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Cluster size convergence of the density matrix embedding theory and its dynamical
cluster formulation: a study with an auxiliary-field quantum Monte Carlo solver

Bo-Xiao Zheng,1, 2 Joshua S. Kretchmer,2 Hao Shi,3 Shiwei Zhang,3 and Garnet Kin-Lic Chan2, ∗

1Department of Chemistry, Princeton University, New Jersey 08544, United States
2Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California 91125, United States
3Department of Physics, The College of William and Mary, Williamsburg, Virginia 23187, United States

We investigate the cluster size convergence of the energy and observables using two forms of density
matrix embedding theory (DMET): the original cluster form (CDMET) and a new formulation
motivated by the dynamical cluster approximation (DCA-DMET). Both methods are applied to
the half-filled one- and two-dimensional Hubbard models using a sign-problem free auxiliary-field
quantum Monte Carlo (AFQMC) impurity solver, which allows for the treatment of large impurity
clusters of up to 100 sites. While CDMET is more accurate at smaller impurity cluster sizes, DCA-
DMET exhibits faster asymptotic convergence towards the thermodynamic limit (TDL). We use
our two formulations to produce new accurate estimates for the energy and local moment of the
two-dimensional Hubbard model for U/t = 2, 4, 6. These results compare favourably with the best
data available in the literature, and help resolve earlier uncertainties in the moment for U/t = 2.

I. INTRODUCTION

Quantum embedding methods are a class of numeri-
cal techniques that help with simulating the physics of
large and bulk interacting quantum systems. To reach
the thermodynamic limit (TDL), one typically considers
finite sized clusters of increasing sizes under some choice
of boundary conditions, followed by a finite size scaling
of the observables. Embedding methods accelerate the
finite size convergence, by mapping the bulk problem
onto an auxiliary impurity model, where a small clus-
ter of the physical interacting sites are coupled to special
“bath sites” that mimic the effects of the neglected envi-
ronment.

Dynamical mean-field theory (DMFT) and its clus-
ter extensions1–4, and the more recent density matrix
embedding theory (DMET) studied in this work5–7, are
two embedding methods of this kind. The bath sites in
DMET5,6 are constructed to capture entanglement be-
tween the bulk environment and the impurity cluster.
The entanglement-based construction ensures that the
number of bath sites is at most equal to the number of
impurity sites, unlike the formally infinite bath represen-
tation that arises in DMFT methods. Cluster DMET
(CDMET) has been successfully applied to fermion and
spin lattice models5,8–11, as well as ab-initio molecular
and condensed phase systems6,7,12,13. In prior work11,
we showed that finite-size scaling of observables com-
puted from quite small DMET impurity clusters can yield
good estimates of the bulk observables. For example,
in a study of the ground-state phase diagram of the 2D
square-lattice Hubbard model, extrapolations from clus-
ters of only up to 16 sites already yielded a per-site en-
ergy accuracy at half-filling of between 0.0003t (U/t = 2)
to 0.001t (U/t = 12)11, comparable with the best exist-
ing benchmark results14. Nonetheless, the small sizes of
these clusters leaves open the possibility for a more de-
tailed analysis of finite-size scaling in DMET. This is the

question we revisit in the present work, in the context of
the half-filled 1D and 2D square lattice Hubbard models.

We have used exact diagonalization and density matrix
renormalization group (DMRG) solvers in earlier DMET
work on Hubbard models, focusing on treating parts of
the phase diagram where quantum Monte Carlo methods
have a sign problem. In the current study of cluster size
convergence we focus on half-filling, where no sign prob-
lem exists. By using an efficient auxiliary-field quantum
Monte Carlo (AFQMC) implementation15,16, we are able
to study DMET clusters with up to 100 impurity sites.
Using this solver further facilitates direct comparisons to
earlier bare (i.e. not embedded) AFQMC calculations in
the literature that used very large clusters (with up to
1058 sites) with periodic (PBC), anti-periodic (APBC),
modified (MBC), and twisted boundary (TBC) condi-
tions17,18. The comparison provides a direct demonstra-
tion of the benefits of embedding, versus simply modify-
ing the boundary conditions.

The finite-size scaling relation for extensive quantities
assumed in earlier CDMET work was a simple surface-
to-volume law (O(1/Lc) for extensive quantities, with Lc
being the linear dimension of the cluster). This is the
same scaling used in cellular dynamical mean-field theory
(CDMFT). The surface error arises because the quantum
impurity Hamiltonian in both CDMET and CDMFT de-
scribes an impurity cluster with open boundary condi-
tions, where the coupling between the impurity and the
bath occurs only for sites along the boundary of the clus-
ter19,20. The open boundary nature of the cluster further
yields the well-known translational invariance breaking
for impurity observables. In contrast, the dynamical clus-
ter approximation (DCA)21–23, a widely used alternative
to CDMFT, restores translational invariance for impurity
observables by modifying the cluster Hamiltonian to use
PBC. As a result, DCA calculations of extensive quan-
tities converge as O(1/L2

c), faster than in CDMFT24–26.
In this work, we introduce the DCA analog of DMET,
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which we term DCA-DMET, that uses a similarly mod-
ified cluster Hamiltonian. This restores translational in-
variance and reproduces the faster O(1/L2

c) convergence
in extensive quantities within the DMET setting.

Using both the existing CDMET and the new DCA-
DMET formulations, together with large impurity cluster
sizes, we compute new estimates of the TDL energies and
spin-moments of the 1D and 2D Hubbard model at half-
filling for U/t = 4, 8 and U/t = 2, 4, 6, respectively. For
the energies, our results provide high accuracy bench-
marks with small error bars. Converging finite-size ef-
fects for spin-moment has well-known pitfalls, and exist-
ing data in the literature do not always agree14,17,18,27,28.
Where agreement is observed, our new estimates confirm
the existing data with comparable or improved error bars.
In the case of U/t = 2 where severe finite size effects are
found, our data resolves between the earlier incompatible
estimates in the literature.

II. METHODS

In this section, we provide a self-contained description
of the computational methods in this work. We first in-
troduce DMET, with a focus on the original CDMET
formulation in Sec. II A, and then describe the DCA ex-
tension of DMET, DCA-DMET, in Sec. II B. In Sec. II C,
we discuss the theoretical basis and motivation for the
cluster-size scaling used in this work. Finally in Sec. II D,
we briefly introduce AFQMC as the impurity solver, and
discuss how to formulate the DMET impurity Hamilto-
nian so as to preserve particle-hole symmetry (which re-
moves the sign problem at half-filling in the Hubbard
model).

A. CDMET

The original CDMET algorithm has been outlined in
various recent works5–7,11, with slightly different formu-
lations used for lattice model and ab-initio Hamiltoni-
ans. In this section, we describe the algorithm used
here that employs the non-interacting bath formulation
of CDMET5,7, as found in our previous work on lattice
models11,14. When required, we will assume we are work-
ing with the Hubbard model, whose Hamiltonian is given
by

H = −
∑
〈ij〉σ

ta†iσajσ +
∑
i

Uni↑ni↓ (1)

where a†iσ (aiσ) creates (destroys) a particle of spin σ at

site i, 〈ij〉 denotes nearest neighbors, and niσ = a†iσaiσ.
In CDMET, the exact ground-state wavefunction and

expectation values of the interacting Hamiltonian, H,
defined on the full lattice, are approximated by self-
consistently solving for the ground-state of two coupled
model problems: (i) an interacting problem defined for a

quantum impurity, and (ii) an auxiliary non-interacting
system defined on the original lattice. The quantum im-
purity model, with Hamiltonian Himp and ground-state
|Ψ〉, consists of Nimp cluster sites coupled to Nimp bath
sites. The bath sites are obtained from the Schmidt
decomposition29 of the ground-state, |Φ〉, of the auxil-
iary non-interacting system, with Hamiltonian h. A self-
consistency condition on the one-particle reduced density
matrix then links the two model problems.

To define the Hamiltonian h, we first partition the total
lattice into Nc = N/Nimp fragments, termed impurity
clusters, which tile the full lattice. We then choose the
auxiliary Hamiltonian h to be a quadratic Hamiltonian
of the form

h = h0 + u (2)

where h0 is the one-body part of H (the hopping term of
the Hubbard Hamiltonian in Eq. (1)) and u is the local
correlation potential. In this work, we do not consider
superconducting phases and we choose to preserve Sz
symmetry. This restricts u to be number conserving and
of the form

u =
∑
C

∑
i,j∈C

∑
σ

uijσa
†
iσajσ (3)

where C indexes the Nc clusters and
∑
i,j∈C is restricted

to the sites of cluster C. The correlation potential ap-
proximates the effect of the local Coulomb interaction
within each cluster for the auxiliary problem and is a
kind of “mean-field”. The elements uijσ are determined
through the self-consistency condition described below.
As we vary uij↑ and uij↓ independently, this allows for
S2 symmetry breaking.

The bath states that define the quantum impurity
model associated with cluster C are obtained from the
ground-state of h, |Φ〉, which takes the form of a sim-
ple Slater determinant. The bath states can be con-
structed from |Φ〉 in several mathematically equivalent
ways. Here, we use a singular value decomposition of
(part of) the one-particle density matrix ρσΦ, computed

from |Φ〉, with elements [ρσΦ]ij = 〈Φ|a†iσajσ|Φ〉 defined
over the entire lattice. For a given impurity cluster
C, ρσ can be partitioned into a Nimp × Nimp impurity
block, a (N − Nimp) × (N − Nimp) environment block,
and Nimp × (N −Nimp) off-diagonal coupling blocks,

ρσΦ ≡
[
ρσimp ρσc
ρσ†c ρσenv

]
. (4)

The bath spin-orbitals associated with impurity cluster
C and spin σ are obtained by performing a singular value
decomposition of the coupling block

ρσc = RσimpΣσRσ†bath (5)

where Rbath is the (N −Nimp)×Nimp coefficient matrix
defining the Nimp single-particle bath spin-orbitals as a
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linear combination of the environment lattice sites. The
impurity model derived from cluster C thus consists of
the 2Nimp spin-orbitals associated with the original sites
restricted to the impurity cluster, and the 2Nimp delocal-
ized, environmental bath spin-orbitals (where the factor
of two accounts for both up and down spins). In princi-
ple, we would need to construct an impurity model for
each cluster C, but because of translational symmetry in
the Hubbard model, all clusters are equivalent, thus only
one cluster, say C = 0, is used as the impurity.

In the non-interacting bath CDMET formulation, the
Hamiltonian of the impurity problem, Himp, is obtained
by projecting an Anderson-like Hamiltonian, HNI (where
NI denotes the non-interacting formulation), defined on
the full lattice, into the Fock space spanned by the impu-
rity and bath states. The Hamiltonian HNI differs from
the original Hubbard Hamiltonian in that the interaction
terms in the environment are replaced with the one-body
correlation potential, such that

HNI = h0 + U
∑
i∈C=0

ni↑ni↓ +
∑
C 6=0

∑
i,j∈C

∑
σ

uijσa
†
iσajσ

≡ h0 + Vimp + uenv (6)

where C = 0 corresponds to the impurity cluster and
the set {C 6= 0} corresponds to the clusters that com-
prise the environment. Due to the simple structure of
the Schmidt decomposition of |Φ〉, the projection of HNI

into the impurity plus bath Fock space can equivalently
be performed by a rotation of the one-particle basis5–7,
giving

Himp = h̄+ Vimp (7)

where

h̄ =
∑
pq

∑
σ

h̄pqσa
†
pσaqσ. (8)

The indices pσ and qσ label the impurity and bath spin-
orbitals, and the matrix h̄σ is defined as

h̄σ = Rσ† (h0 + uσenv)Rσ (9)

where

Rσ =

[
1Nimp×Nimp

0
0 Rσbath

]
(10)

is the rotation matrix from the original lattice site basis
to the basis of single-particle impurity and bath states.
It is important to note that the impurity states are the
same in either basis as denoted by the identity in the
upper-left block of Rσ.

To compute the ground-state of the impurity model
Hamiltonian Himp, we can choose from a wide range
of ground state solvers depending on the nature of the
problem as well as the cost and accuracy requirements.
Previous DMET calculations have used exact diagonal-
ization and DMRG impurity solvers for strongly cor-
related problems 5,9–11, and coupled cluster theory for

more weakly correlated, ab-initio calculations7,12. In this
work, we use an auxiliary-field quantum Monte Carlo
(AFQMC)15,16,30 solver, which does not have a sign prob-
lem at half-filling in the Hubbard model that we study
here. This solver is discussed in more detail in Sec-
tion II D.

As described above, the elements of the correlation po-
tential u are determined by a self-consistent procedure.
We maximize the “similarity” between the lattice uncor-
related wavefunction |Φ〉 and the impurity model corre-
lated wavefunction |Ψ〉, measured by the Frobenius norm
of the difference between their one-body density matrices,
projected to the impurity model (this is the “fragment
plus bath” cost function in Ref.7)

min
u
f(u) =

√∑
ijσ

{[Rσ†ρσΦ(u)Rσ]ij − [ρσΨ(u)]ij}2 (11)

where the elements [ρσΨ]pq = 〈Ψ|a†pσaqσ|Ψ〉. Because di-
rect optimization of the functional f(u) requires comput-
ing the gradient of the correlated wavefunction dΨ/du,
a self-consistent iteration is used: when optimizing f(u),
|Ψ〉 is fixed; the optimal u is then used to update |Φ〉,
the impurity Hamiltonian Himp, and thus |Ψ〉.

In a summary, the DMET calculations in this work
proceed via the following steps:

1. we choose an initial guess for the correlation poten-
tial u;

2. we solve for the lattice Hamiltonian h (Eq. (2)) to
obtain the lattice wavefunction |Φ〉;

3. we construct the impurity model Hamiltonian using
Eq. (7);

4. we use the AFQMC impurity solver to compute
the ground state of the impurity model, |Ψ〉, and
construct the one-body density matrix ρΨ;

5. we minimize f(u) in Eq. (11), with ρΨ fixed, to
obtain the new correlation potential u′;

6. if ||u − u′||∞ > ε0, the convergence threshold, we
set u = u′ and go to step 2; otherwise the DMET
calculation is converged. Here the infinite norm
|| · ||∞ simply takes the maximum absolute value of
the matrix. In this work, ε0 = 5× 10−4t is used.

We now briefly discuss how to compute the energy and
other observables in DMET. The energy per impurity
cluster, E/Nc, where E is the total energy of the lattice
and Nc is the number of impurity clusters, can be de-
fined as the sum of the impurity internal energy and the
coupling energy with the environment6,7. Due to the lo-
cal nature of the interactions in the Hubbard model, one
arrives at the simplified expression,
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Eimp =
E

Nc
=

∑
p∈imp,q,σ

h̄0,pqσρ
Ψ
pqσ +

∑
p∈imp

U〈np↑np↓〉Ψ

=
∑

p∈imp,q,σ

h̄0,pqσρ
Ψ
pqσ + (Eimp −

∑
p,q,σ

h̄pqσρ
Ψ
pqσ)

= Eg −
∑

p∈bath,q

h̄pqσρ
Ψ
pqσ

(12)

where p, q range only over the impurity and bath orbitals,
h̄0,σ = Rσ†h0R

σ is the bare one-particle Hamiltonian
projected to the impurity model, and Eg = 〈Ψ|Himp|Ψ〉 is
the ground-state energy of the impurity model. Note that
Eq. (12) only explicitly involves the one-particle density
matrix of the impurity model. This is a significant ben-
efit as it reduces the computational cost in the AFQMC
solver.

Local observables, such as charge and spin densities as
well as correlation functions, can be extracted directly
from the correlated impurity wavefunction |Ψ〉. These
quantities, however, are most accurate when measured
within the impurity cluster, where interactions are prop-
erly treated. While CDMET preserves translational sym-
metry between supercells, the intracluster translational
symmetry is generally broken, as illustrated in Fig. 1.
This leads to some ambiguity in defining the local order
parameters. We illustrate the magnitude of this symme-
try breaking and the consequences of different definitions
in Sec. III; in Sec. II B, we introduce the DCA-DMET
formulation which restores translational symmetry.

(a)

(b) (c)

FIG. 1. Translational symmetry in DMET. (a) The original
lattice with translational symmetry, divided into 3 supercells.
(b) The CDMET impurity cluster with broken intracluster
translational symmetry, between the center site and the edge
sites. (c) The DCA-DMET impurity cluster restores the intr-
acluster translational symmetry through a basis transforma-
tion and interaction coarse-graining.

FIG. 2. Definition of the real (left) and reciprocal (right)
lattice vectors for the DCA transformation for a “hypercu-
bic” cluster with Lc = 2. The inter-cluster component of the
real lattice vector, r̃, labels the origin of the cluster, and the
intra-cluster component, R, labels the site within the clus-
ter. The reciprocal space of r̃ and R are labeled by k̃ and K,
respectively.

B. DCA-DMET

In CDMET, the form of the Hamiltonian within the
impurity sites is simply the original lattice Hamiltonian
restricted to the impurity sites. In DCA-DMET, we
transform the lattice Hamiltonian such that the restric-
tion to a finite cluster retains a periodic boundary within
the cluster, thus restoring the intracluster translational
symmetry (Fig. 1). The DCA transformation involves
two steps: a basis rotation which redefines the lattice
single-particle Hamiltonian, and a coarse graining of the
two-particle interaction3,21,22,31.

To introduce the DCA transformation, we first define
the intra- and inter-cluster components of the real and
reciprocal lattice vectors (Fig. 2),

r = R + r̃, k = K + k̃. (13)

For simplicity we will assume “hypercubic” lattices (in
arbitrary dimension) with orthogonal unit lattice vec-
tors with linear dimension L, and “hypercubic” clus-
ters with linear dimension Lc. The corresponding super-
cell lattice then has orthogonal lattice vectors of mag-
nitude Lc, and the total number of supercells along
each linear dimension is L/Lc.The intracluster lattice
vector, R = (R1, R2, . . .) and reciprocal lattice vector
K = 2π/Lc(N1, N2, . . .) where 0 ≤ Ri, Ni < Lc; Ri, Ni ∈
Z, and intercluster components r̃ = Lc(r̃1, r̃2 . . .), k̃ =
2π/L(ñ1, ñ2, . . .), with 0 ≤ r̃i, ñi < L/Lc; r̃, ñ ∈ Z, are
uniquely defined for any r and k.

Our goal is to obtain a Hamiltonian which is jointly pe-
riodic in the intracluster and intercluster lattice vectors,
R and r̃. Such a jointly periodic basis is provided by the

product functions e−ik̃·r̃e−iK·R. From h defined in re-

ciprocal space, h =
∑

k h(k)a†kak, and with the mapping
in Eq. (13), we identify the diagonal DCA Hamiltonian
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matrix elements in the jointly periodic basis as

h(k)→ hDCA(k̃,K). (14)

The inverse Fourier transformation then gives the DCA
matrix elements on the real-space lattice. The Fourier
transforms between the different single particle Hamilto-
nians are summarized as:

h(r)
e−ik·r−−−−→ h(k)

k=k̃+K−−−−−→ hDCA(k̃,K)

eik̃r̃

−−→ eiK·R−−−−→ hDCA(r̃,R)

. (15)

The resultant real-space matrix elements, hDCA(r̃,R),
thus only depend on the inter- and intra-cluster sepa-
ration between sites. The transformation from h(r) →
hDCA(r̃,R) is simply a basis transformation of h, with
the rotation matrix defined as31

CR+r̃,R′+r̃′ =
∑
K,k̃

e−i[K·(R
′−R)+k̃(r̃′−r̃)+k̃·R′]. (16)

Viewing the DCA transformation as a basis rotation
suggests that the same transformation should be ex-
tended to the interaction terms as well, generating non-
local interactions. However, in DCA one uses a “coarse-
grained” interaction in momentum space, which reduces
the effect of nonlocal interactions to within the impu-
rity cluster.3 The coarse-grained interaction is obtained
by averaging the Fourier transformed interaction term
over the inter-cluster reciprocal vectors for a given intra-
cluster reciprocal vector, such that

Ū(K) =

(
Lc
L

)d∑
k̃

U(K + k̃), (17)

where U(K + k̃) is the Fourier transformed interaction
term obtained through the full lattice transform, e−ik·r.
The inverse Fourier transform of the coarse-grained in-
teraction, Ū(K), with respect to the intra-cluster recip-
rocal vector, eiK·R, yields the new interaction term in
real space. In the Hubbard model, such coarse-graining
leaves the local Uni↑ni↓ term unchanged in the trans-
formed Hamiltonian. Note that the coarse-grained inter-
action is non-local if transformed back to the original site
basis using the rotation in Eq. (16).

C. Finite-size convergence

We now analyze the cluster finite-size convergence of
observables in CDMET and DCA-DMET in d dimen-
sions. For the energy, we use a perturbation argument
to obtain the leading term of the finite size scaling; for
the more complicated case of intensive observables, we
suggest a plausible scaling form.

We consider the following factors to derive the DMET
finite-size scaling: (a) the open boundary in CDMET;

FIG. 3. Sum-of-square of the one-body impurity-environment
coupling Hamiltonian |hc|2 =

∑
i∈C=0,j∈C′ 6=0 |hij |2 for the

CDMET and DCA formulations, in one-dimension. The fit-
tings follow constant (CDMET) and 1/Lc (DCA) scalings,
respectively.

(b) the gapless spin excitations of quantum antiferromag-
nets;(c) the coupling between the impurity and bath; (d)
the modification of the hoppings of the Hubbard Hamil-
tonian in DCA-DMET.

We start with the CDMET energy. We first consider
the bare impurity cluster in CDMET (i.e. without the
bath) which is just the finite size truncation of the TDL
system. For a gapped system, we expect an open bound-
ary to lead to a finite-size energy error (per site) propor-
tional to the surface area to volume ratio19, i.e.

e(L) = e(∞) +
a0

Lc
+ . . . (18)

where e(Lc) is the energy per site for an Ldc site cluster
and e(∞) is the energy per site in the TDL. If, in the
TDL, there are gapless modes, a more careful analysis
is required. The Hubbard model studied here has gap-
less spin excitations. These yield a finite size error of
O(1/Ld+1

c ) in a cluster with PBC32–35. This is sublead-
ing to the surface finite size error introduced by the open
boundary in Eq. (18) for d > 0.

We next incorporate the CDMET bath coupling. Each
site on the impurity cluster boundary couples to the
bath, yielding a total Hamiltonian coupling of O(1) per
boundary site (see Fig. 3). The total “perturbation” to
the bare impurity cluster Hamiltonian is then O(Ld−1

c ),
which leads to a first order energy correction per site of

e(Lc)CDMET = e(∞) +
a′0
Lc

+ . . . (19)

For the perfect DMET bath (derived from the exact aux-
iliary wavefunction), a′0 = 0, thus we expect a′0 to be
small in practice.

For DCA-DMET, the above argument must be mod-
ified in two ways: first, the impurity cluster uses PBC,
and second, the formulation modifies inter-cluster and
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intra-cluster hoppings. Similarly, we start with the bare
periodic impurity cluster (without any modification of
the intra-cluster hoppings). In the TDL, for a gapped
state with short-range interactions, all correlation func-
tions decay exponentially (e.g. Wannier functions are ex-
ponentially localized) and we expect an exponential con-
vergence of the energy with respect to cluster size. How-
ever, in the Hubbard model, as previously mentioned,
the gapless spin excitations give a finite-size energy er-
ror (per site) of O(1/Ld+1

c ). The leading order finite-size
scaling for the bare periodic cluster is thus expected to
be

e(L) = e(∞) +
a0

Ld+1
c

+ . . . (20)

The DCA-DMET Hamiltonian modifies the periodic
cluster Hamiltonian by changing both the intracluster
and intercluster hopping terms. The intracluster hop-
ping terms are modified by a term of order O(1/L2

c), and
the intercluster hopping terms are modified so as to gen-
erate a coupling between each site in the cluster and the
bath with a total interaction strength of O(1/L2

c) (see
Fig. 3). Since there are Ldc sites in the cluster, the total
magnitude of the DCA-DMET perturbation (including
the contributions of both intracluster and intercluster
terms) is O(Ld−2

c ). For dimension 1, the perturbation
and impurity-bath coupling give a contribution with the
same scaling as the contribution of the gapless modes,
while in dimension 2, they give the leading term in the
finite-size error. Thus combining the three sources of
finite-size error we expect in 1 and 2 dimensions a scal-
ing of the form,

e(Lc)DCA-DMET = e(∞) +
a′0
L2
c

+ . . . (21)

Note that the scaling of the CDMET and DCA-DMET
energies is the same as is found for CDMFT and DCA.

The finite size scaling of intensive quantities is more
tricky to analyze20. For an observable Q we have the
relation 〈Q〉 = limr→∞〈Q(0)Q(r)〉1/2, where 〈Q(0)Q(r)〉
is a correlation function. It is often argued that the error
in 〈Q〉 in a large finite cluster behaves like

∆Q ∼ [〈Q(0)Q(R)〉1/2 − 〈Q(0)Q(∞)〉1/2] (22)

where R is the largest length in the cluster34 ∼ Lc/2.
For CDMET, where the cluster is only coupled to the
symmetry-broken bath at the boundary, we assume the
form in Eq.( 22) holds, with additional corrections from
the system size, expanded as a Taylor series

∆Q =

(
a+

b

Lc
+ . . .

)
[〈Q(0)Q(R)〉1/2 − 〈Q(0)Q(∞)〉1/2]

(23)

Eq. (23) is a heuristic form and its correctness will be
assessed in our numerical results. For the local magnetic
moment m = 〈Sz〉, the correlation function 〈Sz(0)Sz(r)〉

behaves at large r like a
√

ln r/r in the 1D Hubbard model
and a + b/r in the 2D square-lattice Hubbard model at
half-filling. Consequently, we assume a scaling form in
1D of

m(Lc)CDMET =

√√
lnLc/2

Lc/2

(
a+

b

Lc
+ . . .

)
(24)

and in 2D of

m(Lc)CDMET = a+
b

Lc
+

c

L2
c

+ . . . . (25)

For DCA-DMET, however, every impurity site, not
just those at the boundary, is coupled to a set of bath
orbitals, which provide a symmetry-breaking field. This
means that there is no simple connection to the correla-
tion function of the system. Therefore, we use an empir-
ical form for the DCA-DMET magnetic moment in both
one- and two-dimensions,

m(Lc)DCA-DMET = a+
b

Lc
+

c

L2
c

+ . . . . (26)

D. AFQMC

In this work, we use AFQMC15,16,30,36 to solve for the
ground state of the impurity model. We briefly introduce
the general ideas here, while details of the algorithm can
be found in Ref.16,30,36. AFQMC obtains the ground
state of a fermionic Hamiltonian through the imaginary
time evolution of a trial wavefunction

|Ψ0〉 ∝ lim
β→∞

e−βH |ΨT 〉 (27)

The time evolution is carried out using the second-order
Trotter-Suzuki decomposition,

e−βH = (e−τH)n = (e−
τ
2H1e−τH2e−

τ
2H1)n +O(βτ2)

(28)
where H1 and H2 are the one- and two-body parts of the
Hamiltonian.

Given any Slater determinant |Ψ〉 = |φ1↑ . . . φN↑〉 ⊗
|φ1↓ . . . φN↓〉 and any one-body operator

K =
∑
ijσ

kijσa
†
iσajσ (29)

the canonical transformation eK |Ψ〉 can be carried
out exactly, giving another Slater determinant |Ψ′〉 =
eK |Ψ〉 = |φ′1↑ . . . φ′N↑〉 ⊗ |φ′1↓ . . . φ′N↓〉 with the coefficient
matrix

Φ′σ = (φ′1σ, . . . , φ
′
Nσ) = ekσΦσ (30)

The matrix multiplication in Eq. (30) gives the O(N3)
scaling of the AFQMC algorithm (where N is system
size). Starting with a Slater determinant as the trial
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wavefunction |ΨT 〉, the propagation of the one-body
Hamiltonian can be treated using Eq. (30), by letting
K = − τ2H1.

The propagation of the two-body part of the Hamil-
tonian is rewritten as a sum over one-body propagations
using a Hubbard-Stratonovich transformation. For the
Hubbard model, we use the discrete form of this trans-

formation,

e−τUni↑ni↓ = e−τU(ni↑+ni↓)/2
∑
xi=±1

1

2
eγxi(ni↑−ni↓)

=
∑
xi=±1

eV (xi,τ) (31)

where xi is a binary auxiliary field, and cosh γ =
exp(−τU/2). Eq. (31) is often termed “spin decompo-
sition”, in contrast to another possible formed called
“charge decomposition”. The choice of different trans-
formations does affect the accuracy and efficiency in
AFQMC calculations37.

The auxiliary field ~x = (x1, . . . , xN ) (where N is the
total number of Hubbard sites) is sampled to obtain a
stochastic representation of the propagation, and thus of
the ground state wavefunction |Ψ0〉 as a sum of walkers.
General observables are calculated from the pure estima-
tor, where the summations are similarly sampled,

〈Ô〉 = lim
n→∞

∑
~x1
· · ·
∑
~xn

∑
~x′1
· · ·
∑
~x′n
〈ΨT |

∏n
j′=1(e−

τ
2H1e−V̂ (~x′

j′ ,τ)e−
τ
2H1)Ô

∏n
j=1(e−

τ
2H1e−V̂ (~xj ,τ)e−

τ
2H1)|ΨT 〉∑

~x1
· · ·
∑
~xn

∑
~x′1
· · ·
∑
~x′n
〈ΨT |

∏n
j′=1(e−

τ
2H1e

−V̂ (~x′
j′ ,τ)

e−
τ
2H1)

∏n
j=1(e−

τ
2H1e−V̂ (~xj ,τ)e−

τ
2H1)|ΨT 〉

(32)

where V̂ (~x, τ) =
∑N
i=1 V (xi, τ). The energy may be com-

puted using a simpler estimator (the mixed estimator)
where the propagation of the bra is omitted.

The sign problem arises because the individual terms
in the denominator in Eq. (32) can be both positive and
negative and lead to a vanishing average with infinite
variance. When there is a sign problem, a constrained
path approximation can be invoked in the calculation
which removes the problem with a gauge condition using
a trial wave function 38–40. In certain models, however,
such as the half-filled repulsive Hubbard model on a bi-
partite lattice, the sign-problem does not arise because
the overlap between every walker and the trial wavefunc-
tion is guaranteed to be non-negative. It turns out that,
in these models, the DMET impurity Hamiltonian is also
sign-problem free as long as certain constraints are en-
forced on the correlation potential. For the half-filled
Hubbard model on a bipartite lattice, the condition is

uij,↑ + (−)i+juij,↓ = δijU (33)

The parity term (−)i+j takes opposite signs for the two
sublattices. The derivation of this constraint is given in
Appendix A.

In this work, we use the AFQMC implementation de-
scribed in Ref.16,30,36, with small modifications to treat
Hamiltonians with broken S2 symmetry. Both the en-
ergy and the one-body density matrix (required for the
DMET self-consistency) are computed by the pure esti-
mator, Eq. (32). We converge the standard deviation of
all elements in the one-body density matrix to be less

than 0.001, to make the AFQMC statistical errors (and
thus DMET statistical convergence errors) orders of mag-
nitude smaller than the finite cluster size error. This
results in considerably higher statistical accuracy for ex-
tensive quantities than typically obtained in the AFQMC
literature.

III. RESULTS

We now present our CDMET and DCA-DMET cal-
culations on the half-filled 1D and 2D Hubbard models,
focusing on the finite-size convergence of the energy and
local observables. As discussed in section II the DMET
correlation potential preserves Sz symmetry but is al-
lowed to break S2 symmetry. For the Hubbard models
studied here, all the converged self-consistent DMET so-
lutions explicitly break S2 symmetry. In 1D, we com-
pare our results against exact results from the Bethe
Ansatz (BA), while in 2D, we compare to literature
benchmark data from AFQMC calculations scaled to the
TDL17,18,28, DMRG calculations scaled to the TDL14,
and iPEPS calculations scaled to zero truncation error41.

A. 1D Hubbard model

We study impurity clusters with Nimp = Lc ≤ 24 sites
on a DMET auxiliary lattice with N = L = 480 (even
Nc) or N = L = 480 + Lc (odd Nc) sites. The auxil-
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iary lattice uses PBC, and as the DCA-DMET impurity
Hamiltonian becomes complex for even Nc, we only use
auxiliary lattices with an odd Nc in the DCA-DMET
calculations. We study two couplings U/t = 4 (moderate
coupling) and U/t = 8 (strong coupling). When starting
from uniform AF initial guesses for the correlation poten-
tial, it usually takes 4 to 8 DMET iterations to converge
the calculations.

FIG. 4. Energy per site, e, for the half-filled 1D Hubbard
model versus inverse impurity size, 1/Lc, from CDMET (blue)
and DCA-DMET (red). For comparison, we also plot the
same numbers from AFQMC with PBC (purple) and TABC
(orange) for U/t = 4. The extrapolations use e = a + bL−1

c +
cL−2

c for CDMET and e = a+ bL−2
c + cL−3

c for DCA-DMET.
(a) U/t = 4, (b) U/t = 8.

Fig. 4 shows the energy per site as a function of in-
verse impurity size 1/Lc. Statistical error bars associ-
ated with the AFQMC solver are not shown here as they
are too small to be visible; this is true for all the CD-
MET and DCA-DMET results presented in this work.
We extrapolate our finite cluster energy data using the
forms presented in Sec. II C. As shown in Table I, the ex-
trapolated energies are in generally good agreement with
the exact Bethe ansatz TDL data, with a deviation of
less than 0.001t. To further improve the accuracy, we in-
clude the subleading terms in the energy extrapolation,
i.e. a + b/Lc + c/L2

c for CDMET and a + b/L2
c + c/L3

c

for DCA-DMET (dashed lines in Fig. 4). This improves
the extrapolated TDL results significantly, with the sin-
gle exception of DCA-DMET at U/t = 8, where the co-
efficient of the cubic term is not statistically significant
(c = 0.08(9)) and the deviation is already very small.
The subleading terms are more important at U/t = 4
than at U/t = 8. This is consistent with the smaller gap
at weaker coupling, that introduces stronger finite size
effects.

TABLE I. CDMET and DCA-DMET cluster size extrapola-
tion of the energy per site (in units of t) for the 1D half-filled
Hubbard model.

extrapolation U/t=4 U/t=8

CDMET
a + b/Lc -0.5724(3) -0.3267(2)

a + b/Lc + c/L2
c -0.5734(1) -0.3274(1)

DCA-DMET
a + b/L2

c -0.5729(4) -0.3273(1)

a + b/L2
c + c/L3

c -0.5738(1) -0.3272(1)

Bethe Ansatz -0.57373 -0.32753

To further numerically test the scaling form for the
DCA-DMET extrapolation, we include a linear 1/Lc
term in the DCA-DMET scaling form, i.e. a + b/Lc +
c/L2

c . While the coefficient of the linear term is statis-
tically significant at U/t = 4, the extrapolated TDL en-
ergy acquires a larger uncertainty (-0.5749(6)), while for
U/t = 8, the coefficient of 1/Lc term becomes statis-
tically insignificant (b = 0.003(5)). This supports the
leading finite-size scaling of the DCA-DMET energy per
site as being O(1/L2

c). The finite size scaling of the en-
ergy observed for CDMET and DCA-DMET is consistent
with similar data observed for CDMFT and DCA3,20.

In Fig. 4(a), we plot the AFQMC results with periodic
(PBC) and twist-average (TABC) boundary conditions
as well. While the PBC energy oscillates strongly for all
cluster sizes, the convergence of TABC is much smoother.
The finite-size scaling of bare cluster AFQMC (PBC and
TABC) appears to be quadratic in inverse size, which is
consistent with the spin-wave theory predictions in 1D34,
and coincides with the scaling of DCA-DMET. Therefore,
with large clusters, the finite-size errors of bare cluster
AFQMC and DCA-DMET are comparable and smaller
than those of CDMET, while CDMET is much more ac-
curate for small clusters.

We now turn to the spin orders. Although there is
no true long-range AF order in 1D, the finite impurity
cluster calculations yield non-zero spin moments, which
should extrapolate to zero in the TDL. The local spin
moments m are plotted in Fig. 5(a). We see that the
spin moments in the CDMET impurity are largest at the
boundary with the AF environment, and decay towards
the center. We can understand this because quantum
fluctuations are incompletely treated in the bath orbitals,
and thus they are overmagnetized. This effect is propa-
gated to the boundary of the CDMET impurity cluster.
Note that the impurity sites in a DCA-DMET cluster are
all equivalent, and are equally coupled to the environ-
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FIG. 5. Spin order in the 1D Hubbard model. (a) Local spin moments m from CDMET (blue) and DCA-DMET (red)
in finite impurity cluster calculations at U/t=4. x is the site index scaled to the interval [0, 1] for the CDMET results.

(b-c) CDMET AF order parameters m(Lc) divided by spin correlation function S(Lc/2)1/2, versus inverse impurity cluster
size 1/Lc for U/t = 4 and U/t = 8 (blue: center average, green: entire cluster average). The extrapolation uses the form

m(Lc)/S(Lc/2)1/2 = a + bL−1
c + cL−2

c , see Eq. (24) for details. (d-e) DCA-DMET and CDMET (center average) AF order
parameters m(Lc) versus inverse impurity cluster size 1/Lc for U/t = 4 and U/t = 8. The extrapolation for DCA-DMET values
uses the form m(Lc) = a + bL−1

c + cL−2
c , see Eq. (26) for details.

ment, resulting in an equal spin magnitude for all sites,
to within the statistical error of the solver. In Fig. 5(a)
we use the two horizontal lines to represent the spin mag-
nitudes from the DCA-DMET calculations.

To determine the magnetic order parameter, we con-
sider two possible definitions: (a) the average |m| for the
central pair (or the plaquette in 2D); (b) the average |m|
over the entire impurity cluster. These definitions are
equivalent for DCA-DMET. In CDMET, they agree in
the limit of small clusters (Lc = 2) and large clusters
(L→∞), but differ inbetween.

The AF order parameters for different cluster sizes are
plotted in Figs. 5(b)-(e) for different U . For CDMET, we
fit the order parameter to the scaling form in Eq. (24),
up to second order. The fits are shown in Figs. 5(b), (c),
and are quite good for both types of measurements. For
the average |m| of the central pair, an almost straight
line is observed at both couplings, with the quadratic
term close to vanishing (c = 0.00(4) for U/t = 4 and
c = 0.12(7) for U/t = 8). The average |m| over the entire
cluster requires a larger c for a good fit. This is because
|m| is measured at different points which corresponds to
averaging over different effective lengths L in Eq. (24).
Averaging over Eq. (24) yields the same leading scaling
but introduces more subleading terms. Overall, the error
decreases much more rapidly by using the center average,
consistent with observations in CDMFT26.

For DCA-DMET, the scaling form Eq. (26) truncated

at second order works well. This correctly predicts the
vanishing local moments at the TDL (a = 0.005(1) at
U/t = 4 and a = 0.005(4) at U/t = 8). The O(1/Lc)
scaling of DCA-DMET thus converges faster than CD-

MET, whose leading term is

(√
log(Lc/2)

Lc/2

)1/2

∼ L
−1/2
c .

While the smallest clusters in CDMET report a smaller
magnetization than seen in DCA-DMET (and thus can
be regarded as “closer” to the TDL) the cross-over be-
tween the DCA-DMET and CDMET moments occurs at
smaller clusters than for the energy itself.

B. 2D Hubbard model

We now show results from the half-filled 2D Hubbard
model at U/t = 2, 4, 6. We use square impurity clusters of
size Nimp = Lc×Lc, where for CDMET Lc = 2, 4, 6, 8, 10
and for DCA-DMET Lc = 4, 6, 8, 10. The 2 × 2 plaque-
tte is not used in the finite-size scaling of DCA-DMET
as it is known from DCA studies to exhibit anomalous
behaviour20, which we also observe. Also at U/t = 6,
we do not present results for Lc = 10, as we are un-
able to converge the statistical error to high accuracy in
the AFQMC calculations (within our computational time
limits). The total lattices we used have linear lengths of
around L = 120 (N = L× L), adjusted to fit even (CD-
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MET) or odd (DCA-DMET) Nc, as in the 1D case. As
in 1D, we initialize the correlation potential as a diago-
nal matrix with uniform AF terms. The 2D calculations
thus take slightly more self-consistent iterations (about
10) than in 1D to converge.

In Fig. 6, we show the cluster size dependence of the
energy per site; the data is tabulated in Table II. Be-
cause there are no exact TDL results for the 2D Hub-
bard model, we show gray ribbons as “consensus ranges”,
obtained from the TDL estimates of several methods in-
cluding (i) AFQMC extrapolated to infinite size17,18, (ii)
DMRG extrapolated to infinite size14, and (iii) iPEPS ex-
trapolated to zero truncation error41. To show the effects
of embedding versus bare cluster AFQMC calculations we
also plot the AFQMC results of Ref.18 on finite lattices
with up to 400 sites, using TABC for U/t = 2, 4, 6, as well
as periodic (PBC) and anti-periodic (APBC) boundary
conditions for U/t = 4.

In 2D, both CDMET and DCA-DMET appear to dis-
play much higher accuracy for small clusters, compared
to in 1D. Although DMET is not exact in the infi-
nite dimensional limit, this is similar to the behaviour
of DMFT, which improves with increasing coordination
number2. The DMET energies for each cluster size are,
as expected, much closer to the TDL estimates than the
finite system AFQMC energies, even when twist averag-
ing is employed to reduce finite size effects. For example,
the 2 × 2 CDMET energy is competitive with the 8 × 8
AFQMC cluster energy with twist averaging. Further,
the convergence behaviour generally appears smoother in
DMET than with the bare clusters, likely due to smaller
shell filling effects. Combining these benefits, we find
that using DMET gives several orders of magnitude sav-
ings in computation time to achieve a given energy ac-
curacy in the TDL estimate, as compared to using bare
cluster calculations alone. This illustrates the benefits of
using bath orbitals to approximately represent the envi-
ronment in an embedding.

We now discuss our TDL estimates. As in the 1D
Hubbard model, we use the scaling forms proposed in
section II C, i.e. a + b/Lc(+c/L

2
c) for CDMET and

a+ b/L2
c(+c/L

3
c) for DCA-DMET. The results are sum-

marized in Table II and plotted in Fig. 6. The TDL
energy estimates fall within the TDL consensus range,
with an error bar competitive with the best large-scale
ground state calculations. The DMET estimates are
also all in agreement (within 2σ) of our earlier CDMET
extrapolations that only used clusters of up to 4 × 4
sites in Refs.11,14. The largest deviation from our ear-
lier small cluster DMET extrapolations is for U/t = 2
where finite size effects are strongest; the current esti-
mates of −1.1756(3) (CDMET) and −1.1755(2) (DCA-
DMET) can be compared with our small cluster estimate
of −1.1764(3), and the recent TDL estimate of Sorella
of −1.17569(5), obtained by extrapolating AFQMC en-
ergies from clusters as large as 1058 sites, using mod-
ified boundary conditions17. Note that the subleading
terms are more important for accurate extrapolations in

FIG. 6. Energy per site e versus 1/Lc in the 2D Hubbard
model from CDMET (blue), DCA-DMET (red) and finite sys-
tem AFQMC (orange: TABC, purple: PBC, brown: APBC
for y-direction and PBC for x-direction) (from Ref.18). The
consensus range illustrated by the grey-shaded region repre-
sents the TDL results of AFQMC, DMRG and iPEPS cal-
culations in Refs.14,17,18,41. (a) U/t = 2. (b)U/t = 4. (c)
U/t = 6.

2D than they are in 1D. This is simply because we do not
reach as large linear dimensions in 2D as in 1D, which
means that we are not fully in the asymptotic regime. For
the same reason it is more difficult to see the crossover
between the convergence of DCA-DMET and CDMET.
For U/t = 2, it appears advantageous to use the DCA-
DMET formulation already for clusters of size Lc ≥ 4,
while at U/t = 4, 6 it appears necessary to go to clus-
ters larger than the largest linear size used in this study,
Lc = 10.

The AF order in the half-filled 2D Hubbard model is
long-ranged in the ground state. In Fig. 7, the AF order
parameters from DMET are plotted and extrapolated,
with insets showing comparisons of TDL estimates with
the other methods. In addition, we summarize the ex-
trapolated TDL estimates for the AF order parameters in
Table. III. For CDMET, the order parameters are mea-
sured as the average magnitude of the central plaquette.
We fit the magnetization data to the form suggested in
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TABLE II. Finite size extrapolation of the energy for the 2D half-filled Hubbard model.

methods
CDMET DCA-DMET AFQMC

DMRG14 iPEPS41 Consensus range
a + b/Lc a + b/Lc + c/L2

c a + b/L2
c a + b/L2

c + c/L3
c TABC18 MBC17

U/t=2 -1.1752(1) -1.1756(3) -1.1758(1) -1.1755(2) -1.1760(2) -1.17569(5) -1.176(1) - -1.1758(3)

U/t=4 -0.8601(1) -0.8600(1) -0.8593(2) -0.8600(2) -0.8603(2) -0.86037(6) -0.8605(5) -0.8603(5) -0.8603(3)

U/t=6 -0.6560(2) -0.6564(6) -0.6550(4) -0.6565a 0.6567(3) - -0.6565(1) - -0.6565(3)

a uncertainty cannot be computed due to insufficient data points in the fit.

TABLE III. Estimated staggered magnetization for the 2D half-filled Hubbard model at TDL.

methods CDMET DCA-DMET DQMC27 Pinning field QMC28 AFQMC w. TABC18 AFQMC w. MBC17

U/t=2 0.115(2) 0.120(2) 0.096(4) 0.089(2) 0.119(4) 0.120(5)

U/t=4 0.226(3) 0.227(2) 0.240(3) 0.215(10) 0.236(1) -

U/t=6 0.275(8) 0.261a 0.283(5) 0.273(5) 0.280(5) -
a uncertainty cannot be computed due to insufficient data points in the fit.

Section II C, i.e. a+ b/Lc + c/L2
c for both CDMET and

DCA-DMET. These fits lead to good agreement between
the CDMET and DCA-DMET TDL estimates, support-
ing the scaling form used. At U/t = 4, the CDMET
and DCA-DMET TDL moments are in good agreement
with the estimates from two different AFQMC calcula-
tions, with competitive error bars. At U/t = 6, the CD-
MET TDL moment is consistent with the two AFQMC
estimates and the DCA-DMET estimate, although the
DCA-DMET estimate is somewhat smaller than the two
AFQMC estimates. (We do not have errors bars for the
U/t = 6 DCA-DMET moment as we are fitting 3 data
points to a 3 parameter fit).

The TDL magnetic moment at U/t = 2 is an exam-
ple for which current literature estimates are in disagree-
ment. While earlier AFQMC calculations in Ref.14,27,28

appear to give an estimate close to m ∼ 0.09, the
AFQMC estimates from recent work of Sorella17 and
Qin et al18,42 using larger clusters and modified and
twist average boundary conditions predict a moment of
m ∼ 0.120(5) and 0.119(4), respectively. This is much
closer to our earlier DMET result ofm ∼ 0.133(5) extrap-
olated from small clusters of up to 4×4 in size. Revising
this with the larger CDMET and DCA-DMET clusters
in this work we can now confirm the larger value of the
TDL magnetic moment, m ∼ 0.115(2) (CDMET) and
m ∼ 0.120(2) (DCA-DMET) with very small error bars.
The underestimate of the moment seen in earlier QMC
work is likely due to the non-monotonic convergence of
the moment with cluster size when using PBC, as identi-
fied in Sorella’s work17. In contrast to PBC calculations
and the TABC calculations shown here (orange) which
display some scatter, the dependence on cluster size is
very mild once embedding is introduced. This once again
highlights the ability of the embedded approach to cap-
ture some of the relevant aspects even of long-wavelength
physics, leading to good convergence of local observables.

IV. CONCLUSIONS

In this work, we carried out a detailed study of the
cluster size convergence of density matrix embedding the-
ory, using an auxiliary field quantum Monte Carlo solver
(AFQMC) in order to reach larger cluster sizes than
studied before. In addition to the original cluster den-
sity matrix embedding formulation (CDMET), we intro-
duced a “dynamical cluster” variant (DCA-DMET) that
restores translational invariance in the impurity cluster
and accelerates finite size convergence. Using the half-
filled one- and two-dimensional Hubbard models where
AFQMC has no sign problem, as examples, we numer-
ically explored the finite size convergence of the energy
and the magnetization. The energy convergence of CD-
MET and DCA-DMET goes like O(1/Lc) and O(1/L2

c)
respectively, where Lc is the linear dimension of the
cluster, similar to that observed in cellular dynamical
mean-field theory and the dynamical cluster approxima-
tion. The convergence of the magnetization follows a
scaling relation related to the magnetic correlation func-
tion, with the DCA-DMET converging more quickly than
CDMET. In the case of the 2D Hubbard model, our ther-
modynamic limit extrapolations from both CDMET and
DCA-DMET are competitive with the most accurate es-
timates in the literature, and in the case of U/t = 2
where finite size effects are particularly strong, help to
determine the previously uncertain magnetic moment.

In all the cases we studied here, the use of density
matrix embedding, as compared to computations using
bare clusters with any form of boundary condition, sig-
nificantly decreased the computational cost required to
obtain a given error in the TDL estimate, sometimes by
orders of magnitudes. Since the computational scaling of
the AFQMC solver employed here is quite modest with
cluster size (cubic) this improvement would only be larger
when using other, more expensive solvers.

The availability of a DCA formulation now presents
two options for how to perform cluster DMET calcula-



12

FIG. 7. Antiferromagnetic order parameter m versus 1/L in
the 2D Hubbard model from CDMET (blue), DCA-DMET
(red) and finite system AFQMC using TABC18 (orange) and
modified boundary conditions17 (cyan). The DMET results
extrapolate to the TDL uses the form m(L) = a+bL−1

c +cL−2
c .

Insets: CDMET and DCA-DMET TDL estimates with er-
rorbars including fitting and AFQMC statistical uncertain-
ties, compared to the determinantal Monte Carlo simulations
by Scalettar and coworkers27, pinning field QMC simulations
by Wu and coworkers28, AFQMC with TABC by Qin et.
al.18 and the modified boundary conditions by Sorella17. (a)
U/t = 2. (b) U/t = 4. (c) U/t = 6.

tions. The DCA-DMET formulation appears superior
for large clusters due to the faster asymptotic conver-
gence, however, it is typically less accurate for small clus-
ters than CDMET. When performed in conjunction, the
consistency of TDL estimates from CDMET and DCA-
DMET serves as a strong check on the reliability of the
DMET TDL extrapolations.
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Appendix A: Constraints for sign-problem free
correlation potentials in DMET

We first motivate our derivation by recalling how
AFQMC becomes sign-problem free in the half-filled
Hubbard model on a bipartite lattice. Given the repul-
sive Hubbard model with chemical potential µ = U/2

H − µn = −t
∑
〈ij〉σ

a†iσajσ + U
∑
i

[ni↑ni↓ −
1

2
(ni↑ + ni↓)]

(A1)
we perform the partial particle-hole transformation on
only the spin-up electrons

P̂ : a†i↑ → (−)iai↑, ai↑ → (−)ia†i↑ (A2)

where the parity term (−)i is 1 for sublattice A, and −1
for the other sublattice, B. The transformation results
in the attractive Hubbard model

P̂HP̂−1 = −t
∑
〈ij〉,σ

a†iσajσ−U
∑
i

[ni↑ni↓−
1

2
(ni↑+ni↓−1)]

(A3)
which is well-known to be sign-problem free at any oc-
cupation. This is seen by performing the Hubbard-
Stratonovich transformation, where the Trotter propa-
gator becomes43,

e−τP̂HP̂
−1

≈ exp(τt
∑
ijσ

a†iσajσ)
∏
i

∑
xi=±1

1

2
eγxi(ni↑+ni↓−1)

(A4)
with γ = cosh−1 eτU/2. Notice that Eq. (A4) is
spin-symmetric, thus as long as the trial wavefunction
|Φt〉 is spin-symmetric, the walkers |Φw〉 are also spin-
symmetric. The overlap

〈Φt|Φw〉 = 〈Φt↑|Φw↑〉〈Φt↓|Φw↓〉 = |〈Φt↑|Φw↑〉|2 ≥ 0
(A5)

then eliminates the sign problem. From this argument,
we also see why the repulsive Hubbard model is sign prob-
lem free only at half-filling, since we require the same
number of spin-up holes and spin-down particles in the
wavefunction.

In DMET calculations, it is easy to show that if the
partial particle-hole symmetry is preserved in the lat-
tice Hamiltonian, the resulting impurity problem remains
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sign-problem free. Consider the partial particle-hole
transformation, Eq. (A2), acting on the non-interacting
lattice Hamiltonian in Eq. (2), with chemical potential
µ = U/2

P̂ (h− µn)P̂−1

= P̂ [h0 + u−
∑
i

U

2
(ni↑ + ni↓)]P̂

−1

= h0 +Nc(
∑
i∈C

uii↑ − UNimp/2)+

∑
C

∑
i,j∈C

{[U
2
δij − (−)i+juij↑]a

†
i↑aj↑ + (uij↓ −

U

2
δij)a

†
i↓aj↓}

(A6)

To impose spin symmetry, we have

U

2
δij − (−)i+juij↑ = uij↓ −

U

2
δij (A7)

which leads to Eq. (33). When this condition is satisfied,
the ground state of the transformed lattice Hamiltonian
P̂ (h − µn)P̂−1 is a spin-symmetric Slater determinant
and thus the bath orbitals obey R↑ = R↓. The impurity
model Hamiltonian himp (Eq. (7)) is thus sign-problem
free, as h̄ is clearly spin-symmetric and Vimp transforms
to an attractive Hubbard interaction.

Note that our argument applies to both CDMET and
DCA-DMET, since the DCA transformation preserves
the partial particle-hole symmetry, which is the only
structure assumed of h0 in the above derivation.

Appendix B: Symmetries in the DCA-DMET
correlation potential

We here consider translational symmetry in the corre-
lation potential in the presence of antiferromagnetic or-
der. Instead of the normal translational operators, the
lattice Hamiltonian is invariant under the spin-coupled
translational operators

Tx : a
(†)
iσ →

{
a

(†)
i+x,σ, if x is even

a
(†)
i+x,σ̄, if x is odd

(B1)

where the parity of x represents whether a translation
brings a site to the same or different sublattice. The
Hubbard Hamiltonian is invariant under Tx operations,
because it has both translational and time-reversal sym-
metry. Transforming the correlation potential with the
spin-coupled translational operators yields

for even x, TxuT
−1
x =

∑
C

∑
i,j∈C

∑
σ

uijσa
†
i+xσaj+xσ =

∑
C

∑
i,j∈C

∑
σ

ui−x,j−x,σa
†
iσajσ = u

for odd x, TxuT
−1
x =

∑
C

∑
i,j∈C

∑
σ

uijσa
†
i+xσ̄aj+xσ̄ =

∑
C

∑
i,j∈C

∑
σ

ui−x,j−x,σ̄a
†
iσajσ = u

(B2)

leading to the constraint

uijσ =

{
u0,j−i,σ, if i is even

u0,j−i,σ̄, if i is odd
. (B3)

This constraint, as one can easily verify, is compatible
with the partial particle-hole symmetry required for sign-
free AFQMC simulations in the Hubbard model.
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