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Interface magnetization transition via minority spin injection

F. Fang,1 H. Zhai,1 X. Ma,1 Y. W. Yin,2 Qi Li,2 and G. L€upke1,a)

1Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, USA
2Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 12 July 2016; accepted 29 November 2016; published online 7 December 2016)

The interface magnetization of n-type BaTiO3/La0.7Sr0.3MnO3 heterojunction is selectively probed

by magnetic second-harmonic generation at 80 K. The injection of minority spins at the interface

causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from ferromag-

netic to antiferromagnetic exchange coupled, while the bulk magnetization remains unchanged. We

attribute the emergent interfacial antiferromagnetic interactions to weakening of the double-

exchange mechanism caused by the strong Hund’s rule coupling between injected minority spins

and local magnetic moments. The effect is robust and may serve as a viable route for electronic

and spintronic applications. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972035]

Engineered thin-film heterostructures designed for the

electric control of magnetic properties, the so-called magneto-
electric (ME) interfaces, present a unique route towards using

the spin degree of freedom in electronic devices.1–15 Recently,

researchers employed polarized ferroelectric (FE) layers, e.g.,

Pb(Zr0.2Ti0.8)O3 (PZT) or BaTiO3 (BTO), to alter the magnetic

state at the interface of the ferromagnetic (FM) layer, such as

La0.7Sr0.3MnO3 (LSMO)16,17 and CoFe2O4.18 Moreover, Yin

et al. observed a giant tunneling electroresistance ratio of

�3300% by inserting an ultrathin La0.5Ca0.5MnO3 (LCMO)

barrier in the junction of LSMO/BTO/LSMO.19 The results

suggest a ferroelectrically induced metal-insulator phase transi-

tion in the LCMO layer that is of ME origin. This has been

investigated by Yi et al.,20 who observed direct evidence for a

magnetic phase transition in LCMO controlled by the FE

polarization of BiFeO3. The interfacial ME coupling effect is

mainly derived from the superexchange between Mn and Fe

t2g spins.20 The authors also suggest that there may be similar

pathways to implement a reversible switch between ferromag-

netic (FM) and antiferromagnetic (AFM) states.20 In this study,

we discover a unique interface ME effect that alters the inter-

face magnetization in n-type BTO/LSMO heterojunction via

the injection of minority spins.

Here, we use magnetization-induced second-harmonic

generation (MSHG) to selectively probe the interface magne-

tization of the n-type BTO/LSMO heterojunction as a function

of gate voltage Ug (Fig. 1(a)). We fabricated the indium-tin-

oxide ITO (50 nm)/BTO (200 nm)/LSMO (50 nm) hetero-

structures epitaxially grown on SrTiO3 (STO) (100) substrates

by pulsed laser deposition (see supplementary material). The

ITO and LSMO layer serve as top and bottom electrodes,

respectively (Fig. 1(a)). Since the samples are cooled down to

room temperature in a reduced oxygen atmosphere, the suffi-

cient native oxygen vacancies in BTO are double shallow

donors and will make it n-type (�1018/cm3).21 The MSHG

technique is well suited for probing the interfacial magnetic

state where both space-inversion and time-reversal symme-

tries are broken.17,22,23 For comparison, the magneto-optical

Kerr effect (MOKE) measurements are employed to detect

the bulk magnetization (see supplementary material). All

measurements are performed at 80 K. In the following, we dis-

cuss the change of magnetization as a function of Ug in terms

of the magnetic contrast of the hysteresis loop (Fig. 1(b)). The

magnetic contrast for a hysteresis loop is defined as17

A ¼ I þMð Þ � I �Mð Þ
I þMð Þ þ I �Mð Þ ; (1)

where I(þM) and I(�M) are the intensities for the two mag-

netization states. The magnetic contrast A can be understood

as the height of the jump in the hysteresis loop divided by

the sum of the intensities of both magnetizations. Figure 1(c)

displays the magnetic contrast A obtained from the MSHG

hysteresis loops as a function of Ug (see supplementary

material). For Ug < Uc (þ1 V), the interfacial LSMO is in

the FM state since the magnetic contrast is obvious. Above

Uc, the magnetic contrast A suddenly vanishes, indicating a

magnetic transition to AFM phase since a paramagnetic

phase is unlikely to occur in LSMO at 80 K due to the strong

superexchange interaction of t2g electrons of neighboring Mn

ions. We attribute this sudden, reversible FM-to-AFM phase

transition to an interface ME effect. In contrast, the magnetic

contrast A obtained from the MOKE hysteresis loops remains

constant (see supplementary material), indicating that the

magnetization of the LSMO bulk does not change as a func-

tion of Ug (Fig. 1(d)).

The P-V curve (Fig. 1(f)) suggests that the observed

interface magnetic transition is not caused by polarization

switching of the BTO layer. There is no sudden jump in the

P-V curve, nor does the magnetic contrast A exhibit a hyster-

esis loop (Fig. 1(c)). The observed interface ME effect is

therefore not related to the polarization-induced interface

magnetic transition of LSMO, as observed for PZT/LSMO

interface.16,17 One possible explanation is that the ferroelec-

tricity is weakened exponentially with size (for more details,

see supplementary material).

Further evidence for the ME coupling mechanism is pro-

vided from the dopant dependent studies of the BTO layer.

A BTO (200 nm)/LSMO (50 nm) heterojunction is prepared

under the oxygen-rich conditions. The C-V measurements

(see supplementary material) reveal that the oxygen-richa)luepke@wm.edu
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sample has a lower electron concentration of �1017 cm�3, as

compared to the oxygen-poor sample (1018 cm�3). Figure

2(a) displays the magnetic contrast A obtained from the

MSHG hysteresis loops as a function of Ug (see supplemen-

tary material). The data in Fig. 2(a) show that the magnetic

transition is remarkably sharp, since the magnetic contrast

(magnetization M) approaches zero at the critical voltage Uc

with infinite slope. The interface magnetic transition is

shifted to a much higher critical voltage Uc ¼ þ6 V.

We note that the P-V curve of the oxygen-rich sample

(Fig. 2(b)) is comparable to the oxygen-poor sample (Fig.

1(f)), indicating further that the magnetic transition is not

driven by the FE polarization. In fact, Uc ¼ þ6 V is above the

switching voltage for the FE polarization of BTO that excludes

the influence from the ferroelectric properties. In contrast, the

I-V characteristic of the oxygen-rich sample (Fig. 2(c)) exhib-

its much more rectifying behavior than the oxygen-poor sam-

ple (Fig. 1(e)). We attribute this to the lower electron (oxygen

vacancy) concentration of the oxygen-rich sample.

Next, we discuss the microscopic mechanism of this

unique interface ME effect. Figure 3 shows a schematic of the

proposed band alignment at the n-type BTO/LSMO Schottky

junction with the positive gate voltage. The band alignment of

BTO/LSMO is based on the electron affinity of BTO

(3.9 eV)24 and metal work function of LSMO (4.8 eV),25

which makes the bands bend up at the interface. For FE polar-

ization (P) pointing away from the LSMO layer, the hole

accumulation biases the interfacial LSMO layer towards the

AFM insulating phase. The La0.7Sr0.3MnO3, however, has

stoichiometry that is far enough from the phase boundary, and

a change in magnetic order is not expected owing solely to a

build-up of screening charge.19 At the reverse gate voltage Ug,

no spin injection current occurs at the n-type BTO/LSMO

interface. The nearby majority spins of Mn3þ and Mn4þ ions

are double-exchange coupled, leading to a ferromagnetic state,

as depicted in Fig. 4(a).

On the other hand, for a positive gate voltage applied to

the LSMO layer, an electron current (J–) begins to flow

FIG. 1. (a) Schematic of the optical

measurements. MOKE measures the

bulk magnetization of the LSMO film,

while MSHG selectively probes the

interface magnetization only. (b) MOKE

hysteresis loop indicating I(-M) and

I(þM) used to determine the magnetic

contrast A using Eq. (1). Magnetic con-

trast A determined from (c) MSHG and

(d) MOKE measurements as a function

of gate voltage Ug. The BTO/LSMO

interface exhibits an FM-to-AFM phase

transition at Uc, while the bulk LSMO

maintains the FM state. (e) I-V curve

and (f) P-V curve. Decreasing (increas-

ing) gate voltages are labeled in black

(red). All the measurements are per-

formed at 80 K.
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across the BTO/LSMO heterojunction (Fig. 1(e)). Both the

spin-up and spin-down electrons will be injected from the

conduction band of BTO into the interfacial LSMO layer,

since the spin polarization of LSMO surfaces extracted from

the transport measurements usually yield less than 95%.26

The majority spin-up electrons will quickly relax to the

Fermi level and conduct through the LSMO layer (Fig. 3). In

contrast, the minority spin-down electrons will accumulate

at the interface, since the spin-hopping process t is blocked

by the strong interaction with the local spins due to the large

Hund’s rule coupling JH (Fig. 4(b)). This will weaken the

double-exchange mechanism and hence reduce the ferromag-

netic coupling between the Mn ions at the LSMO interface.

At a critical gate voltage Uc, the injected minority spin-down

electrons will reduce the double-exchange mechanism such

that the AFM super-exchange interaction will dominate, and

the interfacial LSMO layer will undergo an FM-to-AFM

phase transition. This magnetic reconstruction will occur in

the first Mn layer at the interface, since the minority spin-

down electrons will strongly scatter with electrons, phonons

and magnons, resulting in the fast spin-flip processes.27 The

primary one is the Elliott-Yafet-type spin-flip scattering,

which usually takes place on a time scale of a few hundred

femtoseconds.28 For comparison, the characteristic time-

scales of double- and super-exchange coupling, J��10 K

and 7 K,29 can be estimated via the Heisenberg relation s
¼ h/jJj � 4 ps. Hence, the magnetic reconstruction will occur

predominantly at the interface. This will also lead to spin

frustration, with the competition between AFM coupling at

the interface and FM ground state of bulk LSMO. To achieve

a more energetically favorable state, the spins in the interfa-

cial layer will cant along the spin direction of the bulk

LSMO.

The observed interfacial magnetoelectric coupling

mechanism is conceptually different from those known pre-

viously, such as FE polarization-induced changes in the lat-

tice strain or nature of chemical bonding, and/or charge

(carrier) modulation at the multiferroic heterojunction.15

Both can affect the FM moments at the interface of LSMO

layer, as expected from their critical phase-competitive

nature in magnetism. Here, the injected minority spins

through the strong Hund’s interaction with the local mag-

netic moments causing a sudden and reversible magnetic

transition at the LSMO interface. The results are important

for the transport properties of magnetic tunneling junctions

because an interfacial magnetic transition may notably

change the spin polarization of the tunneling current and

thus be decisive for tunneling magnetoresistance.

FIG. 2. (a) Magnetic contrast A determined from MSHG hysteresis loops as

a function of gate voltage Ug. The oxygen-rich BTO/LSMO heterojunction

exhibits an interface magnetic transition at Uc ¼ þ6 V, which is much

higher than for the oxygen-poor sample (Fig. 1). (b) P-V curve and (c) I-V

curve. Decreasing (increasing) gate voltages are labeled in black (red). All

the measurements are performed at 80 K.

FIG. 3. Schematic band diagram of the n-type BTO/LSMO Schottky junc-

tion for Ug > Uc, depicting the electron current J-, ferroelectric polarization

P, and considering an AFM-ordered LSMO interface layer and a half-

metallic LSMO electrode with only spin-up states at the Fermi level EF.

232903-3 Fang et al. Appl. Phys. Lett. 109, 232903 (2016)



See supplementary material for more information on

sample preparation and characterization, optical measure-

ments, and charge density estimation.
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