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Highlights 

 Complex physical processes in Chesapeake Bay and the adjacent shelf are 

investigated by a cross-scale baroclinic model.  

 Recently developed techniques are applied, including a flexible vertical grid system, 

an implicit transport solver, etc.  

 Good model skills are achieved with the techniques mentioned above and an 

accurate representation of bathymetry.  

 The importance of bathymetry for estuarine modeling and the effect of bathymetry 

smoothing are discussed quantitatively. 
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Abstract 

We extend the 3D unstructured-grid model previously developed for the Upper Chesapeake 

Bay to cover the entire Bay and its adjacent shelf, and assess its skill in simulating saltwater 

intrusion and the coastal plume. Recently developed techniques, including a flexible vertical 

grid system and a 2
nd

-order, monotone and implicit transport solver are critical in successfully 

capturing the baroclinic responses. Most importantly, good accuracy is achieved through an 

accurate representation of the underlying bathymetry, without any smoothing. The model in 

general exhibits a good skill for all hydrodynamic variables: the averaged root-mean-square 

errors (RMSE‟s) in the Bay are 9 cm for sub-tidal frequency elevation, 17 cm/s for 3D 

velocity time series, 1.5 PSU and 1.9 PSU for surface and bottom salinity respectively, 1.1 °C 

and 1.6 °C for surface and bottom temperature respectively. On the shelf, the average RMSE 

for the surface temperature is 1.4 °C. We highlight, through results from sensitivity tests, the 

central role played by bathymetry in this estuarine system and the detrimental effects, from a 

common class of bathymetry smoothers, on volumetric and tracer fluxes as well as key 

processes such as the channel-shoal contrast in the estuary and plume propagation in the coast.  

Keywords: bathymetry; cross-scale; SCHISM; estuarine circulation; Chesapeake Bay, USA 

1 Introduction 

Chesapeake Bay is a shallow drowned river valley in the Mid Atlantic Bight (MAB) and 

is the largest estuary in the continental USA. It provides essential ecological services to 

wildlife and to the local human population. As a result, Chesapeake Bay has stimulated a 

great deal of scientific research, on topics ranging from the physical processes (Goodrich et 

al., 1987; Sanford et al. 2001; Valle-Levinson et al., 2003; Scully et al., 2005), to 

eutrophication (Boesch et al., 2001; Cerco and Noel, 2004; Kemp et al., 2005), hypoxia 

(Officer et al., 1984; Bever et al., 2013; Du and Shen, 2015), nitrogen cycling (Feng et al. 

2015) and the long-term trend of the above-mentioned processes under climate change (Hagy 

et al., 2004; Najjar et al., 2010; Murphy et al., 2011; Hong and Shen, 2012). In recent years, 

more and more emphasis has been placed on its productive tributaries and shallow regions, 
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which have drawn particular interest from water quality and living resources management 

(Cerco et al., 2013). In other estuarine and coastal systems beyond Chesapeake Bay, there is 

also a universal need to investigate small-scale processes under large-scale remote forcing in 

a holistic manner (Brown and Ozretich, 2009; Möller et al., 2001; Gong and Shen, 2011). 

Major challenges in simulating Chesapeake Bay include: (1) complex geometry and 

bathymetry with steep slopes at places; (2) large temporal variations in forcings (such as 

freshwater inputs and wind), which lead to highly variable stratification (from partially 

stratified under normal conditions to strongly stratified or mixed conditions during events) 

and unique circulation patterns (e.g., the 3-layer circulation) in some tributaries (Schubel and 

Pritchard, 1986; Goodrich et al., 1987); (3) complex linkages between the main stem 

dynamics and the small-scale processes occurring in the tributaries/sub-tributaries on one 

hand, and the large-scale processes in the coastal ocean such as the Gulf Stream (Ezer, 2013) 

on the other. These challenges require accurate representation of the underlying bathymetry, 

and set a high bar for model flexibility and efficiency in simulating cross-scale baroclinic 

processes. All of these are under-studied at the moment. 

Previously, we have developed several new numerical techniques and incorporated them 

into a 3D unstructured-grid (UG) model (SCHISM, i.e., “Semi-implicit Cross-scale 

Hydroscience Integrated System Model”; Zhang et al., 2016a) and applied the model to the 

Upper Chesapeake Bay (Ye et al., 2016). With the newly introduced implicit transport solver 

with two total variation diminishing limiters (TVD
2
), the model was shown to be able to 

accurately simulate saltwater intrusion and density stratification in the system, and can be 

readily extended into small tributaries and sub-tributaries. We continue previous work by 

extending the model to cover the entire Bay and a portion of the Mid Atlantic Bight (MAB) 

shelf. The rationale for including the shelf is to incorporate shelf processes as much as 

possible, because shelf and Bay processes are intertwined (Xu et al., 2011). 

Several other models based on structured-grids (SGs) or UGs have been applied to the 

Bay (Li et al., 2005; Cerco et al., 2013; Lanerolle et al., 2011; Hong and Shen, 2012; Testa et 

al., 2014; Feng et al., 2015; Jiang and Xia, 2016) and an inter-comparison of some of these 

models can be found in Irby et al. (2016), who concluded that all models have similar skill in 

the deeper part of the Bay. Major departures of the current model from previous models are: 

(1) use of high-resolution hybrid triangular-quadrangular UG; (2) use of a novel hybrid 

vertical grid in order to seamlessly traverse contrasting spatial scales from sub-tributaries to 
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shelf; (3) an implicit scheme that allows large time steps (in this case 2.5 minutes) in 

conjunction with high resolution for efficiency; (4) most importantly, an accurate 

representation of the original bathymetry through the combination of (1-2). Consequences 

from these choices are discussed and the detrimental effects of bathymetry smoothing is 

highlighted. 

In the following sections, we first describe the observational datasets used in this paper 

(Section 2.1), and then provide a description of the model set-up (Sections 2.2 to 2.5). The 

model skill is then assessed in the Section 3. We then present a sensitivity study on the 

importance of model representation of the underlying bathymetry (Section 4). Section 5 

summarizes the paper. 

2 Methods 

2.1 Observations used for model evaluation 

Chesapeake Bay and its adjacent shelf is a well-instrumented system with extensive in-situ 

and remote sensing observational assets. Environmental Protection Agency (EPA)‟s 

Chesapeake Bay Program (CBP) Office maintains a network of stations and regularly 

conducts synoptic surveys throughout the Bay (usually bi-weekly in summer or monthly in 

winter); the measured variables include both physical and biogeochemical variables. The 

modeled salinity and temperature profiles will be compared to CBP observations. 

NOAA
a
 maintains over 40 tide gauges in and around the Bay and adjacent shelf, some of 

which will be used in model validation (Figure 1). In addition, PORTS
b
 also maintains 

ADCPs at a few stations in the Bay during some recent years (Figure 1); the velocity data will 

be used to validate our modeled current profiles.   

To maximize data availability, the model assessment in the main text focuses on the skill 

inside Chesapeake Bay during recent years (2011-2014); while the model performance in the 

plume region and on the shelf are briefly discussed in Appendix A for completeness. 

Appendix A2 assesses model results in the plume region, using the dataset collected during a 

1996 (wettest year in recent history) survey (Valle-Levinson et al., 2007).  Appendix A3 

evaluates the model skill on the shelf, using a daily global 1-km operational Sea Surface 

                                                      
a
 url: https://tidesandcurrents.noaa.gov/tide_predictions.html/, last accessed in April 2017. 

b
 url: https://tidesandcurrents.noaa.gov/ports.html, last accessed in April 2017. 
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Temperature (G1SST
c
) product based on satellite data, where various sea surface temperature 

(SST)datasets at different spatial resolutions are combined with a multi-scale two-

dimensional variational (MS-2DVAR) blending algorithm (Chao et al. 2009). Although 

G1SST is used as “observation” in this paper, it actually represents an optimal estimate of 

skin SST, whereas the modeled SST is a bulk estimate at the sea surface. All observational 

assets used in this paper (including those in the appendix) are summarized in Figure 1. 

2.2 Numerical model 

The model SCHISM (Zhang et al., 2016a; Ye et al., 2016) is a derivative product of 

SELFE v3.1dc (Zhang and Baptista, 2008), but freely distributed using an Apache v2 license. 

It is an open-source community-supported modeling system, based on mixed triangular-

quadrangular unstructured grids in the horizontal and a very flexible coordinate system 

(Localized Sigma Coordinates with Shaved Cell, or LSC
2
) in the vertical (Zhang et al., 2015), 

designed for the effective simulation of 3D baroclinic circulation across creek-to-ocean scales 

(Zhang et al., 2016a; Yu et al. 2017). The model employs a semi-implicit finite-

element/finite-volume method, together with an Eulerian-Lagrangian method (ELM; Baptista 

1987) for momentum advection, to solve the Navier-Stokes equations in its hydrostatic form. 

As a result, numerical stability is greatly enhanced and the errors from the “mode splitting” 

method are avoided; in fact, the only stability constraints are related to the explicit treatment 

of the horizontal viscosity and baroclinic pressure gradient, which are much milder than the 

stringent Courant-Friedrichs-Lewy (CFL) condition. The implicit scheme used in SCHISM, 

originally pioneered by Richtmyer (1957) and Kwizak and Robert (1971) and popularized by 

Casulli and Cattani (1994), often allows the selective use of “hyper resolution” (on the order 

of a few meters) with little penalty on the time step. More information about the model and 

its application cases around the world can be found at www.schism.wiki (last accessed in 

March 2018). The version of SCHISM used in this paper is the publicly released tag version 

v5.3.1, freely downloadable at www.schism.wiki (last accessed in Jan 2018). We use this 

public version and upload some key files as supplementary materials (doi:10.21220/V5HK5S) 

to promote reproducibility of the results. 

As an implicit model, SCHISM does not have a formal upper limit for time step, but in 

practice has an operating range on a fixed grid due to the accuracy consideration (in particular, 

                                                      
c
 url: https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST, last accessed in 

April 2017. 
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the scheme reduces to 1
st
-order accuracy with large time steps). The operating range for 

baroclinic applications is usually 100-200s. In the current case, the model results are 

relatively insensitive to the time steps t between 100-150s, while with t≥180s the model 

results would lead to larger vertical mixing and less stratification. The implicit scheme 

introduces some inherent numerical diffusion but this is balanced by the numerical dispersion 

inherent in the finite-element solver, as the latter effectively acts as an anti-diffusion. This 

balance is desirable as both diffusion and dispersion are detrimental to accuracy. Various 

higher-order schemes for the momentum and transport equations have been developed in 

recent years to further reduce the numerical diffusion, which is critical for applications in the 

large-scale eddying regime (Zhang et al. 2016a; Ye et al. 2016; Yu et al. 2017). The volume 

conservation in SCHISM is enforced by a finite-volume solver of the 3D continuity equation 

and mass conservation is enforced by a finite-volume solver of the transport equation; the 

former ensures the consistency (and often monotonicity) of the tracer solution. The use of a 

hybrid vertical gridding system (LSC
2
) and a cubic spline Z-method in evaluating the 

pressure gradient greatly reduces the Pressure Gradient Error (PGE) as well as diapycnal 

mixing (Zhang et al. 2015). 

2.3 Digital Elevation Model (DEM) and bathymetry 

There are multiple publicly available DEMs for Chesapeake Bay and the adjacent shelf 

region. The DEM used here is primarily based on the topo-bathymetric information from 

USGS
d
, supplemented by the latest navigation charts

e
, and coastal relief model

f
 for the coastal 

and shelf region. Bathymetric changes due to regular dredging by USACE are not explicitly 

accounted for, but are treated as part of the model uncertainties. Since our grid resolution is 

much coarser than the original USGS DEM‟s 1 m resolution
g
, the DEM was subsampled to 

23 m in the north-south direction (mostly along-channel) and 18 m in the east-west direction 

(mostly cross-channel) to reduce its size. A locally volume conservative approach was 

adopted, with the elevation at each subsampled point being the average of all its neighboring 

points within the 23 m×18 m box in the original DEM in order to locally conserve volume. In 

an effort to easily incorporate new DEMs in small tributaries and sub-tributaries in the future, 

                                                      
d
 url: https://topotools.cr.usgs.gov/coned/chesapeake_bay.php; last accessed in Feb. 2017. 

e
 Chesapeake Bay Maryland & Virginia Chartbook (8th Edition), published by ADC The Map People, 

2004. 
f
 url: https://www.ngdc.noaa.gov/mgg/coastal/crm.html, last accessed in Jan 2017. 

g
 The 1-m resolution is used in the published USGS product, which is interpolated from original 

bathymetric survey data that often has much coarser resolution. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 

 

 

we have triangulated the original raster files to generate an UG DEM (Figure 2), which can 

be found in the supplementary materials (doi:10.21220/V5HK5S). 

The bathymetry in the Bay has several key features. There is a main shipping channel 

(~15-40 m depth) that cuts through the otherwise shallow estuary and extends from the 

Atlantic Ocean to the Baltimore harbor. The channel is regularly dredged and maintained to 

make it navigable by megaships. Still, the channel cuts through shallow shoals in places (e.g. 

Figure 2c). It also branches off into multi-channel configuration at other places (Figure 2ad). 

As will be shown in Section 4, the channel-side slopes often exceed 1:2. The channel width 

varies from ~5 km near the entrance to ~400 m near Baltimore harbor (Figure 2a). The 

channel also turns abruptly at places (Figure 2acd), which is conducive to secondary 

circulation (Pein et al. 2014). Adequate bathymetric resolution is required to capture those 

channel constrictions (Figure 2acd), which have important implications for hydrodynamic 

processes in the Bay. 

2.4 Grid generation 

Our computational grid covers the entire Bay from Cape Henry to the Conowingo Dam in the 

Susquehanna River. The opening to Delaware Bay through the Chesapeake & Delaware canal 

is closed in the grid since the dynamics there are generally believed to be insignificant for 

main Bay processes; preliminary test results support this hypothesis, though more carefully 

controlled tests are needed in the future. The grid also covers a portion of the MAB, up to 

Lewes, DE in the north and Beaufort Inlet, NC in the south, and out to the 3 km isobath 

(slightly beyond the shelf break) offshore. The inclusion of the shelf allows us to avoid 

significant influence from the boundary condition (B.C.) imposed there. Since the domain 

includes part of the Gulf Stream, we rely on the B.C. from the data-assimilated HYCOM
h
 to 

bring its signal into the domain.  

Due to its semi-implicit numerical algorithm and specific horizontal and vertical grid 

systems, SCHISM often incurs little penalty on time steps with fine resolution, so relative to 

prior modeling efforts in this domain, we can faithfully represent many key features 

(channels, shelf breaks, jetties, etc.). For example, finer resolution in the shipping channel (as 

compared to the shoals) is usually needed to accurately capture the saltwater intrusion process; 

however, refining deeper rather than shallow areas would run contrary to the requirements 

                                                      
h
 url: https://hycom.org/. 2011-2012: HYCOM + NCODA Global 1/12° Reanalysis (experiment 19.1); 

2013-2014: HYCOM + NCODA Global 1/12° Analysis (experiment 90.9-91.1). 
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arising from the CFL condition for explicit models. Additionally, the SCHISM formulation is 

very tolerant to skew elements, which helps us align the mesh to contours and breaks. Figure 

3 is a map showing contours that are enforced as part of our grid generation process 

(excerpted from the “map” file from SMS software
i
). The channel edges (based on the highest 

gradient of the isobaths) and shelf break are captured by carefully aligning element edges to 

these features. Often the channel profile is represented by at least 4 nodes, with 2 nodes 

dispensed to represent each channel edge (one at the top and the other at the foot of the edge; 

Figure 3c). Meshing in this way causes the feature-aligned arcs to be close to each other on 

steep channel slopes (Figure 3ab), resulting in skew elements, but the implicit model can deal 

with elements with the skewness (defined as the ratio between the maximum side length and 

the equivalent diameter of an element) exceeding 20. Admittedly, skew elements degrade 

accuracy locally and therefore smoother transition would be required to achieve better 

accuracy, at the expense of efficiency. Once the important features to be aligned have been 

digitized, the hybrid triangular-quad grid is generated. The grid resolution is primarily 

controlled by the arc resolution. The final computational grid has 28,137 nodes, 35,756 

triangles and 8,833 quads (Figure 4).  Besides reducing the number of grid elements and thus 

the computational cost, the use of quads in the channelized areas in a flow-aligned fashion 

was also deemed beneficial for channelized flow (Holleman et al. 2013). 

Mesh bottom elevations for the present model are populated by a linear interpolation 

from the DEM. Such a method is consistent with the linear shape function used in the finite-

element framework in SCHISM. The use of shaved cells near the bottom ensures a smooth 

and continuous representation of the bottom. Although the combined procedure is 2nd-order 

in its representation of bottom, if the mesh is not sufficiently resolved it can lead to 

systematic loss of volume in convex channels – a small amount of such loss can be seen in 

Figure 3c as the region between the linear bottom and the “true” bed. Importantly, the mesh is 

not smoothed. We later perform sensitivity studies on bathymetry smoothing, which is often 

used by terrain-following coordinate models. The implication of the smoothing procedure 

will be discussed in Section 4. 

The model uses the new flexible vertical grid system LSC
2
 (Localized Sigma Coordinates 

with Shaved Cells) developed by Zhang et al. (2015), which is a generalization of the 

Vanishing Quasi-Sigma Coordinates of Dukhovskoy et al. (2009). The number of layers 

                                                      
i
 url: aquaveo.com, last accessed in Jan 2017. 
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changes with depth, which leads to a much milder coordinate slope (e.g., the near-horizontal 

layers in Figure 5e) than that of the pure terrain-following coordinate grid. As a result, 

pressure gradient error as well as the spurious diapycnal mixing are reduced (Zhang et al., 

2015). To ensure a smooth (piece-wise linear) staircase-free bottom representation, shaved 

cells are added near the bottom, which has been demonstrated to be essential for successfully 

capturing the bottom controlled processes such as saltwater intrusion (Ye et al. 2016) and 

dense water overflow along steep slopes (Zhang et al., 2016ab; Stanev et al., 2017), and also 

help reduce the unphysical diapycnal mixing (Zhang et al. 2015). The number of levels in the 

final vertical grid varies from 16 (at 8 m depth) to 67 (at 4000 m depth), and 24.6 on average. 

Figure 5 shows typical configurations of the vertical grid in and outside the Bay. High 

resolution is applied near the surface and bottom, but the mid depths inside the Bay are also 

adequately resolved in order to capture the sharp pycnocline there. In generating the vertical 

grid, we have used two master grids (see Zhang et al., 2015 for more details on master grids), 

designed for the Bay and shelf portions of the domain respectively and “stitched” together at 

a common depth near the Bay entrance (Figure 5bc). The flexibility afforded by LSC
2
 allows 

us to apply resolution almost at will (as each horizontal node can have its own vertical grid), 

although abrupt transitions in the number of levels should be avoided in practice as they may 

lead to excessive momentum dissipation.   

2.5 Model setup 

The primary simulation period of 2011-2014 includes some typical variability of the 

hydrological flow regime: a wet year in 2011, a dry year in 2012 (with a below-average 

spring freshet), average years in 2013 and 2014, and three major storms (Hurricane Irene in 

Aug. 2011, Tropical Storm Lee in Sept. 2011, and Hurricane Sandy in Oct 2012) (Figure 6a). 

In addition, we also present in Appendix A2 an extreme case of a strong El Nino year (1996) 

with large freshets (Figure 6b). To more accurately simulate the salinity in the Bay we opted 

to use the watershed loadings calculated from CBP‟s watershed model (Shenk and Linker, 

2013) for years 2011-2014; we found that the results from this approach were slightly more 

accurate than those using the river flows at the seven major tributaries (Susquehanna, 

Patuxent, Potomac, Rappahannock, Pamunkey, Mattaponi, and James) as measured by USGS 

gauges, suggesting influence from smaller tributaries may not always be negligible. The total 

amount of fresh water flows into the Bay from the two approaches are generally similar but 

sometimes differ significantly (Figure 6a), especially during autumn and winter, when the 
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total flow from the watershed model is often larger. The watershed model loadings include 

the inflows from smaller tributaries and sub-tributaries, whose effects are locally very 

important.  

A hybrid wind dataset blending North American Regional Reanalysis (NARR) and 

NDBC buoy observations is generated using the simple method proposed by Lanerolle et al. 

(2011). Compared to Lanerolle et al. (2011)‟s early work, more NDBC buoys are available in 

the primary simulation period and are incorporated into the hybrid wind product, providing a 

more extensive coverage inside the Bay (see supplementary materials). Compared to the pure 

NARR wind, the hybrid wind possesses more spatial/temporal variability and gusts. As 

shown in Ye et al. (2016), the use of the hybrid product leads to a more realistic wind-

induced mixing. Other atmospheric forcing applied at the surface is taken from NARR, 

including: atmospheric pressure (important during storms), downward short-wave and long-

wave radiation fluxes, air temperature, specific humidity. The effect of direct precipitation is 

also included but is found to be mostly negligible. The atmospheric forcing is then used to 

calculate the momentum and heat exchanges between the air and water via the bulk 

aerodynamic model of Zeng et al. (1998). 

At the ocean boundary, the imposed elevation is interpolated from two tide gauges at 

Lewes, DE and Beaufort, NC, using the inverse distance interpolation method. The difference 

in phase/amplitude between each boundary point and the two tide gauges are also considered, 

based on the result of a 2D barotropic SCHISM model on a larger grid that encompasses the 

entire east coast of US. This approach ensures that both tidal and sub-tidal frequency signals 

are incorporated in the model. The horizontal velocity B.C. is a linear superimposition of a 

tidal component generated by the large-domain 2D barotropic SCHISM model and a non-

tidal component from the daily outputs from HYCOM. The salinity B.C. is interpolated from 

the monthly climatology of World Ocean Atlas 2001
j
. The temperature B.C., on the other 

hand, is interpolated from HYCOM to better account for inter-annual variability for this 

variable. In addition, the simulated salinity and temperature are also relaxed towards 

climatology/HYCOM respectively in a region ~30 km near the ocean boundary, with a 

maximum temporal relaxation scale of 0.5 days, in order to prevent long-term drift. The 

relaxation constant decreases linearly from its maximum value at the ocean boundary to 0 at 

~30 km from the boundary. A sensitivity run (cf. Table 1) with HYCOM as salinity B.C. 

                                                      
j
 url: http://www.nodc.noaa.gov/OC5/WOA01/pr_woa01.html, last accessed in Jan 2017 
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yielded mostly similar results but with occasional larger errors at the Bay entrance (not 

shown), which is likely due to errors in the HYCOM salinity. 

Initially the water is at rest. The initial 3D salinity/temperature field inside the Bay is 

interpolated from the observations at CBP Water Quality Monitoring stations along the main 

shipping channel (Figure 1): salinity and temperature are first interpolated along the 

longitudinal transect, and then laterally extrapolated in the cross-channel direction at each 

depth. The initial temperature and salinity on the shelf are interpolated from 

HYCOM/climatology respectively. 

The model uses a non-split time step of 150 s (which is sufficient to resolve most 

transient hydrostatic processes), the implicitness factor of 0.6, and turbulence closure of k-kl 

(Umlauf and Burchard, 2003). A uniform drag coefficient of 0.0025 is applied at the bottom 

grid cell for simplicity. The momentum advection is solved by a 2
nd

-order scheme with a 

Shapiro filter (MB-LI; see more details in Zhang et al., 2016a). No explicit horizontal 

viscosity or diffusivity is applied in the model; note that the higher-order TVD
2
 transport 

solver is monotone by design (Ye et al., 2016). Since the mean residence time in the modeled 

region is about 3 months estimated from an average flow year (Hong and Shen, 2012) and at 

most 6 months in the dry period (Du and Shen, 2016), the model is initialized 6 months 

before the periods of interest. On 48 Intel XEON cores of the Sciclone cluster at College of 

William & Mary, the model runs 405 times faster than real time. Table 1 summarizes the 

outcome from more than 200 sensitivity runs with respect to model parameters.  

3 Model assessment 

Consistent with Ye et al. (2016), we use standard statistics to assess model errors against 

observation, including: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), bias 

and CC (correlation coefficient). The simulated elevation is compared to observation at 8 

NOAA stations from the coastal region to the inside of the Bay. The simulated velocity is 

compared to the multi-layer ADCP measurements at 3 locations from the Bay mouth to the 

upper Bay. The overall salinity and temperature skill is based on an ensemble in space (at 39 

CBP Water Quality Monitoring stations in the Bay; Figure 1). The bias and RMSE between 

the model and observations are summarized in the form of target diagram (Figure 7). Each 

variable is normalized to the standard deviation of the corresponding observation type so as 

to compare multiple variables on a single plot. In the target diagram, the x-axis is defined 
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such that x>0 indicates an over-estimation in the variability of the observations and x<0 

indicates an under-estimation, whereas y>0 indicates an over-estimation in the mean of the 

observations and y<0 indicates an under-estimation.  More details on these diagrams are 

described by Hofmann et al. (2008) and  Jolliff et al. (2009). 

The presentation of individual results will be focused more on salinity given its 

importance for density stratification. Most stations shown are in the main stem of the Bay; 

model assessment in the tributaries has been discussed elsewhere (Ye et al. 2016).  

3.1 Elevation 

Both sub-tidal and tidal frequency signals at NOAA tide gauges are compared to the 

SCHISM output. In general, the modeled free-surface elevation agrees well with the 

observations. For the subtidal elevation, the averaged RMSE and Correlation Coefficient (CC) 

over all stations are 9 cm and 0.84 respectively. For the total elevation (including both tidal 

and sub-tidal frequencies), the averaged RMSE and CC over all stations are 11 cm and 0.90 

respectively. The hurricane induced set-ups are also captured by the model (e.g., Hurricane 

Irene in Figure 8). 

The amplitudes and phases of the major constituents are captured as shown by the 

harmonic analysis (Figure 9); the largest error for the M2 amplitude is only 1.8 cm, and 3.9 

degrees for the M2 phase. The model tends to over-estimate the amplitudes except at Station 

Annapolis, where the largest error happens to occur (Figure 9). Station Annapolis is near the 

semi-diurnal nodal area and its M2 amplitude is smaller than the two neighboring main stem 

stations (Station Solomons Island and Station Tolchester Beach), which is confirmed by the 

model results. Other constituents are also accurately simulated. The rapid decrease of the M2 

(and other constituents‟) amplitude from the lower to upper Bay indicates that the Bay is a 

highly dissipative system as discussed by Zhong et al. (2008). 

3.2 Velocity profile 

Three NOAA/PORTS ADCPs in the lower, mid and upper Bay (Figure 1) were 

operational in parts of 2012-2014, and the data are used to assess the vertical structure of the 

along-channel velocity. The barotropic velocities are primarily driven by tides, winds and 

pressure gradient set up by the river flows. The modeled barotropic velocity shows a 

reasonable skill (Figure 10). The averaged RMSE in 2012-2014 for all stations is 16 cm/s. 
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Significant baroclinic effects are found at all stations due to persistent density stratification, 

and the model captures the mean baroclinic velocity structure reasonably well (Figure 11). 

Larger errors are found near bottom at the two upper Bay stations cb1101 and cb1201, partly 

due to the uncertainties in bathymetry (as the channel is regularly dredged in this region). 

Overall, the averaged CC‟s at the three stations are 0.89, 0.88, and 0.92 respectively, and the 

averaged RMSE‟s (which include some small phase errors) are 21, 15, and 13 cm/s 

respectively, or 17 cm/s overall for 3D velocity time series. Since the RMSE is 16cm/s for the 

barotropic velocity, the main error source is of barotropic origin (more precisely, the small 

phase error).  

3.3 Model skill for salinity and temperature 

The performance of our model (Figure 7) is similar to EPA‟s regulatory model CH3D (cf. 

Figure 8a in Irby et al., 2016). The surface temperature is particularly well simulated, 

followed by the bottom temperature. The errors associated with salinity are smaller than other 

models shown in Irby et al. (2016). The maximum vertical gradient is on average slightly 

under-predicted and the depth of the max gradient is over-predicted; the variability of these 

quantities are also under-predicted. It is not surprising that the stratification indicators (as 

derived variables) have lower skills than the bottom/surface values. The vertical profiles 

(especially for salinity) are challenging to capture, as the stratification in the micro-tidal 

Chesapeake Bay has large temporal variations, primarily due to the seasonally-varying fresh 

water inputs (Schubel and Pritchard, 1986) and wind mixing (Goodrich et al., 1987). The 

model captures these temporal variations reasonably well (cf. the observation and “Baseline” 

model results in Figure 15 and also Appendix A1). The vertical salinity profiles at all 

observation stations during the main simulation period can be found in the supplemental 

material (doi: 10.21220/V5HK5S). The RMSE‟s for all 3D salinity profiles are 1.8 PSU 

overall: 1.9 PSU for bottom salinity, and 1.5 PSU for surface salinity. The corresponding 

numbers for temperature are 1.4 °C, 1.6 °C, and 1.1 °C.  

We have also calculated the statistics for salinity and temperature in each year, and in the 

main channel and shallow shoals separately; the results are similar to those shown in Figure 7. 

This suggests the model is capable of resolving temporal and spatial variabilities in these 

variables. Additionally, a transect along the main channel provides a more detailed view of 

the spatially variable, yearly averaged salinity structure (Figure 12). The model generally 

captures the stratification structure and longitudinal salt transport well, with a small under-
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estimation at some lower Bay stations (e.g. CB7.4); an over-estimation of stratification in the 

mid-bay is also visible in 2012. In general, the model captures well the spatial variability of 

stratification, including the local minimum near CB7.1S and CB5.5, and the largest 

stratification at CB3.3C. The maximum stratification at CB3.3C is due to its proximity to the 

freshwater zone and large depth (26 m) locally, and is generally modeled well.  

For brevity, more detailed comparisons including those in the shelf area are presented in 

Appendix A. 

4 Importance of bathymetry  

Numerous sensitivity tests conducted with SCHISM (cf. Table 1) indicate that the high model 

skill is primarily attributed to (1) accurate representation of the bathymetry, particularly the 

channel profile, by the hybrid horizontal and vertical grids; (2) higher-order numerical 

methods developed in recent years (Zhang et al., 2016a; Ye et al., 2016). The importance of 

(1) will be explained in this section. 

One of the most fundamental forcings in the shallow water regime is the underlying 

bathymetry. While the importance of bathymetry in a numerical model is widely accepted, 

the ideal is often compromised in practice. The reasons vary but here we distinguish two 

types of errors:  

a) Type I: representational errors due to bad values or the finite, discrete representation 

of the domain. Discretization will always result in errors in the representation of 

water depths and volume. There can be also be ambiguity over which quantities 

(point values or moments like face areas and volumes) are of higher priority and 

whether features like bed forms should be treated as subgrid and modeled with 

closures or explicitly resolved.  

b) Type II: errors and adjustments harking back to artifacts of numerical models, 

including requirements for stability, accuracy or efficiency. These adjustments are 

often mandatory, in which case their deleterious effects may not be testable in a 

simple way.  

Horizontal resolution is a remedy for many geometry-related issues, but any refinement 

below the scales of physical interest usually represents a computational expense that is hard 

to accept. Smoothing is also used in addressing bathymetry-related issues, although the role it 
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plays is different for the two types of errors enumerated above. An example involving 

representational difficulties (Type I error) would be the removal of small bathymetric features 

to avoid aliasing them on a coarser grid. The smoothing in this case may be coupled with a 

moment-preserving constraint such as volume preservation. Figure 13 shows an example 

taken from Liberty Island, an intertidal island in the Sacramento-San Joaquin Delta in 

California. The small-scale “moonscape” in this DEM arises mostly because of difficulties 

with bathymetry collection in a shallow, turbid and vegetated environment. The filtering 

algorithm used in (b) is due to Mallidi and Sethian (1996), based on an anisotropic curvature 

flow originally designed to de-noise features in medical images. This preprocessing step 

eliminates curvature below a specified length scale (in this case 20 m), but preserves steep 

slopes, peaks and valleys. Using a Nyquist analog as a rough guide, convergence in this case 

would be straightforward at scales from 40 m down to 10 m; any further refinement in the 

mesh would have to be reconciled with the choice of length scale of the smoother and the 

rough quality of the underlying data.  

More objectionable is the Type II case where bathymetry smoothing is required to make 

up for a shortcoming such as PGE in terrain-following coordinates, first discussed by Haney 

(1991). In this case, a smoother is used to limit the coordinate slope, and in doing so it alters 

the bed geometry in systematic ways. The effects of Type II errors have not been carefully 

assessed so far because models based on terrain-following coordinates often become unstable 

without smoothing. Since SCHISM uses terrain-following like coordinate but is stable over 

non-smoothed bathymetry, we can systematically assess the error and false physics generated 

by the altered bathymetry.  

We demonstrate with the current application case how bathymetry smoothing changes the 

character of the geometry in a way that leads to system-wide changes in response. In the 

sensitivity tests, the original bathymetry is smoothed inside different regions of the Bay-Shelf 

model using the Hannah-Wright smoother (Hannah and Wright 1995) with r=0.1, which is a 

typical value applied in some terrain-following coordinate models (Hu and Wang, 2010; 

Khangaonkar et al., 2012). Similar conclusion can be drawn for any smoother that fulfills a 

similar function or with a larger r value, as shown in Figure 18.  

With the Hannah-Wright smoother, the depths at the vertices of each element are 

iteratively altered to satisfy the following criterion: 
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    (1) 

or equivalently:  

                 (2) 

where      and      are maximum and minimum depths in an element, and r is a user 

prescribed threshold related to the Haney criterion (usually on the order of 0.1). Eq. (2) could 

therefore be satisfied with a sufficiently fine resolution, at least in theory. If this criterion is 

violated in an element, the max/min depths are reduced/increased by an amount of 

0.02*    . The procedure conserves the original volume. The iteration continues until this 

criterion is satisfied by all elements, or the maximum depth change in two consecutive 

iterations is less than a prescribed threshold (e.g. 1 m). 

In the rest of this section, we present two sensitivity tests in which the original 

bathymetry is smoothed in the mid-Bay and the whole domain respectively.  

4.1 Local smoothing in a mid-Bay region 

In the first sensitivity test, a region in the mid-Bay is smoothed (Figure 14a). As the volume 

is conserved by the smoother, the deeper channel becomes shallower, and the shallower 

shoals are deepened, with large bottom slopes removed (Figure 14: b versus c). These lead to 

changes in terms of mixing patterns, partition in volume flux, lateral flow, and the location of 

pycnocline. The sequence of this list of variables does not imply a cause-effect relationship, 

since they are interrelated components in a non-linear system and all governed by the 

underlying bathymetry. It should be noted the location of pycnocline is of particular interest 

in water quality and biological studies, since it is closely related to the hypoxic volume 

(Bever et al., 2013).  

The most obvious change is seen in the mixing patterns (Figure 14bc). With the original 

bathymetry, large turbulence mixing is visible near the corners of the steep slope (Figure 14b); 

after smoothing,  the mixing near the slope is reduced and the low mixing zone extends more 

into the shallows (the area highlighted by solid ellipses in Figure 14c). Note that the high-

mixing zone near the corners is, in all likelihood, physical, and its absence in the smoothed 

bathymetry fortuitously masks numerical dissipation by lowering the amount of physical 

mixing. Even though the smoothing is only done in a small region in the mid-Bay, its effect is 

felt farther up-estuary. With smoothing, the salinity at CB3.3C increases by 1.6 PSU on 
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average, because the total mixing (i.e., the sum of physical and numerical mixings) is kept 

low by under-estimation of the physical mixing in the smoothed region. As a result, even 

low-order upwind scheme can apparently give „reasonable‟ results for the averaged salinity, 

but not its 3D profile (because the original and altered depths do not even match). Therefore 

accurate simulation of such domains requires both accurate solvers (e.g., the higher-order 

schemes and the new LSC
2
 grid) and realistic, high-resolution bathymetry. 

The bathymetry smoothing also affects the partition of volume flux. Although the total 

volume flux across the entire transect (from bank to bank in Figure 14a) does not change (i.e. 

-1370 m
3
/s for both original and smoothed bathymetry, with negative values indicating  

seaward fluxes), the partitioning of fluxes between channel (the blue portion of the transect in 

Figure 14a) and shoal is altered as the channel volume is decreased and shoal volume is 

increased; the yearly averaged flux for the channel portion in 2012 is 74 m
3
/s (i.e. landward) 

for the original bathymetry and -197 m
3
/s (i.e. seaward) for the smoothed bathymetry, and the 

remaining fluxes for the shoal portion are -1444 m
3
/s and -1173 m

3
/s respectively. In other 

words, the channel-shoal contrast is reduced with the smoothed bathymetry. Under the 

original bathymetry, the intrusion occurs more along the channel and less along the shoal, 

resulting in more seaward outflow in shallow depths.  

More importantly, the change in lateral salinity distribution results in a reduction in 

volume below pycnocline (defined as the location of the largest vertical salinity gradient; 

Figure 14d). After smoothing, the bottom high salinity intrudes more onto the shoal and the 

position of the pycnocline shifts. These lead to a 23.8% reduction in the area (along this 

transect) below pycnocline on average (up to a maximum of 49.6% at times). In other words, 

the hypoxic volume could be systematically underestimated with bathymetry smoothing. A 

more holistic view on the hypoxic volume in the Bay will be discussed in the next sensitivity 

test. 

Lastly, several changes in the circulation patterns after smoothing are also noticeable 

(Figure 14e): (1) the lateral flow on the eastern side of the transect (20-40 km on the x-axis) 

becomes more uniformly to the east; whereas more complex two-layer and even a three-layer 

exchange flows exist under the original bathymetry; (2) the lateral flow magnitude near the 

two land boundaries increases, which is likely due to the deepening of the shoal; (3) stronger 

exchanges occur near the channel slopes (near 14 km on the horizontal axis in Figure 14e) in 

the smoothed bathy; (4) longitudinal exchange flow is generally weakened (some surface 
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flow near the two banks even changes the direction from seaward to landward ), with the core 

of the surface seaward flow moved on to the shoal. These suggest the cross-channel flow is 

highly regulated by the bathymetry; and bathymetry smoothing reduces channel-shoal 

contrast by artificially enhancing channel-shoal exchange. 

The effects of bathymetry smoothing on accuracy is shown in Figure 15. In general, the 

smoothed bathymetry leads to over-intrusion and over-estimation of stratification, which is 

consistent with the reduced overall mixing in this case. Note that by re-calibrating the model 

with the smoothed bathymetry (e.g., reducing salinity intrusion by adding extra numerical 

diffusion), it is possible to get similar skills in the deep channel as the baseline, but it‟s 

impossible to get both channel and shoal right, as the altered channel-shoal contrast cannot be 

compensated. We therefore conclude that accurate simulation of nearshore systems requires 

both realistic, high-resolution bathymetry and accurate solvers. 

4.2 Whole-domain smoothing 

In the second sensitivity test, we apply the same bathymetry smoother on the entire model 

domain and focus on the overall system-wide changes. The most obvious change is that the 

Bay becomes more stratified after smoothing (Figure 16); the bottom and surface salinity 

both increase, with larger increases near bottom (not shown). These are due to a more 

„uniform‟ intrusion pattern along the channel and the shoal (cf. insets of Figure 16). As a 

result, bathymetry smoothing often „helps‟ models with under-intrusion and under-

stratification problems. However, since a first-order forcing (bathymetry) is altered to 

compensate errors in the simulated salinity etc., it is hard to reconcile it with other processes. 

For example, side channels should be fresher and less stratified than the main channel. This is 

captured by the model with original bathymetry; an evidence is that the model skill on 

salinity is similar between the main-channel and the shoal stations (cf. Figure A1 for cast 

comparisons in the main stem and shallow regions), suggesting the shear dispersion is 

properly captured. However, with the smoothed-bathymetry, although we could get a „similar‟ 

intrusion in the main channel by using a lower-order transport scheme, the skill on side 

channel stations significantly deteriorates. This is because the channel-shoal difference in 

salinity is reduced and the model is no longer able to capture the spatial heterogeneity in the 

lateral salinity distribution.  In the rest of this sub-section, we first examine the change in 
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intrusion pattern by a salt budget analysis, followed by a discussion on its implications on 

other key variables. 

4.2.1 Salt budget 

Salt budget is analyzed on several cross-channel transects from the Bay mouth to the upper 

Bay. Following Lerczak et al. (2006)‟s procedure, the total flux    is defined as:  

    〈∫     〉  (3) 

where the angular bracket denotes time averaging,   is the velocity component perpendicular 

to the transect;   is salinity;   is cross-sectional area. For a generic variable   (such as 

velocity and salinity), it can be decomposed into the cross-sectionally averaged subtidal 

component (   , the cross-sectionally varying sub-tidal component (  ), and the cross-

sectionally varying and tidally varying component (  ): 

    
 

  

〈∫    〉  
 

    〈
   

 
 〉      (4) 

              

where    is sub-tidal cross-sectional area;   is bathymetry depth;   is the tidally fluctuating 

surface elevation. Applying Eq. (4) on   and  , Eq. (3) can be written as:  

 

   〈∫                      〉 

 〈∫                  〉              

 

(5) 

where    includes the volume flux from both river discharge and Stokes transport and      

is the corresponding salt flux;     is the salt flux from subtidal shear dispersion; and    is the 

tidal oscillatory salt flux. The cross terms are neglected following Lerczak et al. (2006), due 

to their smaller magnitude. As shown in Figure 17, the differences in total salt flux (  ) 

between the two bathymetries grow rapidly from the mouth to the upper Bay, with a sign 

reversal at the mid- and upper-Bay transects. The flux decomposition shows that all 

components contribute to this discrepancy. In particular,    is mostly larger (i.e. more up 

estuary) inside the Bay after smoothing, and the differences in    become larger toward the 
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upper Bay. Larger exchange flow resulted in stronger intrusion and larger stratification as 

shown above. 

Since some terrain-following coordinate models can tolerate large r values if the most 

dissipative option is used to stabilize the models (e.g., Sutherland et al., 2011), we have also 

included the results from r=0.4 in Figure 17. Although the agreement with the non-smoothed 

bathymetry is better than that in r=0.1, we still notice large discrepancies in the fluxes at most 

transects; in fact the averaged difference in total salt flux is 74%.   

4.2.2 Hypoxic volume 

The averaged below-pycnocline volume in 2012 is reduced by 33.7% with the smoothed 

bathymetry, which is consistent with the results in Section 4.1. In addition, the distribution of 

this volume between channel and shoal is very different (cf. Figure 14d). This has significant 

implication for the estimate of summer hypoxia, which is a key parameter for the Bay 

management. Further study is warranted to look into how the bathymetry smoothing affects 

the severity and seasonal and inter-annual trends of the hypoxia. 

4.2.3 Plume extent 

We define the plume volume as the water volume outside the Bay mouth enclosed by the 30-

PSU iso-surface. The amount of freshwater outflow from up-estuary rivers is a key control 

for the extent of the Chesapeake Bay plume. In general, the freshwater outflow peaks in 

spring, but with considerable inter-annual variations in terms of magnitude and timing 

(Figure 6a). For example, large freshwater outflow was persistent from late 2011 to the 

beginning of 2012 (Figure 6a); as a result, the maximum plume volume in 2012 occurs in 

January (Figure 18a). Large differences (up to 52%; Figure 18a) are found in plume volumes 

between the two sets of bathymetries. However, the monthly trend shows a more complex 

picture (Figure 18a). During the spring freshet, the plume is much larger on the smoothed 

bathymetry, whereas it is slightly smaller during the low-flow season (Figure 18a). In other 

words, the „original‟ plume shows less variability. Not surprisingly, the large differences 

correspond to the large plume extent during freshet (Figure 18ab), when the exchange flow is 

strong. From the mass conservation point of view, a stronger salt intrusion (especially during 

freshets) under the smoothed bathymetry is compensated by a larger coastal plume, with a 

fresher bulge located farther offshore (Figure 18b). 
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4.3 DEM resolution 

Based on the two sensitivity tests above, we believe bathymetry smoothing (and in 

general Type II errors) should be avoided as much as possible, especially in 

estuarine/nearshore applications. Of course, many of our comments assume the availability of 

an elevation map of sufficient quality and resolution, usually much finer than the numerical 

grid. A coarser DEM causes feature loss analogous to that of isotropic smoothing. Fine-scale 

bathymetry, on the other hand, reveals steep bottom slopes as the grid is refined, exposing 

flow processes that may be of physical interest but also making it more difficult to satisfy the 

Haney criterion. We regard modeling these features as a positive thing, but there is one caveat 

that the continuous revelation of finer scales may at some point interfere with convergence, 

unless a length scale limitation is applied when extracting fine-scale features from the DEM. 

Since the processes of interest presented in this paper have spatial scale of ~70m or coarser, it 

is then justifiable to use a resolution of ~23 m for the DEM.  

5 Conclusions  

We have successfully applied a 3D baroclinic unstructured-grid model to Chesapeake Bay 

and the adjacent continental shelf. Recently developed new methods (TVD
2
, LSC

2
 and hybrid 

triangular-quadrangular grid) are used in this cross-scale application. We showed that the 

model is both accurate and efficient for this system. The sea-surface elevation, velocity, 

salinity and temperature and their vertical structures are all reasonably simulated by the 

model. The new model is very flexible in its horizontal and vertical grids, and thus can be 

easily extended into tributaries and sub-tributaries. 

Through a series of sensitivity tests, we have demonstrated the fundamental role the 

bathymetry plays in the estuarine and nearshore systems. Bathymetry smoothing commonly 

used in terrain-following coordinate models was shown to not only lead to consistency issues, 

but also fundamentally alter the system in terms of channel-shoal contrast, and volumetric 

and tracer fluxes.  

The proper representation of the physical processes is a pre-requisite for water quality 

and biological studies in Chesapeake Bay and elsewhere. Therefore, the model presented in 

this paper represents a powerful tool that can be used to advance our understanding of the 

impact of both local and remote forcings on estuarine systems, which can ultimately lead to a 

holistic management strategy. 
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7 Figure captions 

Figure 1: Observation assets used in this paper (including the appendix): NOAA tide 

gauges (red triangles), NOAA current measurements (green diamonds), CBP water quality 

casts (black circles; C: center; E: east; W: west; N: north; S: south), NASA‟s ocean surface 

temperature product G1SST (blue surface), and current measurements by cruises (dashed 
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line). 

 

 

 

Figure 2: Digital Elevation Model (DEM) information including multiple zoom-ins (a-d) in 

different stretches of the main Bay showing the channel configuration and other bathymetric 

features. 
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Figure 3: SMS „map‟ (a collection of arcs and polygons used to delineate the mesh 

boundary and important features) for (a) lower Bay; (b) upper Bay; (c) typical channel 

representation in SCHISM, with 2 nodes dispensed to represent each channel edge (one at the 

top and the other at the foot of the edge). In practice, more nodes may be inserted on the edge 
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and the bottom portions. 

 

 

 

Figure 4: Horizontal grid with zooms. Average resolution in each region is also provided. 
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Figure 5: Vertical grid. (a) Transect location from the upper Bay to the shelf break; (b) master 

grid (not the real model grid, but a reference for the configuration at each grid point) used for 

the Bay portion; (c) master grid used for the shelf portion; (d) the real model grid as seen 

along the transect shown in (a); (e) zoomed-in view on a stretch of the main channel inside 

the estuary. Note that the depth-varying vertical levels are nearly horizontal through most of 

the water column, which reduces pressure gradient error and diapycnal mixing; while shaved 

cells are applied near bottom, which ensure a smooth representation of the bottom and also 

reduces diapycnal mixing by cutting off the connectivity among bottom elements along a 

slope. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28 

 

 

 

 

Figure 6: Total flow from all freshwater sources in years (a) 2011-2014; (b) 1996. „USGS‟ is 

the sum of the gauged flow at 7 major tributaries; „Watershed‟ is from CBP‟s watershed 

model. Note that watershed flows are not available to us for 1996.  
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Figure 7: Target diagram for salinity and temperature model skill. 
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Figure 8: Time series of total (tidal plus sub-tidal frequency) elevation, showing a period 

including normal conditions and a storm condition at one station (CBBT) near the Bay mouth. 

 

 

Figure 9: Tidal harmonics for 4 major constituents from 2011-2014. See Figure 1 for 

station locations. 

 

 

Figure 10: Sample comparisons of depth averaged along-channel velocity at three stations 

during three 1-month periods in 2012-2014. The averaged RMSE in 2012-2014 for all 
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stations is 16 cm/s. See Figure 1 for station locations. 

 

Figure 11: Averaged vertical profiles of along-channel velocity at the Bay mouth (cb0102) 

and upper Bay (cb1101 and cb1201). For each station, the left panel shows averaged velocity, 

with horizontal bars showing standard deviation; the right panel shows the corresponding 

RMSE‟s. 

 
 

Figure 12: Averaged salinity transect for 2011-2014 along the main stem stations. It overlays 

the observations (CBP casts) on top of the model results; complete „disappearance‟ of the 
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observation points indicates a perfect model. 

 

Figure 13: An example of DEM smoothing: (a) original DEM in Liberty Island in 

Sacramento-San Joaquin Delta, showing small-scale “moonscapes” of a few meters; (b) 

smoothed DEM. 

 

 

Figure 14: Effects of bathymetry smoothing. (a): The smoothed region (enclosed by the polygon with 

black lines) and the transect (red and blue lines) used in analysis; (b): time averaged vertical diffusivity 

along the blue portion of the transect with the original bathymetry; (c): same as (b) but with the 

smoothed bathymetry. The dashed line in (b) shows the bottom profile from the original high-

resolution DEM. The ellipses in (b) and (c) highlight the locations (steep slope and shoal) of the most 

obvious changes in mixing patterns. Effects of bathymetry smoothing on (d) salinity distribution and 

pycnocline position (white line at mid-depth); and (e) flow patterns (arrows represent cross-channel 
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flow and colors represent along-channel velocity). All plots are time averaged from May to October in 

2012.  
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Figure 15: Typical comparisons of salinity profiles at two mid Bay stations (a) CB4.3C 

(channel) and (b) CB4.3E (shoal), with and without bathymetry smoothing. 

 

 

Figure 16: Simulated stratification (bottom salinity minus surface salinity, time-averaged in 

2012): (left) original bathymetry; (right) smoothed bathymetry (with the same transport 

solver). Note that the zoomed-in views use a range of 0-1 PSU to mark the intrusion limit. 

 

 

Figure 17: Salt flux decomposition (              ) at three cross-channel 

transects passing through CB7.4C (mouth), CB4.4 (mid-bay), and CB3.3C (upper bay) 

respectively (see their locations in Figure 1), with comparisons between original and 
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smoothed bathymetry. 

 

 

Figure 18: Difference in the simulated plume (defined as the water volume outside the Bay 

mouth enclosed by the 30-PSU iso-surface) between the original bathymetry and the 

smoothed bathymetry: (a) time series of plume volume and percentage change after 

smoothing; (b & c) plume thickness in two representative months of (b) spring freshet and (c) 

low flow conditions in 2012. Note that the horizontal extents are different in (b) and (c). The 

plume areal extent is delineated by the 0 contour line. 
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Figure A1: Typical salinity profile comparisons at main channel stations: (a) CB7.4, (b) 

CB7.1S, (c) CB4.4, (d) CB3.3C, (e) CB3.1; and shoal stations: (f) CB6.3, (g) CB4.3E, (h) 

CB3.3E. 

 

Figure A1: Typical salinity profile comparisons at main channel stations: (a) CB7.4, (b) 

CB7.1S, (c) CB4.4, (d) CB3.3C, (e) CB3.1; and shoal stations: (f) CB6.3, (g) CB4.3E, (h) 

CB3.3E. 

 
Location: CB4.4

z 
(m

)

S  (PSU)

(c)

ModelData



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37 

 

 

Figure A2: (a) The simulated maximum plume extent on Nov. 8-9, 1996; (b) wind history 

at NDBC station CHLV2 during this period, where the red box indicates Nov. 8-9. 

 

 

Figure A3: Sub-tidal frequency flows at each transect measured in (a) September and (b) 

November 1996. Looking upstream, shaded areas indicate up-estuary flow perpendicular to 
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the transect; vectors indicate lateral flow. 
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Figure A4: Comparison of monthly SST in 2012 from (a) G1SST; (b) SCHISM. Note that 

G1SST data start in July 2012. 
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Appendix A: Additional model-data comparisons for the SCHISM 

Bay model 

A1. Salinity 

A complete assessment of the vertical structures using the 3D profiles is the most challenging 

for models. We present in Figure A1 the model-data comparisons of CTD casts at eight 

representative stations in the main Bay. In these profiles, we used the best match within a 6-

hour window (i.e. 3 hour before and after the actual time) to account for small phase errors in 

the model forcing; however, as in Ye et al. (2016), we found that the skill using the actual 

cast times are generally similar.  

The comparisons at the five channel stations from lower Bay to upper Bay demonstrate 

that the model-data agreement is good in general (Figure A1, a-e). Only marginal 

deterioration of skill is observed at the upper Bay stations like CB3.3C as compared to Ye et 
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al. (2016). This deterioration is expected, since the upper Bay domain is smaller and its 

downstream boundary is at mid-Bay, where the boundary conditions were more accurately 

specified using observation. In this model, the strong stratification observed at CB3.3C and 

CB4.4 is generally well captured, but is under-estimated sometimes in summer low-flow 

seasons. The northern limit of the saltwater intrusion, as observed at CB3.1, is also accurately 

simulated by the model. 

The profile comparisons at representative shallow shoal stations can be found in Figure 

A1 (f-h). With adequate resolution used there, the model skill is similar to that in deep-

channel stations. This is important, as increasing attention is being focused on these shallow 

productive areas. The consistency of model results at both channel and shoal stations suggests 

that the model is able to capture the channel-shoal difference well as a result of accurate 

representation of underlying bathymetry. Sensitivity runs suggest that the under-estimation of 

stratification at certain time instances and particularly near the sharp pycnocline may be due 

to some missing processes in the turbulence model (e.g., mixing due to small-scale internal 

waves etc). 

A2. 1996 survey 

In this section, the dataset from Valle-Levinson et al. (2007)‟s survey in 1996 is used to 

validate the model in the plume region under extreme forcings. The Chesapeake Bay plume is 

strongly influenced by the Bay outflow, bottom friction and wind, and the offshore extent of 

the plume is found between the scale predicted by geostrophic dynamics (internal Rossby 

radius) and the scale predicted by cyclostrophic dynamics (Valle-Levinson et al., 2007). Jiang 

and Xia (2016) discussed five types of plume structures as regulated by river outflow and 

wind. 

The El Nino event in 1996 is one of the strongest in recent history, and was accompanied 

by large precipitation events in Feb, Sept, and Nov. 1996 (Figure 6b). The combination of the 

large outflow and upwelling favorable winds in Nov. 1996 pushes the freshwater plume ~90 

km directly offshore (Error! Reference source not found.A2a). The plume configuration 

roughly corresponds to the second plume type described by Jiang and Xia (2016).  

Note that the large offshore extent of the plume (Error! Reference source not found.A2) 

is relatively rare for Chesapeake Bay, as the plume seldom extends this far offshore due to the 

combined effects of Coriolis and the prevalent southward shelf current. The southward shelf 
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current effectively arrests “upstream” intrusion of the plume, making it attached to the coast 

along the direction of Kelvin wave propagation (Fong and Geyer, 2002). This is very 

different from some other large river plumes that regularly spread far offshore (e.g.  

Columbia River). 

Multiple transects near the Bay entrance were surveyed in September and November 

1996 by Valle-Levinson et al. (1998, 2007) and the datasets serve as valuable information on 

the 3D structure of the Chesapeake freshwater plume. Here we present comparisons of 

velocity profiles along a few transects near the entrance collected during the surveys (the 

exact locations are shown in  

Figure 1). The simulated profiles are temporally averaged, corresponding to the 24-hour 

periods of each cruise (Valle-Levinson et al., 2007). The model generally has a reasonable 

skill in capturing the complex 3D flow in the plume region (Figure A3). The subtidal flow in 

Transects 2 and 3 revealed containment of the plume as well as the outflow plume separating 

from Cape Henry resulting in a recirculation of bay plume there. These features are 

qualitatively captured by the model as well (Figure A3). The depth mismatches between 

observation and model in Figure A3, and also in some plots of Figure A1 for CTD casts, are 

examples of Type I bathymetry errors mentioned in Section 4. 

A3. Model assessment on the shelf 

Circulation patterns on the MAB continental shelf are driven by large-scale processes. The 

equatorward shelf current is the strongest signal on the inner shelf, while the poleward 

flowing Gulf Stream is dominant near the shelf break in the upper ~200 m. The Gulf Stream 

path veers towards the open ocean near Cape Hatteras where the current begins to transition 

from a topographically trapped western boundary current to a vigorously meandering free jet. 

Recent observations suggest that larger variability of this separation points may be a plausible 

cause for the warming of the MAB and local relative sea-level rise (Andres, 2016; Ezer, 

2013). This baroclinic instability creates complex eddies and counter-currents between the 

Gulf Stream and the shelf currents (Chen et al., 2014). 

Instead of showing detailed comparisons of currents and SST in the shelf, we will only 

discuss the SST comparison here because the HF radar data in this region has some 

uncertainties. A typical comparison of the monthly averaged SST between the model and the 

G1SST reanalysis product is shown in Figure A4. The Gulf Stream signature near the 
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southeast corner of the domain is reasonably captured. The overall RMSE for all years is 

1.4 °C. However, the model occasionally exaggerates the upwelling near Cape Hatteras (not 

shown), which may be due to the insufficient grid resolution used there (and thus the inherent 

bathymetric error), or exclusion of Pamlico and Albemarle Sounds in our grid, as the 

exchange through the inlets of barrier islands between the warmer water inside the Sounds 

and the colder upwelled water near the coast may help moderate the upwelling. This is left for 

future research. 

 

 

 

Table 1: Sensitivity tests with respect to important model parameters. 

Parameter name Parameter choices Bathymetry Remarks 

Transport schemes Upwind; explicit TVD Original 
Under-predicting intrusion and 

stratification, suggesting larger 
numerical diffusion 

Turbulence closure 
schemes 

k-kl; k- ; k-  Original Results are similar  

Time step 100-180 seconds Original 

Results are similar when below 

150 s; a time step of 180 s 

produces more mixing and less 
stratification 

Resolution of the horizontal 
grid in the main channel 

150-500 m Original 

Performances are similar when 

finer than 280 m, which is the 

typical resolution applied in the 
baseline model 

Averaged number of 
vertical layers 

15-35 Original Not sensitive above 24 layers 

Background diffusivity 10-7-10-3 Original Not sensitive when ≤ 10-6  

Bottom friction Drag coefficient; roughness Original 

A roughness of 5 mm leads to 

similar results as the baseline 

model with a constant drag 
coefficient of 2.5×10-3 

Freshwater inputs 
Watershed model; USGS 

gauges 
Original Mostly similar salinity results 

Wind forcing 
Original NARR; hybrid 
(NARR+NOAA obs) 

Original Mostly similar results 

Implicitness factor 0.51-1 Original Similar results 

Ocean B.C. for salinity  Climatology; HYCOM Original 
Mostly similar; HYCOM B.C. 

occasionally leads to larger 

errors 
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Ocean B.C. for temperature  Climatology; HYCOM Original 
Results with climatology B.C. 

show no inter-annual variability 

and thus larger errors 

Location of ocean boundary 

Distance between the Bay 

mouth and the nearest ocean 

boundary point: 80, 120, and 
220 km 

Original 

Performances inside the Bay 

are similar. Larger domains 

usually give better results in the 
shelf. 

Momentum stabilization 
schemes 

MB-LI (baseline), MA-LI, 
MA-KR 

Original Similar results in the Bay 

Bathymetry FEMA Original Modestly worse 

Bathymetry 
Smoothed in different regions 

(Section 4) 
Smoothed 

Less channel-shoal difference 
and other issues (Section 4) 
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