Shoreline Evolution: Lancaster County, Virginia Rappahannock River and Chesapeake Bay Shorelines 2012

Donna A. Milligan
Virginia Institute of Marine Science

Christine A. Wilcox
Virginia Institute of Marine Science

C. Scott Hardaway Jr.
Virginia Institute of Marine Science

Mary C. Cox
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports

Part of the [Environmental Indicators and Impact Assessment Commons](https://scholarworks.wm.edu/reports), [Environmental Monitoring Commons](https://scholarworks.wm.edu/reports), [Natural Resources Management and Policy Commons](https://scholarworks.wm.edu/reports), and the [Water Resource Management Commons](https://scholarworks.wm.edu/reports)

Recommended Citation

Shoreline Evolution:
Lancaster County, Virginia
Rappahannock River and Chesapeake Bay Shorelines

Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

March 2012
Shoreline Evolution:
Lancaster County, Virginia
Rappahannock River and Chesapeake Bay Shorelines

Data Summary Report

Donna A. Milligan
Christine Wilcox
C. Scott Hardaway, Jr.
Mary C. Cox

Shoreline Studies
Department of Physical Sciences
Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

This project was funded by the Virginia Coastal Zone Management Program at the Department of Environmental Quality through Grant #NA10NOS4190205 of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, under the Coastal Zone Management Act of 1972, as amended. The views expressed herein are those of the authors and do not necessarily reflect the views of the U.S. Department of Commerce, NOAA, or any of its subagencies.

March 2012
Table of Contents

Table of Contents ... i
List of Figures ... i
List of Tables ... i
1 Introduction ... 1
2 Methods ... 1
 2.1 Photo Rectification and Shoreline Digitizing 1
 2.2 Rate of Change Analysis 2
3 Summary ... 3
4 References ... 3

Appendix A. End Point Rate of Shoreline Change Maps
Appendix B. Historical Shoreline Photo Maps

List of Figures

Figure 1. Location of Lancaster County within the Chesapeake Bay estuarine system . 1
Figure 2. Index of shoreline plates. 4

List of Tables

Table 1. Average end point rate of change (ft/yr) between 1937 and 2009 for segments along Lancaster County's shoreline. 3
1 Introduction

Lancaster County is situated along the Rappahannock River and Chesapeake Bay (Figure 1). The County has 330 miles of tidal shoreline (Lancaster, 2007). Through time, the County’s shoreline has evolved, and determining the rates and patterns of shore change provides the basis to know how a particular coast has changed through time and how it might proceed in the future. Along Chesapeake Bay’s estuarine shores, winds, waves, tides and currents shape and modify coastlines by eroding, transporting and depositing sediments.

The purpose of this report is to document how the shore zone of Lancaster County has evolved since 1937. Aerial imagery was taken for most of the Bay region beginning that year and can be used to assess the geomorphic nature of shore change. Aerial photos show how the coast has changed, how beaches, dunes, bars, and spits have grown or decayed, how barriers have breached, how inlets have changed course, and how one shore type has displaced another or has not changed at all. Shore change is a natural process but, quite often, the impacts of man, through shore hardening or inlet stabilization, come to dominate a given shore reach. In addition to documenting historical shorelines, the change in shore positions along the rivers and larger creeks in Lancaster County will be quantified in this report. The shorelines of very irregular coasts, small creeks around inlets, and other complicated areas, will be shown but not quantified.

2 Methods

2.1 Photo Rectification and Shoreline Digitizing

An analysis of aerial photographs provides the historical data necessary to understand the suite of processes that work to alter a shoreline. Images of the Lancaster County Shoreline from 1937, 1959, 1969, 1994, 2002 and 2009 were used in the analysis. The 1994, 2002 and 2009 images were available from other sources. The 1994 imagery was orthorectified by the U.S. Geological Survey (USGS) and the 2002 and 2009 imagery was orthorectified by the Virginia Base Mapping Program (VBMP). The 1937, 1959 and 1969 photos are part of the VIMS Shoreline Studies Program archives. The historical aerial images acquired to cover the entire shoreline were not always flown on the same day. The dates for each year are:

- 1937 - April 1, 7, March 29; May 7 and July 17;
- 1959 - December 9 and 10;
- 1969 - December 5;

The 2002 and 2009 were all flown in February, March, and April of their respective years. We could not ascertain the exact dates the 1994 images were flown.

Figure 1. Location of Lancaster County within the Chesapeake Bay estuarine system.
The 1937, 1959 and 1969 images were scanned as tiffs at 600 dpi and converted to ERDAS IMAGINE (.img) format. These aerial photographs were orthographically corrected to produce a seamless series of aerial mosaics following a set of standard operating procedures. The 1994 Digital Orthophoto Quarter Quadrangles (DOQQ) from USGS were used as the reference images. The 1994 photos are used rather than higher quality, more recent aerials because of the difficulty in finding control points that match the earliest 1937 images.

ERDAS Orthobase image processing software was used to orthographically correct the individual flight lines using a bundle block solution. Camera lens calibration data were matched to the image location of fiducial points to define the interior camera model. Control points from 1994 USGS DOQQ images provide the exterior control, which is enhanced by a large number of image-matching tie points produced automatically by the software. The exterior and interior models were combined with a digital elevation model (DEM) from the USGS National Elevation Dataset to produce an orthophoto for each aerial photograph. The orthophotographs were adjusted to approximately uniform brightness and contrast and were mosaicked together using the ERDAS Imagine mosaic tool to produce a one-meter resolution mosaic .img format. To maintain an accurate match with the reference images, it is necessary to distribute the control points evenly, when possible. This can be challenging in areas given the lack of ground features and poor photo quality on the earliest photos. Good examples of control points were manmade features such as road intersections and stable natural landmarks such as ponds and creeks that have not changed much over time. The base of tall features such as buildings, poles, or trees can be used, but the base can be obscured by other features or shadows making these locations difficult to use accurately. Most areas of the County were particularly difficult to rectify, either due to the lack of development when compared to the reference images or due to no development in the historical and the reference images.

Once the aerial photos were orthorectified and mosaicked, the shorelines were digitized in ArcMap with the mosaics in the background. The morphologic toe of the beach or edge of marsh was used to approximate low water. High water limit of runup can be difficult to determine on the shoreline due to narrow or non-existent beaches against upland banks or vegetated cover. In areas where the shoreline was not clearly identifiable on the aerial photography, the location was estimated based on the experience of the digitizer. The displayed shorelines are in shapefile format. One shapefile was produced for each year that was mosaicked.

Horizontal positional accuracy is based upon orthorectification of scanned aerial photography against the USGS digital orthophoto quadrangles. To get vertical control the USGS 30m DEM data was used. The 1994 USGS reference images were developed in accordance with National Map Accuracy Standards (NMAS) for Spatial Data Accuracy at the 1:12,000 scale. The 2002 and 2009 Virginia Base Mapping Program’s orthophotography were developed in accordance with the National Standard for Spatial Data Accuracy (NSSDA). Horizontal root mean square error (RMSE) for historical mosaics was held to less than 20 ft.

2.2 Rate of Change Analysis

The Digital Shoreline Analysis System (DSAS) was used to determine the rate of change for the County’s shoreline (Himmelstoss, 2009). All DSAS input data must be managed within a personal geodatabase, which includes all the baselines created for Lancaster County and the digitized shorelines for 1937, 1959, 1969, 1994, 2002 and 2009. Baselines were digitized about 200 feet, more or less, depending on features and space, seaward of the 1937 shoreline and encompassed most of the County’s main shorelines but generally did not include the smaller creeks. It also did not include areas that have unique shoreline morphology such as creek mouths and spits. DSAS generated transects perpendicular to the baseline about 33 ft apart, which were manually checked and cleaned up. For Lancaster County, this method represented about 67 miles of shoreline along 10812 transects.

The End Point Rate (EPR) is calculated by determining the distance between the oldest and most recent shoreline in the data and dividing it by the number of years between them. This method provides an accurate net rate of change over the long term and is relatively easy to apply to most shorelines since it only requires two dates. This method does not use the intervening shorelines so it may not account for changes in accretion or erosion rates that may occur through time. However, Milligan et al. (2010a, 2010b, 2010c, 2010d) found that in several localities within the bay, EPR is a reliable indicator of shore change even when intermediate dates exist. Average rates were calculated along selected areas of the shore; segments are labeled in Appendix A and shown in Table 1.

Using methodology reported in Morton et al. (2004) and National Spatial Data Infrastructure (1998), estimates of error in orthorectification, control source, DEM and digitizing were combined to provide an estimate of total maximum shoreline position error. The data sets that were orthorectified (1937, 1959, and 1969) have an estimated total maximum shoreline position error of 20.0 ft, while the total maximum shoreline error for the four existing datasets are estimated at 18.3 ft for USGS and 10.2 ft for VBMP. The maximum annualized error for the shoreline data is ±0.7 ft/yr. The smaller rivers and creeks are more prone to error due to their lack of good control points for photo rectification, narrower shore features, tree and ground cover and overall smaller rates of change. These areas are digitized but due to the higher potential for error, rates of change analysis are not calculated. Many areas of Lancaster County have shore change rates that fall within the calculated error. Some of the areas that show very low accretion can be due to errors within the method described above.
The Lancaster County shoreline was divided into 24 plates (Figure 2) in order to display that data in Appendices A and B. In Appendix A, the 2009 image is shown with only the 1937 and 2009 shorelines to show the long-term trends along. In Appendix B, one photo date and the associated shoreline is shown on each. These include the photos taken in 1937, 1959, 1969, 1994, 2002 and 2009.

3 Summary

The rates of change shown in Table 1 are averaged across large sections of shoreline and may not be indicative of rates at specific sites within the reach. Some areas of the County, where the shoreline change rates are categorized as accretion, have structures along the shoreline which results in a positive rate of change. However, some of the areas with very low accretion, particularly in the smaller creeks and rivers, may be the result of error with the method. The greatest amount of change has occurred along Segments I, J and K, which are at the mouth of the Rappahannock River and along Chesapeake Bay. Fleets Island, located within these segments, has eroded significantly since 1937. Generally, the County’s Chesapeake Bay shoreline has higher rates of change than the Rappahannock River shoreline. However, some sections of the Rappahannock River shoreline are experiencing medium and high rates of erosion.

4 References

Table 1. Average end point rate of change (ft/yr) between 1937 and 2009 for segments along Lancaster County’s shoreline. Segment locations are shown on maps in Appendix A.

<table>
<thead>
<tr>
<th>Segment Name</th>
<th>Location</th>
<th>Average Rate of Change (ft/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Lancaster Creek, Rappahannock River, and Mulberry Creek</td>
<td>-0.4</td>
</tr>
<tr>
<td>B</td>
<td>Rappahannock River, Belle Isle State Park to Monaskon</td>
<td>-1.3</td>
</tr>
<tr>
<td>C</td>
<td>Rappahannock River, Monaskon to Beach Creek</td>
<td>-0.8</td>
</tr>
<tr>
<td>D</td>
<td>Rappahannock River, Rogue Point to Whitehouse Creek</td>
<td>-1.1</td>
</tr>
<tr>
<td>E</td>
<td>Corrotoman River</td>
<td>-0.7</td>
</tr>
<tr>
<td>F</td>
<td>Corrotoman River Western Branch</td>
<td>-0.3</td>
</tr>
<tr>
<td>G</td>
<td>Corrotoman River Eastern Branch</td>
<td>-0.2</td>
</tr>
<tr>
<td>H</td>
<td>Rappahannock River, Corrotoman Point to Mosquito Point</td>
<td>-0.6</td>
</tr>
<tr>
<td>I</td>
<td>Rappahannock River and Chesapeake Bay, Fleets Island</td>
<td>-2.7</td>
</tr>
<tr>
<td>J</td>
<td>Little Bay and Antipoison Creek</td>
<td>-1.1</td>
</tr>
<tr>
<td>K</td>
<td>Fleets Bay</td>
<td>-2.9</td>
</tr>
<tr>
<td>L</td>
<td>Dymer Creek</td>
<td>-0.7</td>
</tr>
<tr>
<td>M</td>
<td>Indian Creek</td>
<td>-0.8</td>
</tr>
</tbody>
</table>
Figure 2. Index of shoreline plates.
Appendix A

End Point Rate of Shoreline Change Maps

Shoreline change rate segments are shown on the top map. The calculated rates of change for each transect within the segment were averaged to determine an average rate of change as shown in Table 1 of the report.

Note: The location labels on the plates come from U.S. Geological Survey topographic maps, Google Earth, and other map sources and may not be accurate for the historical or even more recent images. They are for reference only.

Plate 1 Plate 7 Plate 13 Plate 19
Plate 2 Plate 8 Plate 14 Plate 20
Plate 3 Plate 9 Plate 15 Plate 21
Plate 4 Plate 10 Plate 16 Plate 22
Plate 5 Plate 11 Plate 17 Plate 23
Plate 6 Plate 12 Plate 18 Plate 24
Lancaster County, Virginia
Plate 5

Legend
- 1937 Shoreline
- 2009 Shoreline

Photo Date: 2009

Shoreline Rates of Change (Ft/Yr)
- High Accretion: +10 to +5
- Medium Accretion: +5 to +2
- Low Accretion: +2 to +1
- Very Low Accretion: +1 to 0
- Very Low Erosion: 0 to -1
- Low Erosion: -1 to -2
- Medium Erosion: -2 to -5
- High Erosion: -5 to -10
- Very High Erosion: < -15

Note: Digitized shorelines are not available for the upper reaches of some creeks between the years 1937 and 2009.
Appendix B

Historical Shoreline Photo Maps

Note: The location labels on the plates come from U.S. Geological Survey topographic maps, Google Earth, and other map sources and may not be accurate for the historical or even more recent images. They are for reference only.

Plate 1 Plate 7 Plate 13 Plate 19
Plate 2 Plate 8 Plate 14 Plate 20
Plate 3 Plate 9 Plate 15 Plate 21
Plate 4 Plate 10 Plate 16 Plate 22
Plate 5 Plate 11 Plate 17 Plate 23
Plate 6 Plate 12 Plate 18 Plate 24