79 \times (177 \times 118 \, cm = 16499.9 \, cm^2) \]. To determine the final length-width dimension of the mini-casita, a similarity ratio (Schmidt-Nielsen 1984) was calculated based on the ratio of corresponding sides of the large casita with Eqs. (2) and (3):

\[K_l = L_1/L_2 \]
\[K_w = L_2/L_1 \]

where \(K_l \) is the similarity ratio for length; \(K_w \) is the similarity ratio for width; \(L_1 \) is the large casita length; and \(L_2 \) is the large casita width. This was then multiplied by the area of the mini-casita roof as determined from Eq. (1). For example, the length-width dimensions of the medium casita were determined as: \(K_l = 177/118 \, cm = 1.5 \times 16499.9 \, cm^2 = 24749.9 \, cm^2 \) and \((24749.9 \, cm^2)^{1/2} = 157.3 \, cm \). Similarly, \(K_w = 118/177 \, cm = 0.67 \times 16499.9 \, cm^2 = 11054.9 \, cm^2 \) and \((11054.9 \, cm^2)^{1/2} = 105.1 \, cm \). Thus, our calculations resulted in the construction of medium (\(157.3 \times 105.1 \times 3.8 \, cm \)) and small (\(132.3 \times 88.4 \times 1.9 \, cm \)) casitas. Shelters were constructed with a reinforced concrete roof connected to a PVC pipe frame with plastic cable-ties and wire.

Study site and tethering experiments. Tethering experiments were conducted in Bahia de la Ascension, Mexico \((19.45^\circ N; 87.29^\circ W) \) (Fig. 2). This large bay \((ca 260 \, km^2) \) is an important nursery area for juvenile spiny lobsters and supports a commercial fishery for large juveniles and adults (Montes 1983, Miller 1989). Two experimental sites of contrasting habitat type were chosen to compare relative rates of predation: an inner-bay sand-seagrass flat located at the northwest portion of the bay, and an outer-bay seagrass \((Thalassia testudinum) \) meadow adjacent to a coral reef (Fig. 2). Differences in density of seagrass between and within sites were determined at the beginning of the study by measuring dry weight biomass \((g) \) of \(Thalassia \) removed from 0.25 m\(^2 \) plots. Six samples were taken from 3 seagrass densities (dense, moderate, and sparse) and dry weights measured after drying at 100°C for 24 h. The inner-bay site was composed of sparse seagrass patches \((\bar{x} \, Thalassia = 15.6 \, g \, 0.25m^{-2}, \, SD = 10.7) \) interspersed among coarse calcareous sand and coral rubble. The coral rubble was covered mostly by green and red algae \((Dasycladus \, spp. \, and \, Laurencia \, spp., \, respectively) \), but also supported various sponges. The outer-bay site was located shoreward of a fringing coral reef and composed of sand patches and patch corals interspersed among moderate to dense seagrass beds \((\bar{x} \, Thalassia = 27.9 \, g \, 0.25m^{-2}, \, SD = 13.4 \) and \(\bar{x} \, Thalassia = 52.5 \, g \, 0.25m^{-2}, \, SD = 12.6 \, respectively) \). The seagrass beds are comparable in \(Thalassia \) biomass to other moderate-dense seagrass beds in the Caribbean \((e.g. \, Bahamas: \, ca \, 25 \, to \, 30 \, g \, 0.25m^{-2}, \, Stoner \, 1989) \).

Spiny lobsters were collected from existing casitas and held in traps for 1 to 2 d prior to initiation of each experiment. Only intermolt lobsters were used in tethering experiments. Tethers were constructed by locking a plastic cable-tie around the cephalothorax of a lobster, between the second and third walking legs, and securing the cable-tie with cyanoacrylate cement. The cable-tie was connected with 30-lb-test (14 kg) monofilament line either to another cable-tie and attached to a shelter, or attached to a J-shaped, stainless steel stake pushed into the sediment. The cyanoacrylate cement ensured that a piece of carapace remained on the line as evidence of predator-induced mortality (Herrnkind & Butler 1986). Although tethering does not necessarily measure absolute rates of predation, it does measure relative rates of predation (Heck & Thoman 1981), which can serve to compare mortality rates as a function of different experimental treatments.

Experimental design. Separate tethering experiments were performed during July and October 1988 and July 1989. In July 1988 we examined the survival of 2 sizes of juveniles in 2 casita sizes at the inner-bay nursery site. A row of large casitas was positioned ca 100 m from shore extending in an easterly direction towards the bay mouth (Fig. 2). Large casitas were placed 20 to 25 m apart; medium and small casitas were placed 10 m away from the large casitas. Each of

![Fig. 2. Study sites at Bahia de la Ascension, Mexico](image)
analyses of variance (ANOVA) models (after pro-
cant (Table 1a), precluding contrasts among treatment
and October 1988) with 1-, 2-, and 3-way fixed-factor
effect between shelter size and lobster size was signifi-
(reactive, medium, small), site (bay, reef), and date (July
slze but not by lobster size (Table 1a). The interaction
(size and casita size combination. At the outer-bay site in
mortality rates of juvenile lobsters at the inner-bay
portions were
0.328). Mortality rates of juvenile lobsters at the inner-bay
in July 1989 differed significantly by shelter
analyzed as a function of shelter quality (casita size
Mortality rates of juvenile lobsters at the inner-bay
Proportions were

0.1). During October

3 replicates for each lobster

inner-bay site (6 lobsters X 6 stations X 2 casita
sizes). Each large and medium casita had 6 tethered
lobsters from either of the size classes giving a total of
72 tethered lobsters (6 lobsters X 6 stations X 2 casita
sizes).

In October 1988, the previously described experi-
ment was repeated at the inner-bay site, and an addi-
tional experiment was performed at the outer-bay reef-
seagrass site. The experiment at the outer-bay site used
only medium-sized juveniles (56 to 65 mm CL) tethered
to stakes either in dense seagrass without shelter or to
large and medium casitas. Casitas were positioned
equidistant between the shore and reef line and
arranged in 2 rows, each containing 3 triangular sta-
tions. As above, the small casitas at each station were
not used in these tethering experiments. Six lobsters
were tethered to large and medium casitas at each
station for 8 d. Three additional stations were nonfunc-
tional because of damage associated with Hurricane
Gilbert. Lobsters in seagrass were tethered to single
stakes arranged in the same order as the length-width
dimensions of the large casita. The 3 seagrass stations
without shelter were positioned 15 m away and per-
pendicular to the large casitas. Thus, in October we
tethered 72 medium juvenile lobsters at the outer-bay
site (6 lobsters X 3 stations X (2 casita sizes + 2
seagrass sites)), and 36 large and 36 medium juveniles
at the inner-bay site (6 lobsters X 6 stations X 2 casita
sizes).

In July 1989, we examined the survival of 2 size
classes of juveniles in 3 casita sizes at the inner-bay
site. Juvenile lobsters were classified as small (35 to
45 mm CL) or medium (46 to 55 mm CL) and tethered
for 9 d at each of 6 stations containing small, medium,
and large casitas. Each casita had 6 tethered lobsters of
either size class, for a total of 108 lobsters (6 lobsters X
6 stations X 3 casita sizes).

To avoid tangling, tether lengths of 70, 50, and 30 cm
were used with lobsters tethered to large, medium, and
small casitas, respectively. Lobster size treatments
were systematically interspersed between stations
(sensu Huribert 1984), with 3 replicates for each lobster
size and casita size combination.

Predation losses were scored and a visual census of
potential predators taken every 1 to 2 d during exper-
iments. Cumulative losses were converted to pro-
portional mortality casita\(^{-1}\) d\(^{-1}\). Proportions were
analyzed as a function of shelter quality [casita size
(large, medium, small) and no shelter], lobster size
(large, medium, small), site (bay, reef), and date (July
and October 1988) with 1-, 2-, and 3-way fixed-factor
analyses of variance (ANOVA) models (after pro-
cedures in Underwood 1981). Proportional mortality
was arc-sine square-root transformed to meet assump-
tions of normality and homogeneity of variance (Under-
wood 1981). In all cases, either the variances were
homogeneous as determined by Cochran's C-test, or
the hypotheses were rejected at alpha values lower
than the p-values of the test for homogeneity of var-
iance (Underwood 1981). Differences among means
were revealed by use of Student-Newman-Keuls (SNK)
tests on the means (Underwood 1981).

During July and October 1988, the presence of
potential lobster predators was only casually observed.
In July 1989 we used a stationary visual census techni-
ique (Bohnsack & Bannerot 1986) to quantify the com-
unity structure of potential predators associated with
each of the 3 casita sizes during the experimental
period. The visual census was usually performed
between 10:00 and 14:00 h with 3 replicate samples
taken during the experimental period. One night-time
 census was performed during the July 1989 experiment.

RESULTS

Tethering experiments

The inner-bay site was generally inhabited by small
juvenile lobsters (30 to 80 mm CL; Fig. 3a), whereas the
outer-bay site was inhabited by large juvenile and
adult lobsters (60 to 100 mm CL; Fig. 3b). At the inner-
bay site during July and October 1988,osta and
lobster size affected proportional mortality of juvenile
spiny lobsters, with significantly lower mortality rates
in medium casitas than large casitas, and for medium
lobsters than large lobsters (Fig. 4; 3-way ANOVA;
shelter size: F = 17.79, df = 1,16, p < 0.001; lobster size:
F = 8.86, df = 1,16, p < 0.009). Predation rates were not
significantly affected by date (July vs October 1988),
or were there any interaction effects (Fig. 4; 3-way
ANOVA, p > 0.1).

At the outer-bay site in October 1988, mortality rates
of medium juvenile lobsters were significantly affected
by the presence or absence of artificial shelter (1-way
ANOVA; F = 12.3, df = 2,8, p < 0.008). Medium and
large casitas provided significantly more protection
from predation than seagrass (Fig. 5; SNK test,
experimentwise error rate = 0.05). During October
1988 predation rates on medium juvenile lobsters did
not differ significantly between sites (inner-bay vs
outer-bay: ANOVA, F = 4.72; df = 1,8; p = 0.328).

Mortality rates of juvenile lobsters at the inner-bay
site during July 1989 differed significantly by shelter
size but not by lobster size (Table 1a). The interaction
effect between shelter size and lobster size was signifi-
cant (Table 1a), precluding contrasts among treatment
Fig. 3. *Panulirus argus*. Size-frequency of lobsters captured from large casitas at the 2 field sites. (A) Inner-bay site; mean = 53.9 mm CL, range = 31 to 100 mm CL (15 casitas sampled). (B) Outer-bay site; mean = 77.8 mm CL, range = 47 to 118 mm CL (20 casitas sampled).

Predator observations

Casitas also attracted or concentrated numerous reef fish, especially at the inner-bay site. Potential piscine predators of juvenile lobsters at the inner-bay site during July and October 1988 included gray snapper *Lutjanus griseus*, schoolmaster snapper *L. apodus*, mutton snapper *L. analis*, barracuda *Sphyraena barracuda*, and barracuda *Sphyraena barracuda*,...
Fig. 6. Results of field tethering experiments at the inner-bay nursery site during July 1989 comparing predation as a function of juvenile lobster size (small: 35 to 45 mm CL and medium: 46 to 55 mm CL) and shelter size (small, medium, and large). Values are mean proportional mortality casita⁻¹ d⁻¹. Vertical bars are 1 SE.

green moray eel *Gymnothorax funebris*, nurse shark *Ginglymostoma cirratum* and bottlenose dolphin *Tursiops truncatus*. Other potential predators at the inner-bay site included the loggerhead turtle *Caretta caretta*, stone crab *Menippe mercenaria* and portunid crabs. Potential predators at the outer-bay site included mutton snapper, yellowtail snapper *Ocyurus chrysurus*, gray snapper, barracuda, green moray eel, spotted moray eel *Gymnothorax moringa*, and octopus. The visual census of potential predators at the inner-bay site during July 1989 indicated that total abundance, mean number of individuals per casita per sample, and mean length increased with casita size (Table 2). Large casitas concentrated more species of potential predators followed in decreasing order by medium and small casitas (Table 2). Gray snapper was the predominant potential predator, irrespective of casita size (Table 2). The nighttime visual census indicated that the predator guild observed during the day had dispersed within 1 h after dusk.

DISCUSSION

Seagrass meadows provide refuge for small decapods, reduce predation risk, and thereby enhance survival of spiny lobsters (Herrnkind & Butler 1986, Lipcius, Eggleston, Miller and Camarena unpubl.) and crabs (Heck & Thoman 1981, Heck & Wilson 1987). Results from our outer-bay experiment in October suggest that shelter is limited in seagrass meadows and that placement of casitas in these habitats enhances survivorship of juvenile *Panulirus argus*. Placement of casitas in seagrass meadows also places suitable shelter near foraging grounds, and thereby reduces energetic demands associated with movements between sheltering and feeding grounds. Such close coupling of adjacent habitats has been documented between coral reefs and seagrass beds. Reef fish such as grunts, snappers, squirrelfishes *Holocentrus* spp. and cardinalfishes *Apogon* spp. move between diurnal shelter sites on coral reefs and nocturnal feeding grounds in seagrass meadows (Starck & Davis 1966, Ogden & Ziemann 1977, Robblee & Zieman 1984). Ogden & Ziemann (1977) found that the interconnection between these 2 habitats increased fish biomass on reefs.

Table 1. (a) Two-way analysis of variance of arc-sine square-root transformed proportional mortality rates (proportional mortality casita⁻¹ d⁻¹) at the inner-bay nursery site during July 1989, examining the effects of shelter size (small, medium, large) and lobster size (small and medium).

<table>
<thead>
<tr>
<th>Experimental condition</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelter size</td>
<td>2</td>
<td>0.008</td>
<td>9.20</td>
<td>0.004</td>
</tr>
<tr>
<td>Lobster size</td>
<td>1</td>
<td>0.001</td>
<td>1.07</td>
<td>0.321</td>
</tr>
<tr>
<td>Shelter size × lobster size</td>
<td>2</td>
<td>0.009</td>
<td>10.04</td>
<td>0.003</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (b) SNK tests of mean arc-sine square-root transformed proportional mortality rates of lobsters for the shelter size × lobster size interaction effect.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Lobster size:</th>
<th>Shelter size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* p < 0.05; ** p < 0.01; NS: not significant</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of results from visual census of potential lobster predators associated with 18 casitas of 3 sizes (small, medium, large) during 22 to 31 July 1989. Results below are pooled from censusing 18 casitas on 3 different sampling dates. Fish size is fork length (cm) and crab size is carapace width (cm).

<table>
<thead>
<tr>
<th>Species</th>
<th>Total abundance sample(^{-1}) (N = 18)</th>
<th>Mean no. ind. (\text{casita}^{-1})</th>
<th>Frequency per casita (1.00)</th>
<th>Percent frequency</th>
<th>Size (cm)</th>
<th>Mean</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large casita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutjanus griseus (gray snapper)</td>
<td>222</td>
<td>12.33</td>
<td>18</td>
<td>100.0</td>
<td>20.4</td>
<td>10</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Lutjanus apodus (schoolmaster snapper)</td>
<td>64</td>
<td>3.56</td>
<td>11</td>
<td>61.1</td>
<td>18.1</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Lutjanus analis (mutton snapper)</td>
<td>10</td>
<td>0.56</td>
<td>6</td>
<td>33.3</td>
<td>20.3</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Sphyraena barracuda (great barracuda)</td>
<td>3</td>
<td>0.17</td>
<td>3</td>
<td>16.7</td>
<td>103.3</td>
<td>90</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Epinephelus striatus (Nassau grouper)</td>
<td>1</td>
<td>0.06</td>
<td>1</td>
<td>5.6</td>
<td>45.0</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Epinephelus guttatus (red hind)</td>
<td>1</td>
<td>0.06</td>
<td>1</td>
<td>5.6</td>
<td>12.0</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dasyatis americana (southern stingray)</td>
<td>1</td>
<td>0.06</td>
<td>1</td>
<td>5.6</td>
<td>50.0*</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Medium casita:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutjanus griseus (gray snapper)</td>
<td>79</td>
<td>4.39</td>
<td>11</td>
<td>61.1</td>
<td>12.7</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lutjanus analis (mutton snapper)</td>
<td>8</td>
<td>0.44</td>
<td>5</td>
<td>27.8</td>
<td>15.8</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Lutjanus apodus (schoolmaster snapper)</td>
<td>7</td>
<td>0.39</td>
<td>3</td>
<td>16.7</td>
<td>12.5</td>
<td>10</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Menippe mercenaria (stone crab)</td>
<td>3</td>
<td>0.17</td>
<td>3</td>
<td>16.7</td>
<td>10.0</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Portunus spinimanus (portunid crab)</td>
<td>2</td>
<td>0.11</td>
<td>2</td>
<td>11.1</td>
<td>9.5</td>
<td>6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Small casita:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutjanus griseus (gray snapper)</td>
<td>12</td>
<td>0.67</td>
<td>5</td>
<td>27.8</td>
<td>7.6</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Lutjanus apodus (schoolmaster snapper)</td>
<td>2</td>
<td>0.11</td>
<td>1</td>
<td>5.6</td>
<td>7.0</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Portunus spinimanus (portunid crab)</td>
<td>5</td>
<td>0.28</td>
<td>3</td>
<td>16.7</td>
<td>8.5</td>
<td>7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Menippe mercenaria (stone crab)</td>
<td>1</td>
<td>0.06</td>
<td>1</td>
<td>3.6</td>
<td>6.0</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

* Measured from wingtip to wingtip (cm)

Our field experiments further demonstrate that scaling of refuges according to prey size enhances prey survivorship by providing protection from predators. The likely mechanism producing this pattern is a reduction in accessibility of piscine predators to lobsters in low shelters. These results imply that limitations to the distribution and abundance of spiny lobsters within shelters are a consequence of complex interactions involving lobster density, and the sizes of lobster, shelter, and predator. For instance, the maximum size of a lobster within a particular shelter is limited by the size of the shelter, whereas the minimum size is limited by shelter-associated predators. This relationship is further complicated by (1) social dominance within a shelter, whereby small lobsters may be forced out, or (2) gregarious behavior that might enhance the lower size range of lobsters that can survive.

Survival of small (35 to 45 mm CL) and medium (46 to 55 mm CL) lobsters was generally dependent on casita size – small and medium casitas afforded the best protection to small and medium lobsters, respectively. Survival of large juveniles (56 to 65 mm CL) did not always depend on shelter size. For instance, large lobsters had higher survivorship in medium casitas than in large casitas, and medium lobsters demonstrated higher survivorship in large casitas than did large lobsters. The increased survivorship of large juvenile lobsters in medium casitas compared to large casitas indicates that medium casitas eliminate predators that are able to prey on large juvenile lobsters. Differential survivorship of medium and large juvenile lobsters in large casitas could be a consequence of variations in predator and prey size. The predator observations indicated that a characteristic suite of predator sizes corresponded to each casita size, with large casitas concentrating larger adult fish. Adult fish may become more selective because of better visual perception with age (i.e. size) (Kao et al. 1985), and predator discrimination may become more acute with increasing prey size (Stein 1977). However, more information is needed on the mechanisms of predator choice in this system to discern the precise role of variation in predator and prey sizes in regulating prey survival.

The allometry of predator vulnerability with shelter and body size is fundamental in predicting size-specific asymmetries in species interactions or ontogenetic niche shifts (Werner & Gilliam 1984). Thus, the use of appropriately scaled casitas might be used to examine shelter-related population bottlenecks (sensu Caddy 1986) for juvenile *Panulirus argus*. In a somewhat analogous study, Reise (1978) examined how mesh size of predator exclusion cages provided differential pro-
tection to infaunal prey. Cages with 5, 2, and 1 mm mesh enhanced macrofaunal survival (sieved through a 0.25 mm mesh) by excluding crabs, shrimp, and gobid fish, whereas cages with 20 mm mesh did not (Reise 1978). Another possible analogue to our findings may be the use of reef cavities as refuges for reef-dwelling stomatopods. Abundance of stomatopod crustaceans in subtidal reef populations is affected by predation (Reaka 1985), such that the sizes of available reef cavities may limit the body sizes of these stomatopods (Moran & Reaka 1988). Thus, the introduction of artificial reef cavities of the appropriate scale (sensu Caddy 1986) might also be a productive approach for examining shelter-related population bottlenecks of stomatopods and other reef-dwelling species.

The placement of casitas throughout Bahia de la Ascension provides juvenile spiny lobsters with additional, more effective shelter from predators. Various shelter features may be important in reducing predation. For instance, shaded cover provided by dens may decrease encounters with visually directed predators (Spanier & Zimmer-Faust 1988), which for Panulirus argus are principally diurnally active fishes (Cruz & Brito 1996, Herrnkind & Butler 1986). However, further experiments are needed to determine differences in the impact of casitas upon lobster survival in the day and night.

Key physical properties of the casita that likely influence den choice and increase survivorship of juvenile Panulirus argus are (1) a shaded cover provided by the wide concrete roof, (2) low roof height, which excludes large piscine predators, and (3) multiple den openings that are smaller than the inner roof height of the casita. Recruitment of the slipper lobster Scyllarides latus to artificial reefs of different design indicated a preference for lower, horizontal dens with small openings (Spanier et al. 1988). Field surveys in California indicated that dens occupied by Panulirus interruptus usually had more than one entrance and that entrances were much smaller than the inner diameter of a den (Spanier & Zimmer-Faust 1988). Furthermore, den preferences of P. interruptus depended more on the presence of shaded cover than on den walls, with single, isolated dens having front and rear entrances being selected over dens with only one entrance (Spanier & Zimmer-Faust 1988). Multiple den openings provide alternate escape routes, and may facilitate social grouping with collective anti-predator vigilance. We commonly observed groups of lobsters with their antennae protruding from each opening of a casita, somewhat resembling a defensive pod (Kanciruk 1980) with a roof over it.

The collective evidence from field observations and experiments suggests that shelter is limiting spiny lobster abundance in certain habitats such as reefs (Ford et al. 1988) and seagrass meadows (this study), with a dynamic interplay between shelter and food availability (Herrnkind 1980). Thus, the placement of appropriately-scaled casitas, which are inexpensive and extremely durable as evidenced by our low loss rate (8%) of structures in the direct path of Hurricane Gilbert (D. B. Eggleston unpubl.), may be an economical and effective approach for increasing fisheries production in the Caribbean by increasing protection from predators. However, final conclusions regarding the impact of artificial shelters on spiny lobster predator-prey dynamics and production in nursery areas warrant field manipulations that test the aforementioned hypotheses.

Acknowledgements. We thank T. Camarena and E. Cordero with the Centro de Investigaciones de Quintana Roo, and numerous Earthwatch volunteers, for their able field assistance. Thanks to J. Eggleston for drawing the figure of the casita. Special thanks to Armando Lopez and Sonja Lillvick for the fine accomodations and logistical support. We thank M. Butler, W. Herrnkind, C. Peterson and 2 anonymous referees for critical comments. This work was funded by Sigma-Xi, Earthwatch-The Center for Field Research, the National Undersea Research Program of the National Oceanic and Atmospheric Administration, the Caribbean Marine Research Center, and the National Science Foundation (INT-8617945 to D. M. and R. L. and OCE-87064414 to R. L. and A. Hines). Contribution No. 1579 from the Virginia Institute of Marine Science.

LITERATURE CITED

Eggleston et al.: Shelter scaling and spiny lobster survival

This article was presented by Professor C. H. Peterson, Morehead City, N. Carolina, USA

Manuscript first received: May 2, 1989
Revised version accepted: January 12, 1990