Mathews County Dune Inventory

C. Scott Hardaway Jr.
Virginia Institute of Marine Science

Donna A. Milligan
Virginia Institute of Marine Science

Lyle M. Varnell
Virginia Institute of Marine Science

George R. Thomas
Virginia Institute of Marine Science

Linda M. Meneghini
Virginia Institute of Marine Science

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/reports

Part of the [Environmental Monitoring Commons](https://scholarworks.wm.edu/environmental-monitoring-commons), [Natural Resources Management and Policy Commons](https://scholarworks.wm.edu/natural-resources-management-and-policy-commons), and the [Water Resource Management Commons](https://scholarworks.wm.edu/water-resource-management-commons)

Recommended Citation

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Mathews County Dune Inventory

Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

April 2003
Mathews County Dune Inventory

C. Scott Hardaway, Jr. 1
Donna A. Milligan 1
Lyle M. Varnell 2
George R. Thomas 1
Linda M. Meneghini 1
Thomas A. Barnard 2
Sharon Killeen 2

Shoreline Studies Program 1
Department of Physical Sciences

and

Wetlands Program 2
Center for Coastal Resources Management

Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

This project was funded by the Virginia Department of Environmental Quality’s Coastal Resources Management Program through Grant #NA17OZ11142-01 of the National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management, under the Coastal Zone Management Act of 1972, as amended.

April 2003
Table of Contents

1 INTRODUCTION ... 1
 1.1 Purpose .. 1
 1.2 Dune Act ... 1

2 BACKGROUND .. 2
 2.1 Dune System Classification .. 3
 2.2 Site Characteristics .. 4

3 DUNE DATA SUMMARY .. 5

4 INVENTORY ... 7

5 REFERENCES ... 7

Appendix A. Location of Dune Sites

Appendix B. Individual Dune Inventory Sheets

List of Figures

Figure 1. Location of Mathews County .. 1
Figure 2. Geographic extent of dunes in Mathews 2
Figure 3. Dune classification system developed by Hardaway et al. (2001) 3
Figure 4. Typical profile of a Chesapeake Bay dune 4

List of Tables

Table 1. Identified dune sites in Mathews County as of 2000 5
Table 2. Dune site measurements in Mathews County as of 2000 6
Table 3. Dune site parameters in Mathews County as of 2000 6

Cover Photo
New Point Comfort, Mathews, Virginia June 2003, by VIMS, Shoreline Studies Program
1 INTRODUCTION

1.1 Purpose

Mathews County, Virginia is located along the western shore of Chesapeake Bay and is at the eastern end of Virginia’s Middle Peninsula (Figure 1). Eighteen dune sites were identified along the Mathews County shoreline by site visits performed in 1999 and 2000. Of those 18 sites, 13 are located on Chesapeake Bay (Figure 2). It is the intent of this publication to provide the user with information on the status of dunes in Mathews County. This information comes from research performed in 1999 and 2000 which was presented in a report entitled “Chesapeake Bay Dune Systems: Evolution and Status (Hardaway et al., 2001).

Since much of the data was collected several years ago and the beach and dune systems may have changed, this report is intended only as a resource for coastal zone managers and homeowners; it is not intended for use in determining legal jurisdictional limits.

1.2 Dune Act

Coastal dune systems of the Commonwealth of Virginia are a unique and valuable natural resource. Dunes are important to both the littoral marine system (as habitat for flora and fauna) and the adjacent landward environment (as erosion control and protection from storms). These functions form the basis for the Coastal Primary Sand Dune Protection Act of 1980 (Act)\(^1\) and the related resource management effort under which the primary dune and beach components of existing dune systems are protected. Secondary dunes are not protected under the Act; however, as they are an important part of the overall dune system, they were included in the original report (Hardway et al., 2001) and analyzed as part of a risk assessment performed by Varnell and Hardaway (2002). In this inventory, both primary and secondary dunes are included.

Primary dunes must meet three criteria in order to fall under the Act’s jurisdiction:

1. **Substance:** a mound of unconsolidated sandy soil contiguous to mean high water
2. **Morphology:** landward and lateral limits are marked by a change in grade from >10% to <10%.
3. **Character:** primary dunes must support specific plant species or communities which are named in the Act and include: American beach grass (*Ammophila breviligulata*); beach heather (*Hudsonia tomentosa*); dusty miller (*Artemisia stelleriana*); saltmeadow hay (*Spartina patens*); seabeach sandwort (*Arenaria peploides*); sea oats (*Uniola paniculata*); sea rocket (*Cakile edentula*); seaside goldenrod (*Solidago sempervirens*); and short dune grass (*Panicum ararum*).

\(^1\)The General Assembly enacted the Coastal Primary Sand Dune Protection Act (the Dune Act) in 1980. The Dune Act was originally codified in Code § 62.1-13.21 to -13.28. The Dune Act is now recodified as Coastal Primary Sand Dunes and Beaches in Code § 28.2-1400 to -1420.

Figure 1. Location of Mathews County.

2 BACKGROUND

Coastal primary sand dunes form by the accumulation of sand due to the interaction of wind and wave action along the shore. Sand deposited on the beach during periods of relatively low wave energy is moved landward by onshore winds. The deposition of material above the intertidal zone allows vegetation to take root along the wrack line which then acts as a baffle, slowing wind speed and causing wind-borne sand to settle and be trapped in the vegetation thereby resulting in further accretion of the dune. Therefore, the size and location of a primary dune is determined by the amount of sand available and the ability of wind and waves to move it as well as the degree to which any existing vegetation can act to trap it. Thus, just as the intensity, direction, and duration of winds and waves constantly change through the seasons, so too, do coastal dunes exist in a state of flux.

Dunes act as a reservoir of sand which can buffer inland areas from the effects of storm waves and, in the process, act as natural levees against coastal flooding. During high energy conditions, such as the northeast storms which frequent the Eastern Seaboard, primary dunes may be subject to attack by wind-driven waves aided by storm surges. The dune may be eroded, and the sand deposited in an offshore bar. Then, under low-energy conditions, the sand may move back to the beach.

All dunes in the Chesapeake Bay estuarine system are mobile features especially with regards to coastal zone management. Unlike ocean dune fields that are relatively continuous features exposed to the open ocean, the dunes of the Chesapeake form across a temporal and spatial geomorphic matrix driven by sand volume, varying wave climate, and shoreline geology. The coastal geology, in large part, determines whether shoreline erosion acts upon the upland (high bank) or marsh (low bank). Sand supply and the long-term local wave climate are significant factors in the location of dunes. The stability or ability of a dune/beach system to accrete over time is necessary for the formation of secondary dunes.

Natural dunes in the Chesapeake Bay estuarine system vary in size and nature but all require that an accreted feature, such as a beach washover or a spit, becomes vegetated above the intertidal zone. The vegetation and a continuous beach/dune profile are required to create the jurisdictional primary dune. If the dune/beach forms across a low marsh shoreline, the system will move landward in response to storms, and only a low primary dune will exist. If sand can accrete bayward due to shoals, spits, or man-made features such as jetties and groins, then a secondary dune may develop from the original primary dune.

Hardaway et al. (2001) found that the occurrence of dunes around Chesapeake Bay is due, in part, to three factors: 1) morphologic opportunity (i.e., relatively stable setting), 2) abundant sand supply in the littoral transport system, and 3) conducive onshore wind/wave climate. Deposited sand must remain above a stable backshore to allow dune vegetation to become established. Each dune documented by Hardaway et al. (2001) has its own history of change -- growth and decay; natural and anthropogenic. Many miles of natural dunes have been altered by development, and many have been formed in response to processes altered by man’s influence. Dunes around the Chesapeake Bay estuarine system in the localities within the Act encompass only about 40 miles of shoreline (Hardaway et al., 2001). This is about 0.4% of the total Bay shore - making it an important, but rare, shore type.

Figure 2. Geographic extent of dunes in Mathews County.
2.1 Dune System Classification

The Chesapeake Bay dune classification was developed in Hardaway et al. (2001) and is portrayed in Figure 3. This classification is based on factors that are unique to certain dune systems and has a basis in the dune field evolution, vegetative zones, lateral and vertical extent of primary and secondary dune features, and anthropogenic impacts.

Dunes are categorized as Natural, Man Influenced, or Man Made. These three types reflect how the state of the dune is most impacted. The parameters (A through G) are most influential in defining the status of a given dune system. Parameter values within each category assign a range of limits or characteristics. Categories A, B, and C relate to the nature of the impinging wave climate at a given site while categories D, E, and F relate to geologic parameters. Dune parameter G relates to the type of anthropogenic influence.

Fetch Exposure (A) is a qualitative assessment of the wave exposure and wave climate across open water. Wave impact is the dominant natural process driving shoreline erosion and sediment transport along the Bay coasts. Riverine, Bay Influenced (A.1) is somewhere between the Open Bay exposure (A.2) and Riverine Exposure (A.3). Generally, A.1 sites have fetches of 5-10 nautical miles (nm); A.2 have fetches of >10 nm; and A.3 have fetches <5 nm.

Shore Orientation (B) is the direction the main dune shore faces according to eight points on the compass. Shoreline exposure to dominant directions of wind and waves is a component of fetch exposure (A) and wave climate as well as aeolian processes that assist in dune growth and decay.

Nearshore Gradient (C) controls wave refraction and shoaling that, in turn, affect the nature of wave approach and longshore sand transport as well as onshore/offshore transport. The presence or absence of bars indicates the relative amount of nearshore sediment available for transport.

The Morphologic Setting (D) is significant in the genesis of a particular dune site. Aerial imagery from VIMS SAV Archive and field observations were used to determine and classify the Morphologic Setting. Four basic categories were developed including: 1) Isolated dunes, 2) Creek mouth barrier dune/spit, 3) Spit and 4) Dune fields. Morphological Settings 1 and 4 are distinguished only by shore length (i.e. Morphologic Setting 1 < 500 ft and Morphologic Setting 4 > 500 ft) as an arbitrary boundary. These categories were subdivided to reflect the nature of the setting into four subcategories which are 1) Pocket, 2) Linear, 3) Shallow Bay and 4) Salient.

The Relative Stability (E) of a dune is very subjective. It is meant as a value judgement as to the overall current and future integrity at the time of the site visit. If the site had wave cut scarps along the primary dune face and/or was actively moving landward (overwash), it was termed Land Transgressive/Erosional (E.3). If the backshore/dune face had a slight gradient with stabilizing vegetation, it was stable (E.2) or, possibly, accretionary (E.1).

Figure 3. Classification system for Chesapeake Bay identified dune systems (from Hardaway et al., 2001).
The underlying substrate (F) is a general category for the type of substrate or sediment the dune resides on and against. Two broad categories were chosen - marsh and upland. The marsh category includes creek bottoms which should be a separate category because beach/dune development can occur across the mouth of a creek bottom without a true marsh. The distinction between upland and marsh was that the marsh substrate is usually a low bank that is subject to washover processes whereas the upland area offered a “backstop” to land beach/dune migration.

If the site was not Natural (1), i.e. Man-influenced (2) or Man-made (3), then the nature of man’s impact was determined by the type of modification. The shore structures include Groins (G.1), Bulkheads and Revetments (G.2), Breakwaters (G.3), Jetties (G.4), and Beach Fill (G.5). The degree of impact any given structure or combination of structures had on the dune site was not always clear. The Relative Stability (E) relates in part to whether man’s influence was erosive (destructive) or accretionary/stable (constructive).

2.2 Site Characteristics

Coastal zone profile and vegetation types present on dunes were determined by site visit. Beach profile transects were performed at most sites to measure the primary and secondary dune (where present) within 100 feet of the shoreline. Standard surveying and biological procedures were utilized. Not all dune sites were surveyed.

Each surveyed transect used the crest of the primary dune as the horizontal control and mean low water (MLW) as the vertical control. The primary dune crest was determined on site. The MLW line was indirectly obtained from water level measurements. The observed water level position and elevation were checked against recorded tidal elevations at the nearest NOAA tide station and time of day to establish MLW on the profile.

The typical dune profile has several components (Figure 4). A continuous sand sheet exists from the offshore landward and consists of a 1) nearshore region, bayward of MLW, 2) an intertidal beach, berm, and backshore region between MLW and base of primary dune, 3) a primary dune from bayside to landside including the crest, and, where present, 4) a secondary dune. All profiles extended bayward beyond MLW and landward to at least the back of the primary dune. The secondary dune crest was always measured but the back or landward extent of the secondary dune could not always be reached. The dimensions, including lateral position and elevation of various profile components were measured. These include: primary dune crest elevation, distance from primary dune crest to back of dune, distance from primary dune crest to MLW, secondary dune crest elevation, secondary dune crest to back of primary dune, secondary dune crest to back of secondary dune, distance from back of primary dune to back of secondary dune, width of secondary dune, and width of primary and secondary dune.

During each site visit, dominant plant communities occupying the primary and secondary dunes (if present) were analyzed (Figure 4). Plant species distribution is based on observed percent cover in the general area of profiling and sampling within the identified dune reach.

![Typical Chesapeake Bay Dune Profile]({}) Figure 4. Typical profile of a Chesapeake Bay dune system (from Hardaway et al., 2001).
3 DUNE DATA SUMMARY

Approximately 3.6 miles of dune shore consisting of 18 sites (Table 1) were identified in Mathews County. Previous work by Hardaway et al. (2001) had named a total of 24 possible dune sites in Mathews, but site visits verified just 18. Mathews County dune sites had a wide variety of site conditions, ranging from large dune fields at MA8 to small isolated dunes along Gwynn’s Island (MA15 and MA16). Most of the dune sites resided along the open Chesapeake Bay coast which has a history of dynamic shore change and geomorphic evolution. Dunes resided in areas of sand accretion and stability such as around tidal creek mouths, embayed shorelines, in front of older dune features, as washovers, as spits and against man-made structures like channel jetties or groin fields. From a development perspective, MA3 at Bavon has been the most impacted; much of the secondary dune has been built upon. Site visits occurred in 1999 and 2000; site characteristics may now be different due to natural or man-induced shoreline change.

In Mathews County, 5 of the 18 dune sites had both primary and secondary dunes. Table 2 presents the measurements of the dune attributes. The average length of primary dune only sites was 430 ft whereas the average length of the primary with secondary dunes was 2,508 feet. Clearly, the wider sites were also the longest.

The 3 main categories of Natural, Man-Influenced and Man-Made were used to portray a site’s potentially most influential element. In Mathews County, 33% are Natural, 68% are Man-Influenced, and none were Man-Made (Table 3).

Table 1. Identified dune sites in Mathews County as of 2000. Site characteristics may now be different due to natural or man-induced shoreline change.

<table>
<thead>
<tr>
<th>Dune Site No.</th>
<th>Location</th>
<th>Location*</th>
<th>Date Visited</th>
<th>Dune Shore Length (Feet)</th>
<th>Primary Dune Site?</th>
<th>Secondary Dune Site?</th>
<th>*Public Ownership?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,645,910 362,500 8/7/2000</td>
<td>Easting 360,500</td>
<td>630</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,646,620 363,300 8/7/2000</td>
<td>Easting 1,600</td>
<td>1,600</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2,647,500 368,050 4/14/1999</td>
<td>Easting 4,290</td>
<td>4,290</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,647,100 374,900 8/14/1999</td>
<td>Easting 500</td>
<td>500</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,654,100 387,100 8/28/2000</td>
<td>Easting 3,150</td>
<td>3,150</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A'</td>
<td>2,653,780 399,100 4/14/1999</td>
<td>Easting 225</td>
<td>225</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8B'</td>
<td>2,653,440 401,900 4/14/1999</td>
<td>Easting 485</td>
<td>485</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2,652,950 404,800 4/14/1999</td>
<td>Easting 515</td>
<td>515</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2,649,180 422,450 8/28/2000</td>
<td>Easting 1,540</td>
<td>1,540</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2,646,340 427,600 9/8/2000</td>
<td>Easting 450</td>
<td>450</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2,644,980 431,900 9/8/2000</td>
<td>Easting 460</td>
<td>460</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2,643,340 435,300 9/8/2000</td>
<td>Easting 65</td>
<td>65</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2,640,680 437,720 9/8/2000</td>
<td>Easting 105</td>
<td>105</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2,638,820 428,300 9/8/2000</td>
<td>Easting 525</td>
<td>525</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2,622,400 433,780 9/8/2000</td>
<td>Easting 250</td>
<td>250</td>
<td>Yes</td>
<td>Yes&Private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2,621,180 435,550 8/28/2000</td>
<td>Easting 315</td>
<td>315</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2,620,940 435,900 8/28/2000</td>
<td>Easting 430</td>
<td>430</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2,615,720 440,840 8/28/2000</td>
<td>Easting 250</td>
<td>250</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18,835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Public ownership includes governmental entities including local, state, and federal; otherwise ownership is by the private individual.
*Location is in Virginia State Plane South, NAD 1927
One site with variable alongshore dune conditions
Table 2. Dune site measurements in Mathews County as of 2000. Site characteristics may now be different due to natural or man-induced shoreline change.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Length (feet)</th>
<th>Shoreline Extent (Feet)</th>
<th>Jurisdiction</th>
<th>Crest Elev (ftMLW)</th>
<th>LandXnt From PrimCrest (Feet)</th>
<th>2ndCrest Elev (ftMLW)</th>
<th>2ndCrest Back/Base (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 1</td>
<td>630</td>
<td>9.6</td>
<td>Yes</td>
<td>8.4</td>
<td>56</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>MA 2</td>
<td>1,600</td>
<td>10.2</td>
<td>Yes</td>
<td>8.0</td>
<td>180</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>MA 3</td>
<td>4,290</td>
<td>10.0</td>
<td>Yes</td>
<td>8.4</td>
<td>98</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>MA 4</td>
<td>500</td>
<td>6.9</td>
<td>No</td>
<td>8.0</td>
<td>224</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>MA 8A</td>
<td>3,150</td>
<td>6.9</td>
<td>Yes</td>
<td>8.0</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 8B</td>
<td>3,050</td>
<td>9.2</td>
<td>Yes</td>
<td>8.4</td>
<td>98</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>MA 10</td>
<td>485</td>
<td>6.9</td>
<td>No</td>
<td>8.0</td>
<td>224</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>MA 11</td>
<td>515</td>
<td>6.3</td>
<td>No</td>
<td>8.0</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 12</td>
<td>1,540</td>
<td>7.2</td>
<td>Yes</td>
<td>8.0</td>
<td>224</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>MA 13</td>
<td>450</td>
<td>8.0</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 14</td>
<td>460</td>
<td>6.8</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 15*</td>
<td>65</td>
<td>6.3</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 16*</td>
<td>105</td>
<td>6.3</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 18</td>
<td>525</td>
<td>6.1</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 19</td>
<td>250</td>
<td>4.5</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 20</td>
<td>315</td>
<td>5.2</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 21</td>
<td>430</td>
<td>5.8</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA 22</td>
<td>250</td>
<td>3.5</td>
<td>Yes</td>
<td>8.7</td>
<td>340</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

*Not profiled

Table 3. Dune site parameters in Mathews County as of 2000. Site characteristics may now be different due to natural or man-induced shoreline change.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Type</th>
<th>Exposure</th>
<th>Shoreline Direction of Face</th>
<th>Nearshore Gradient</th>
<th>Morphologic Setting</th>
<th>Relative Stability</th>
<th>Substrate or Fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 1</td>
<td>Natural</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>Medium</td>
<td>Bars</td>
<td>Erosional</td>
</tr>
<tr>
<td>MA 2</td>
<td>Natural</td>
<td>Open</td>
<td>Bay</td>
<td>Southeast</td>
<td>Medium</td>
<td>Bars</td>
<td>Erosional</td>
</tr>
<tr>
<td>MA 3</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>Shallow</td>
<td>Bars</td>
<td>Stabilized</td>
</tr>
<tr>
<td>MA 4</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>Northeast</td>
<td>Medium</td>
<td>Bars</td>
<td>Erosional</td>
</tr>
<tr>
<td>MA 8A</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>Southeast</td>
<td>No</td>
<td>Bars</td>
<td>Ck Mouth</td>
</tr>
<tr>
<td>MA 8B</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>No</td>
<td>Bars</td>
<td>Ck Mouth</td>
</tr>
<tr>
<td>MA 9</td>
<td>Natural</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>Medium</td>
<td>No</td>
<td>Bars</td>
</tr>
<tr>
<td>MA 10</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>Medium</td>
<td>No</td>
<td>Bars</td>
</tr>
<tr>
<td>MA 11</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>No</td>
<td>Bars</td>
<td>Isolated</td>
</tr>
<tr>
<td>MA 12</td>
<td>Natural</td>
<td>Open</td>
<td>Bay</td>
<td>East</td>
<td>Medium</td>
<td>Bars</td>
<td>Erosional</td>
</tr>
<tr>
<td>MA 13</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>Northeast</td>
<td>Medium</td>
<td>Bars</td>
<td>Isolated</td>
</tr>
<tr>
<td>MA 14</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>Northeast</td>
<td>Medium</td>
<td>Bars</td>
<td>Isolated</td>
</tr>
<tr>
<td>MA 15</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>Northeast</td>
<td>Medium</td>
<td>Bars</td>
<td>Isolated</td>
</tr>
<tr>
<td>MA 16</td>
<td>Man-Inf</td>
<td>Open</td>
<td>Bay</td>
<td>Northeast</td>
<td>Medium</td>
<td>Bars</td>
<td>Isolated</td>
</tr>
<tr>
<td>MA 18</td>
<td>Man-Inf</td>
<td>Riv-Bay</td>
<td>North</td>
<td>No</td>
<td>Bars</td>
<td>Dune Field, linear</td>
<td>Stabilized</td>
</tr>
<tr>
<td>MA 19</td>
<td>Natural</td>
<td>Riv-Bay</td>
<td>North</td>
<td>No</td>
<td>Bars</td>
<td>Isolated</td>
<td>Stabilized</td>
</tr>
<tr>
<td>MA 20</td>
<td>Man-Inf</td>
<td>Riv-Bay</td>
<td>Northeast</td>
<td>No</td>
<td>Bars</td>
<td>Isolated</td>
<td>Stabilized</td>
</tr>
<tr>
<td>MA 21</td>
<td>Man-Inf</td>
<td>Riv-Bay</td>
<td>Northeast</td>
<td>No</td>
<td>Bars</td>
<td>Isolated</td>
<td>Stabilized</td>
</tr>
<tr>
<td>MA 22</td>
<td>Natural</td>
<td>Riv-Bay</td>
<td>North</td>
<td>No</td>
<td>Bars</td>
<td>Isolated</td>
<td>Stabilized</td>
</tr>
</tbody>
</table>
4 INVENTORY

Each dune site is located on plates in Appendix A. The individual site inventory sheets are in Appendix B. Due to the mobile nature of dunes, their extent and morphology changes through time. The data presented in this report represents the status of the site at the time of assessment and to the best of the author’s knowledge. This information is for general management purposes and should not be used for delineation. For detailed delineation of any dune site, the reader should contact the local wetlands board or Virginia Marine Resources Commission. See Figures 3 and 4 for description of the site parameters and measurements listed below.

Each dune site has the following information on its inventory page:

1. Date visited
2. Central site coordinates in Virginia South State Plane Grid NAD 1927
3. Coordinates of profile origin
4. Site length in feet
5. Ownership
6. Site Type
7. Fetch Exposure
8. Shoreline Direction of Face
9. Nearshore gradient
10. Morphologic Setting
11. Relative Stability
12. Underlying Substrate
13. Type of structure or fill (man-influenced only)
14. Primary Dune Crest Elevation in feet above Mean Low Water (MLW)
15. Landward extent of Primary Dune from Dune Crest in feet
16. Distance from Dune Crest to MLW
17. Secondary Dune Crest Elevation in feet above MLW (if present)
18. Landward extent of Secondary Dune Crest from Primary Dune Crest
19. Landward extent of Secondary Dune from Secondary Dune Crest
20. Primary Dune vegetation communities
21. Secondary Dune vegetation communities
22. General Remarks

Also included on the dune site inventory page is the site cross-section, if surveyed, and ground photos, if taken. Long sites may have been represented with two or more profiles because the general morphology differs alongshore. Each profile was intended to be representative of that dune portion of the site. In Mathews County, MA8 has two representative profiles.

5 REFERENCES

Appendix A
Location of Dune Sites

Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Appendix B

Individual Dune Inventory Sheets

MA 1	MA 2	MA 3
MA 4 | MA 8A | MA 8B
MA 9 | MA 10 | MA 11
MA 12 | MA 13 | MA 14
MA 15 | MA 16 | MA 18
MA 19 | MA 20 | MA 21
MA 23
Not intended for use in determining legal jurisdictional limits
MATHEWS COUNTY DUNE SITE 2

Dune Project, Mathews

Site Parameters

6. Type: Natural
7. Fetch Exposure: Open Bay
8. Shoreline Direction of Face: Southeast
9. Nearshore Gradient: 1,000 to 3,000 ft/Extensive Bars
10. Morphologic Setting: Dune Field >500 ft Alongshore/Salient
11. Relative Stability: Stable
12. Underlying Substrate: Marsh
13. Structure or Fill: N/A

Site Measurements

Primary Dune:
14. Crest Elevation (ft MLW): 10.3
15. Extent from Crest Landward (ft): 12
16. Extent from Crest To MLW (ft): 370

Secondary Dune:
17. Crest Elevation (ft MLW): 8.0
18. Land Extent From Primary Crest (ft): 180
19. Second Crest - Landward (ft): 155

Vegetation Communities

20. Primary Dune: Ammophila brevigulata (American beach grass)
21. Secondary Dune: Spartina patens (saltmeadow hay), Solidago sempervirens (seaside goldenrod)

22. Remarks:
Site MA 2 is the mainland equivalent of MA 1. The primary dune is relatively high due to abundant sand and moderate to severe wind/wave climate. The broad tidal flats and bayside berm are a good source of wind blown sand. The site appears to be relatively stable.

Not intended for use in determining legal jurisdictional limits
MA3 is an extensive dune field that fronts the cottage communities of Bavon and Chesapeake Shores. A breakwater/silt system at the north end has prevented beach sand losses. Overall, the site is relatively stable except for a "hot spot" about midway in the reach. A secondary dune exists along much of this site.
Not intended for use in determining legal jurisdictional limits
Site Information

1. **Date Visited:** 28 Aug 2000
2. **Central Coordinates:**
 - N: 387,110 ft
 - E: 2,654,100 ft
3. **Profile Coordinates:**
 - N: 385,810 ft
 - E: 2,653,013 ft
4. **Site Length:** 3,150 ft
5. **Ownership:** Private

Site Parameters

- **Type:** Man Influenced
- **Fetch Exposure:** Open Bay
- **Shoreline Direction of Face:** Southeast
- **Nearshore Gradient:** 1,000 to 3,000 ft/No Bars
- **Morphologic Setting:** Creek Mouth Barrier/Spit
- **Relative Stability:** Accretionary
- **Underlying Substrate:** Marsh
- **Structure or Fill:** Beach fill

Site Measurements

Primary Dune:
- **Crest Elevation (ft MLW):** 6.9
- **Extent from Crest Landward (ft):** 64
- **Extent from Crest To MLW (ft):** 68

Secondary Dune:
- **Crest Elevation (ft MLW):** 8.0
- **Land Extent From Primary Crest (ft):** 224
- **Second Crest - Landward (ft):** 71

Vegetation Communities

- **Primary Dune:**
 - *Ammophila breviligulata* (American beach grass)
 - *Panicum virgatum* (switch grass)
 - *Spartina patens* (saltmeadow hay)
- **Secondary Dune:** Shrub/woody

Remarks:

Site MA 8A is a long dune field situated on the north shore of the navigational channel into Winter Harbor. It is heavily man influenced as a disposal area for dredged material from Winter Harbor. Transect MA 8A represents the southern extent of the dune field.

Not intended for use in determining legal jurisdictional limits
Not intended for use in determining legal jurisdictional limits
Site Information

1. **Date Visited:** 14 April 1999
2. **Central Coordinates:**
 - N: 399,100 ft
 - E: 2,653,780 ft
3. **Profile Coordinates:**
 - N: 399,100 ft
 - E: 2,653,780 ft
4. **Site Length:** 225 ft
5. **Ownership:** Private

Site Parameters

6. **Type:** Natural
7. **Fetch Exposure:** Open Bay
8. **Shoreline Direction of Face:** East
9. **Nearshore Gradient:** 1,000 to 3,000 ft/No Bars
10. **Morphologic Setting:** Isolated <500 ft Alongshore/Pocket
11. **Relative Stability:** Land Transgressive/Erosional
12. **Underlying Substrate:** Marsh
13. **Structure or Fill:** N/A

Site Measurements

<table>
<thead>
<tr>
<th>Primary Dune</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crest Elevation (ft MLW): 4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extent from Crest Landward (ft): 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extent from Crest To MLW (ft): 56</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Dune</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crest Elevation (ft MLW): N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Land Extent From Primary Crest (ft): N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second Crest - Landward (ft): N/A</td>
<td></td>
</tr>
</tbody>
</table>

Vegetation Communities

- **Primary Dune:**
 - *Ammophila breviligulata* (American beach grass)
 - *Spartina patens* (saltmeadow hay)

Remarks

MA 9 is an isolated pocket beach/dune bounded by marsh peat headlands. This is an active system subject to overwash during storms which results in a low primary dune.
MATHEWS COUNTY DUNE SITE 10

Site Information

1. Date Visited: 14 April 1999
2. Central Coordinates: N: 401,900 ft E: 2,653,440 ft
 Virginia South State Plane Grid NAD 1927 [4502]
3. Profile Coordinates:
 N: 401,900 ft E: 2,653,440 ft
4. Site Length: 485 ft
5. Ownership: Private

Site Parameters

6. Type: Man Influenced
7. Fetch Exposure: Open Bay
8. Shoreline Direction of Face: East
9. Nearshore Gradient: 1,000 to 3,000 ft/No Bars
10. Morphologic Setting: Isolated <500 ft Alongshore/Linear
11. Relative Stability: Stable
12. Underlying Substrate: Upland
13. Structure or Fill: Groins

Site Measurements

14. Crest Elevation (ft MLW): 6.9
15. Extent from Crest Landward (ft): 9
16. Extent from Crest To MLW (ft): 50
17. Crest Elevation (ft MLW): N/A
18. Land Extent From Primary Crest (ft): N/A
19. Second Crest - Landward (ft): N/A

Vegetation Communities

20. Primary Dune: Spartina patens (saltmeadow hay)
 Ammophila breviligulata (American beach grass)
21. Secondary Dune: N/A

Remarks:

MA 10 has evolved due, in part, to the groin field at Bethel Beach.

Looking south across transect MA 10.

Looking north along primary dune crest and groin field.

Not intended for use in determining legal jurisdictional limits
MAWHS COUNTY DUNIE SITE 11

14 APR 1999

Primary Dune Crest

MLW

Distance Offshore (ft)

Elevation (ft)

N: 404,800 ft
E: 2,652,950 ft
Virginia South State Plane Grid NAD 1927 (4502)

Private

Man Influenced
Open Bay
East
>3,000 ft/No Bars
Dune Field >500 ft Alongshore/Linear
Land Transgressive/Erosional
Marsh
Jetty

Ammophila brevigulata
(Saltmeadow Hay)

MA 11 has evolved due to littoral drift sand accumulated at the Garden Creek jetties.

Not intended for use in determining legal jurisdictional limits

B-9
Site Information
1. Date Visited: 28 Aug 2000
2. Central Coordinates: 422,450 ft
3. Profile Coordinates: 422,450 ft
4. Site Length: 1,540 ft
5. Ownership: Private

Site Parameters
6. Type: Natural
7. Fetch Exposure: Open Bay
8. Shoreline Direction of Face: East
9. Nearshore Gradient: 1,000 to 3,000 ft/Extensive Bars
10. Morphologic Setting: Creek Mouth Barrier/Spit
11. Relative Stability: Land Transgressive/Erosional
12. Underlying Substrate: Marsh
13. Structure or Fill: N/A

Site Measurements
14. Crest Elevation (ft MLW): 7.2
15. Extent from Crest Landward (ft): 45
16. Extent from Crest To MLW (ft): 96
17. Crest Elevation (ft MLW): N/A
18. Land Extent From Primary Crest (ft): N/A
19. Second Crest - Landward (ft): N/A

Vegetation Communities
20. Primary Dune: Ammophila breviligulata (American beach grass)
21. Secondary Dune: N/A

Remarks:
Site MA 12 occurs along a spit at the “The Hole in the Wall”, an entrance to Milford Haven. This highly mobile dune region is a remnant of a much larger barrier island that was once continuous but now is highly fragmented.

Not intended for use in determining legal jurisdictional limits
MA13 is a pocket beach and dune that developed along Hills Creek after the breach of the Bay barrier in the early 1980s. It is bordered on the north by a bulkhead and pinned on the south by an old, failed stone revetment. The low secondary dune is evidence of a rapid bayward growth after initial beach deposition.
MA14 is a relatively short, groin-controlled, low dune site on the bay side of Gwynn’s Island.
Site Information

1. **Date Visited:** 8 Sep 2000
2. **Central Coordinates:** Virginia South State Plane Grid NAD 1927 [4502]
 - N: 435,300 ft
 - E: 2,643,340 ft
3. **Profile Coordinates:** Not Profiled
4. **Site Length:** 65 ft
5. **Ownership:** Private

Site Measurements

<table>
<thead>
<tr>
<th></th>
<th>Primary Dune:</th>
<th>Secondary Dune:</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Crest Elevation (ft MLW):</td>
<td>No Data</td>
<td>N/A</td>
</tr>
<tr>
<td>15. Extent from Crest Landward (ft):</td>
<td>No Data</td>
<td>N/A</td>
</tr>
<tr>
<td>16. Extent from Crest To MLW (ft):</td>
<td>No Data</td>
<td>N/A</td>
</tr>
<tr>
<td>17. Crest Elevation (ft MLW):</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>18. Land Extent From Primary Crest (ft):</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>19. Second Crest - Landward (ft):</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Vegetation Communities

<table>
<thead>
<tr>
<th></th>
<th>Primary Dune:</th>
<th>Secondary Dune:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Primary Dune:</td>
<td>No data</td>
<td>N/A</td>
</tr>
<tr>
<td>21. Secondary Dune:</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Remarks:

MA 15 is bounded on the north side by a bulkhead/revetment and a series of groins on the south. These structures have allowed the beach to evolve - even forming a dune with grasses in the middle.

Site Information

1. **Date Visited:** 8 Sep 2000
2. **Central Coordinates:** Virginia South State Plane Grid NAD 1927 [4502]
 - N: 435,300 ft
 - E: 2,643,340 ft
3. **Profile Coordinates:** Not Profiled
4. **Site Length:** 65 ft
5. **Ownership:** Private

Site Measurements

<table>
<thead>
<tr>
<th></th>
<th>Primary Dune:</th>
<th>Secondary Dune:</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Crest Elevation (ft MLW):</td>
<td>No Data</td>
<td>None</td>
</tr>
<tr>
<td>15. Extent from Crest Landward (ft):</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>16. Extent from Crest To MLW (ft):</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>17. Crest Elevation (ft MLW):</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>18. Land Extent From Primary Crest (ft):</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>19. Second Crest - Landward (ft):</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Vegetation Communities

<table>
<thead>
<tr>
<th></th>
<th>Primary Dune:</th>
<th>Secondary Dune:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Primary Dune:</td>
<td>No data</td>
<td>No Data</td>
</tr>
<tr>
<td>21. Secondary Dune:</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Remarks:

Site MA 16 is a pocket beach and dune situated between bulkhead and groins.

Not intended for use in determining legal jurisdictional limits
Not intended for use in determining legal jurisdictional limits
This is a public beach site that was profiled on 09 Sep 1997.

Looking east from approximately mid-site.

Looking west from public beach landing area, showing the graded bank and modified backshore region.

Site Information
1. Date Visited: 8 Sep 2000
2. Central Coordinates: Virginia South State Plane Grid NAD 1927 [4502]
3. Profile Coordinates: N: 433,780 ft E: 2,622,400 ft
4. Site Length: 250 ft
5. Ownership: Public/Private

Site Parameters
6. Type: Natural
7. Fetch Exposure: Riverine, Bay Influenced
8. Shoreline Direction of Face: Northeast
9. Nearshore Gradient: 0 to 1,000 ft/Extensive Bars
10. Morphologic Setting: Isolated <500 ft Alongshore/Linear
11. Relative Stability: Stable
12. Underlying Substrate: Upland
13. Structure or Fill: N/A

Site Measurements
Primary Dune:
15. Extent from Crest Landward (ft): 10
16. Extent from Crest To MLW (ft): 58

Secondary Dune:
17. Crest Elevation (ft MLW): N/A
18. Land Extent From Primary Crest (ft): N/A
19. Second Crest - Landward (ft): N/A

Vegetation Communities
20. Primary Dune: Spartina patens (saltmeadow hay)
21. Secondary Dune: N/A

Remarks:
The western half of MA 19 is a public beach/landing in Godfrey Bay which has a low accreting dune against a high upland bank. The old dune areas to the east and west have been modified by bank grading and mowing.
MAHESWOCOUNTY DUNE SITE 20

Not intended for use in determining legal jurisdictional limits
Site Information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Date Visited:</td>
<td>28 Aug 2000</td>
</tr>
<tr>
<td>2. Central Coordinates:</td>
<td>N: 435,900 ft, E: 2,620,940 ft</td>
</tr>
<tr>
<td>3. Profile Coordinates:</td>
<td>N: 435,900 ft, E: 2,620,940 ft</td>
</tr>
<tr>
<td>4. Site Length:</td>
<td>430 ft</td>
</tr>
<tr>
<td>5. Ownership:</td>
<td>Private</td>
</tr>
<tr>
<td>6. Type:</td>
<td>Man Influenced</td>
</tr>
<tr>
<td>7. Fetch Exposure:</td>
<td>Riverine, Bay Influenced</td>
</tr>
<tr>
<td>8. Shoreline Direction of Face:</td>
<td>Northeast</td>
</tr>
<tr>
<td>9. Nearshore Gradient:</td>
<td>0 to 1,000 ft/Extensive Bars</td>
</tr>
<tr>
<td>10. Morphologic Setting:</td>
<td>Isolated <500 ft/Alongshore/Linear</td>
</tr>
<tr>
<td>11. Relative Stability:</td>
<td>Stable</td>
</tr>
<tr>
<td>12. Underlying Substrate:</td>
<td>Upland</td>
</tr>
<tr>
<td>13. Structure or Fill:</td>
<td>Jetty</td>
</tr>
</tbody>
</table>

Site Measurements

Primary Dune:
- 14. Crest Elevation (ft MLW): 5.8
- 15. Extent from Crest Landward (ft): 24
- 16. Extent from Crest To MLW (ft): 126

Secondary Dune:
- None
- 17. Crest Elevation (ft MLW): N/A
- 18. Land Extent From Primary Crest (ft): N/A
- 19. Second Crest - Landward (ft): N/A

Vegetation Communities

- 20. Primary Dune: Spartina patens (saltmeadow hay)
- 21. Secondary Dune: N/A

Remarks:

MA 21 is situated on the northwest side of Chapel Creek and is controlled, in part, by the stone channel jetties that bound the southeast side of the site. This site also may be characterized as a creek mouth barrier dune.

Not intended for use in determining legal jurisdictional limits
MATHEWS COUNTY DUNE SITE 23

Site Information

1. Date Visited: 8 Sep 2000
2. Central Coordinates: 441,350 ft N; 2,608,500 ft E
 - Virginia South State Plane Grid NAD 1927 [4502]
3. Profile Coordinates:
 - N: 441,350 ft
 - E: 2,608,500 ft
4. Site Length: 350 ft
5. Ownership: Private

Site Parameters

6. Type: Natural
7. Fetch Exposure: Riverine
8. Shoreline Direction of Face: North
9. Nearshore Gradient: 0 to 1,000 ft/No Bars
10. Morphologic Setting: Isolated, Linear
11. Relative Stability: Stable
12. Underlying Substrate: Marsh
13. Structure or Fill: N/A

Site Measurements

Primary Dune:

- Crest Elevation (ft MLW): 3.5
- Extent from Crest Landward (ft): 31
- Extent from Crest To MLW (ft): 36

Secondary Dune:

- None

Crest Elevation (ft MLW):

- N/A
- Land Extent From Primary Crest (ft): N/A
- Second Crest - Landward (ft): N/A

Vegetation Communities

- Spartina patens (saltmeadow hay)

Remarks

MA 23 is located along the downstream flank of Roane Point. It is part of a spit that has widened allowing the low backshore to become vegetated.

Not intended for use in determining legal jurisdictional limits