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GLYCOGEN CONCENTRATION IN FREEZE-DRIED TISSUES OF EASTERN OYSTER

(CRASSOSTREA VIRGINICA) USING NEAR INFRARED REFLECTANCE SPECTROSCOPY

TO DETERMINE THE RELATIONSHIP BETWEEN CONCENTRATIONS OF THE TISSUES

EXCISED FOR HISTOLOGICAL SAMPLING AND THE REMAINING TISSUES

ERIC GU�EV�ELOU,* JOSEPH L. MATT AND STANDISH K. ALLEN, JR.

Aquaculture Genetics and Breeding Technology Center, Virginia Institute of Marine Science, College of
William & Mary, PO Box 1346, Gloucester Point, VA 23062

ABSTRACT To improve the accuracy and reproducibility of the previous near infrared reflectance spectroscopy (NIRS) model

for glycogen in the oyster species Crassostrea virginica, a new model using freeze-dried samples was developed. The NIRS

glycogen calibration model was developed using 380 individual oyster samples collected between 2014 and 2016 from several

locations in the Chesapeake Bay. Homogenized freeze-dried samples were scanned in the near infrared region between 1,000 and

2,500 nm. In parallel, glycogen concentration (GC), measured as percent dry weight, was determined using laboratory-based

methods. The two sets of data allowed us to build a NIRS model based on freeze-dried oyster meats, and the model gave a strong

prediction of GC [coefficient of determination for validation (R2
val) ¼ 0.96 and residual predictive deviation (RPD) ¼ 5.2]. The

second part of the study applied the model to determine GC among 39 diploid and 40 triploid C. virginica and determined the

strength of the relationship between the GC of tissues excised for histological sampling to the remaining tissue (corpus) to verify

assumptions made throughout the literature. There was an estimated R2 ¼ 0.99 between the GC in the corpus and the tissues of

whole oyster meat. Among the samples, two factors, ploidy and size (shell height), had a significant effect on GC.

KEYWORDS: chemical analysis, near infrared reflectance spectroscopy, oyster,Crassostrea virginica, glycogen concentration,

freeze-dry

INTRODUCTION

The eastern oyster Crassostrea virginica (Gmelin, 1791) is
currently an important aquaculture species on the East Coast of
the United States of America where 95% of the production

occurs (FAO 2014). The success of oyster culture is mostly
because of the development of large-scale intensive aquaculture
using mass selection and polyploidy improvement (Frank-

Lawale et al. 2014). Currently, in Virginia, triploid oysters
represent 93% of all farmed oysters (Hudson & Murray 2014).
In oyster species, genetic improvement through triploidy leads
to a higher growth rate (Garnier-Gere et al. 2002, Nell &

Perkins 2005) and reduced fecundity (Mann 1979, Allen &
Downing 1986, Jouaux et al. 2010). These two characteristics
give economic advantages and superior market quality over

diploid oysters (Nell & Maguire 1998, Nell 2002, Guo et al.
2009). Superior meat quality is often linked to higher concen-
tration of glycogen in triploids compared to diploids. In fact,

glycogen has been linked to texture (Maguire et al. 1995) and
flavor enhancement, more particularly the umami taste
(Konosu et al. 1974, Sakaguchi & Murata 1989, Mason & Nell
1995, Hong et al. 2002). Moreover, in oyster species, glycogen

has also been linked to the survival and success of reproduction
(Gabbott & Stephenson 1974, Deslous-Paoli & Heral 1988).
For all these reasons, an accurate, reproducible, and efficient

method tomeasure glycogen concentration (GC) in oysters may
provide a means of routine quantification of this key trait in
oyster species.

Traditionally, quantification of biochemical parameters re-
quires considerable time, money, and the use of chemicals that
might be toxic to humans and the environment. Near infrared

reflectance spectroscopy (NIRS) technology is a promising tool

that may provide a faster, safer, and more eco-friendly alter-
native to traditional analytical methods in quantifying bio-

chemicals of interest. The principle of NIRS is based on

absorption of energy from the IR spectrum by the target

samples. The reflected light provides a spectral ‘‘fingerprint’’

of the composition of a sample and can be used to create

quantitative models. Last year, the Aquaculture Genetics and

Breeding Technology Center (ABC) developed two models

suited for compositional analysis of moisture and glycogen in

Crassostrea virginica (Gu�ev�elou & Allen 2016). The models

were developed using homogenized tissues and showed a strong

correlation between the predicted and measured data with

a coefficient of determination for validation (R2
val) of 0.97 for

moisture and 0.94 for glycogen. Recently, however, NIRS

models developed on freeze-driedCrassostrea gigas tissues have

claimed to reach even higher correlations and residual pre-

dictive deviation (RPD) values for glycogen (Wang et al. 2015).

A NIRS model has not yet been developed using freeze-dried

tissues ofC. virginica. Therefore, one aspect of this study was to

improve the accuracy of GCmeasurements in the eastern oyster

C. virginica via NIRS by developing a model using freeze-dried

oyster tissues.

The second part of this study applies the newly developed
NIRS model to evaluate GC variation within and among

Crassostrea virginica individuals. First, GC in two different

anatomical sections of an oyster, a standard histological cross-

section and the oyster meat remaining after dissection, were

determined. In many oyster studies, sampling involves the

dissection and histological analysis of a cross section of the

visceral mass cut near the junction of the gills and the palps.

This section, herein referred to as the slab, can be used for

several quantitative and qualitative measurements. For exam-

ple, the percent surface area occupied by the gonad provides

an estimate of reproductive effort (Heffernan & Walker 1989,
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Royer et al. 2008), whereas some staining techniques show the
level of specific gene expression or reveal the presence of pathogens

(Montagnani et al. 2001, Stokes & Burreson 2001, Fabioux et al.
2004).Most of the time, the remaining part of the oyster, hereafter
referred to as the corpus, is not kept for any further analysis, yet in
some experiments the corpus has been treated as representative of

the whole oyster (Arcos et al. 2009, Gu�ev�elou et al. 2013, Jeung
et al. 2016). The extent to which the biochemical composition and,
therefore, the glycogen of the oyster differs after the removal of the

slab is unknown. The slab and corpus are anatomically different, as
many organs are not included in the slab (e.g., adductor muscle
and labial palps). In somecases, the slabmay represent a significant

fraction of the total oyster weight.
Using the corpus as a proxy for the entire oyster can enable

associations between histological observations and biochemical
measurements that may be important in physiological studies.

Glycogen concentration is often used as an indicator of
condition, or when examined over time, as evidence for effects
of physiological processes, such as gametogenesis (Gabbott

1975, Mann 1979, Berthelin et al. 2000). Even with a strong
correlation in the GC of the corpus and the entire oyster, other
factors not specific to the condition of the oyster may have

a significant influence on the corpus GC and confound results
when not taken into account. One of these factors is the size of
the oyster. To maintain sampling consistency, slabs for histol-

ogy are often cut at a set width. The size of the slab, however,
and more importantly the ratio of the mass of the slab to the
total mass of the oyster, will increase with decreasing oyster size.

The main aim of the current study was to improve and
significantly refine the NIRS glycogen model by freeze-drying

and reanalyzing samples from Gu�ev�elou and Allen (2016) as
well as measuring using additional freeze-dried oyster samples.
To the best of our knowledge, this was the first attempt to
develop NIRS calibration to predict the composition of Cras-

sostrea virginica using freeze-dried samples. The second aimwas
to apply this new model to determine how accurate the corpus is
in representing the GC of the whole oyster meat. Lastly, it was

determined if ploidy, oyster size, and size ratio of the corpus to
the slab had an effect on the GC of the corpus.

MATERIALS AND METHODS

Sample Collection for NIRS Glycogen Model

Eastern oysters (Crassostrea virginica) ranging in shell height
(measured as maximum dimension between the hinge and the
bill) from 50.3–123.8 mm and wet meat weight from 1.3–25.4 g

were collected between January 2014 and December 2015 for
the NIRS glycogen freeze-dry model. The collected oysters were
derived from different lines, families, and ploidies (diploid,

triploid, and tetraploid) cultivated by ABCwithin the Chesapeake
Bay, USA (Table 1). For the NIRS glycogen model, the
majority of the samples (206 oysters) were used in the previous

study Gu�ev�elou and Allen (2016); from January 2014 to July
2015, wild C. virginica as well as C. virginica from several
different domesticated lines developed by ABC were sampled

TABLE 1.

Top: Samples of Crassostrea virginica used in the calibration of the NIRS model on freeze-dried tissue. Bottom: Samples used for

slab/corpus/total glycogen concentration estimation.

Line Ploidy Harvest date Location n Wet meat weight (g)

DEBY11 2N January-14 York River 25 13.0 ± 2.2

hANA11 2N April-14 York River 24 17.9 ± 3.6

hANA11 2N July-14 York River 23 10.8 ± 1.5

XB13 2N October-14 York River 22 3.7 ± 1.5

DEBY13 2N June-15 York River 25 6.5 ± 1.5

WILD 2N June-15 York River 27 6.1 ± 2.0

GEN13 4N July-15 York River 10 3.9 ± 1.0

GNL13 4N July-15 York River 10 9.2 ± 2.8

DEBY13 3N July-15 Cherrystone Inlet 10 11.3 ± 3.4

hANA13 3N July-15 Rappahannock River 10 11.2 ± 2.7

DEBY13 2N July-15 Milford Haven 10 8.1 ± 2.5

DEBY13 2N July-15 York River 10 11.2 ± 2.3

DEBY13 2N November-15 Milford Haven 20 10.9 ± 3.0

DEBY14 2N November-15 Milford Haven 18 8.9 ± 1.8

Lola14 2N November-15 Milford Haven 20 6.7 ± 2.3

DEBY13 2N December-15 Milford Haven 20 10.4 ± 3.5

DEBY14 2N December-15 Milford Haven 20 8.2 ± 1.8

Lola14 2N December-15 Milford Haven 19 4.7 ± 1.1

DEBY13 2N December-15 Milford Haven-hatchery 18 7.4 ± 1.7

DEBY14 2N December-15 Milford Haven-hatchery 20 5.9 ± 1.2

Lola14 2N December-15 Milford Haven-hatchery 20 4.6 ± 1.1

DEBY15 2N August-16 York River 19 5.8 ± 1.8

XB13 2N August-16 Rappahannock River 20 11.0 ± 2.3

DEBY14 3N August-16 York River 20 14.4 ± 2.3

DEBY15 3N August-16 York River 20 9.8 ± 3.2

Indicated are lines, ploidy, harvest date, location, number of samples (n), mean wet meat weight (g) (x)̄, and standard deviation (SD) (numbers after

line name indicate year the generation was created. WILD indicate oysters form the wild, the year of spawning is unknown.
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from four different waterways around theChesapeake Bay: York
River, Cherrystone Inlet, Rappahannock River, and Milford

Haven. In these samples, ploidies were assessed using flow
cytometry as described byMatt and Allen (2014): triploid oysters
DEBY13 and hANA13 were 100% triploids and tetraploids
oysters GEN14 and GNL14 were 100% tetraploids, (Gu�ev�elou
& Allen 2016). An additional 175 oysters were sampled exclu-
sively for this freeze-dry model. In November and December
2015, three groups of diploid oysters were used from the DEBY

and LOLA lines: DEBYs spawned in 2013, DEBYs spawned
in 2014, and LOLAs spawned in 2014. In November 2015,
18–20 oysters of each group were sampled from Milford Haven

(Mathews County, VA). The remaining oysters were separated
and either kept in Milford Haven or held under controlled
conditions at 4�C. After 1 mo, 18–20 oysters from each group
at both locations were sampled (Table 1). Oyster meats sam-

pled from January to October 2014 were shucked, weighed,
transferred to resealable storage bags, and frozen at –80�C for
8–18 mo before analyses. Oysters sampled from June 2015 to

December 2015 were shucked, weighed, transferred to a 60 ml
polypropylene jar, and frozen at –80�C before analyses. All
oyster meats were diced coarsely with scissors and then homog-

enized with an OMNI General Laboratory Homogenizer
(OMNI International, Kennesaw, GA) for 60–120 sec.

Sample Collection for Glycogen Estimation in Slab and Corpus

A total of 39 diploid and 40 triploid oysters were collected in
August 2016 to determine the GC in the slab and corpus, herein

referred to as the slab experiment. The diploids were sampled
from two lines: DEBY and XB from the York River and
Rappahannock River, respectively. The triploids were sampled
from the York River from two groups of DEBY oysters

produced in 2014 and 2015 (Table 1). The DEBY15 triploids
from the York River were verified by examining a sample of 25
oysters via flow cytometry in June 2015 and were 100% triploid.

A sample of 15 oysters was taken from the DEBY14 triploid
group in June 2015 and examined for ploidy via flow cytometry
and were also 100% triploid. Oysters were shucked and

approximately a 4 mm histological section of whole oyster
tissue was cut perpendicular to the anterior–posterior axis, just
ventral to the labial palps. The slab and corpuswere individually
weighed and transferred to a 15 ml falcon tube and a 60 ml

polypropylene jar, respectively. The samples were immediately
frozen and held at –80�C until further preparation and analyses.

Freeze-Drying, Homogenization, and Near Infrared Reflectance Spectra

Measurements

All the oyster meats collected were freeze-dried using
a Labconco FreeZone 6 or Labconco FreeZone 4.5 (Kansas
City, MO) for 72 h. The dried samples were ground to powder

using a mortar and pestle and stored at –80�C until spectra
acquisition. Between samples, the pestle and mortar were rinsed
thoroughly with water and dried. Near infrared spectra were

collected using an Analytical Spectral Device LabSpec 5000
spectrometer fitted with an ASD Pro Reflectance probe (ASD,
Inc., Boulder, CO). The probe was put in contact with the

surface of the oyster freeze-dried powder. Near infrared re-
flectance spectroscopy irradiations produced reflectance spec-
tra, which were recorded using Indico Pro Software version 5.6

(ASD, Inc., Boulder, CO). For each sample, 3–5 spectra of
50 scans were recorded at different places in the jar or falcon

tube and averaged using ViewSpec Pro Software version 6.2
(ASD, Inc., Boulder, CO). From the samples used in the
creation of the quantitative NIRS model (calibration set),
spectra acquisition was made on the whole freeze-dried oyster

meats. For the slab experiment, the slab and the corpus were
measured separately.

Glycogen Extractions

For samples used to develop a NIRS glycogen model,
glycogen extractions were performed using trichloroacetic
acid/ethanol procedure, and glycogenmeasurements were made

using a colorimetric iodine method. Both techniques are de-
scribed in Gu�ev�elou and Allen (2016). For samples used in the
calibration set, extraction and measurements were performed

on the whole freeze-dried oyster meats. Glycogen was not
extracted from samples for the slab experiment.

Creation of Quantitative NIRS Model

For the model calibration, the same procedures as described
in Gu�ev�elou and Allen (2016) were used. Spectral data analysis

and chemometric model development was performed using
GRAMS IQ software version 9.1 (Thermo Fisher Scientific,
Inc., Waltham, MA), ViewSpec Pro Software version 6.2 (ASD

Inc., Boulder, CO), and recommendations of the software user
manuals provided by ASD Inc. (Boulder, CO). The data for
spectra and associated chemical compositions were loaded into

the GRAMS IQ software. All models were developed using
coefficient of determination for calibration (R2

cal), standard
error of cross validation (SECV), and partial least squares. To
build the model, several spectral and mathematical treatments

offered by the software were tested. Preprocessing corrections
targeting pathlength,multiplicative scatter correction (Isaksson&
Næs 1988), and targeting derivatives, Savitzky–Golay (Savitzky &

Golay 1964), algorithm methods were used. The selection of
spectral regions with the most influence on the models was made
using the factor-loading plot provided by the software. Outliers

were removed from the calibration set based on examination
of the spectral residual plots and regression provided by the
software. As suggested by the software user manuals provided by
ASD Inc. (Boulder, CO), a threshold of a Mahalanobis distance

greater than three was used to confirm outliers. The best
calibration model was selected based on the highest R2

cal and
lowest SECV. The robustness of the calibration models were

tested using an independent validation. These samples represent
true unknowns that provide validation of the calibration statis-
tics. A total of 20% of oysters used in the calibration set were

randomly set aside at the beginning of modeling. The resulting
prediction was compared with the empirical data on chemical
composition. The R2

val, the standard error of prediction, and the

RPD were used to test the prediction accuracy of the models.
The calculation formula of R2

cal and R2
val were as follows:

R2

cal
=R2

val
¼

Pn
i¼1 Ypi – Yk

� �2
Pn

i¼1 Yki – Yk
� �2

The calculation formula of SECV and standard error of
prediction (SEP) were as follows:
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SECV=SEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yki – Ykpið Þ2
n

s

The calculation of the RPD were as follows:

RPD ¼ SDval

SEP

In all the following equations,Yk is the known concentration,
Yp is the predicted concentration, n is the number of samples in
the set, and SDval is the standard deviation of the validation set.

Comparison of the Glycogen Concentration in the Corpus and Whole

Oyster

After calculating the GC (% dry weight) in the slab and
corpus for the select 79 samples, theGC in the whole oyster meat
was calculated using the following equation:

whole GC ¼
ðcorpus GCÞðcorpus dry weightÞ +

ðslab GCÞðslab dry weightÞ
ðslab dry weight +
corpus dry weightÞ

The corpus GC and the whole GC were then compared

statistically. First, the whole GC was modeled from the corpus
GC using a simple linear regression. The whole GC data were
visually inspected for normality, and the model residuals were

visually examined for homogeneity of variance. The whole and
corpusGCwere also compared using a signed-rank test ata¼ 0.05,
to test the null hypothesis that the median difference between

pairs of observations was zero. Statgraphics Software (StatPoint
Technologies, Inc.) was used for these comparisons.

Determination of Factors Influencing Glycogen Concentration

To determine if shell height, ploidy, or the dry weight ratio of
the corpus: whole (whole oyster meat) significantly affected GC in
the corpus, a multiple linear regression (MLR) was used:

Yijk ¼ m + ai + bj + dk + eijk

where Yijk is theGC in the corpus, m is the overall meanGC in all

corpus samples, a is the effect of shell height, b is the effect of
ploidy, d is the effect of the dry weight ratio of corpus: whole,
and eijk is the residual error. All sampled oysters were used in the
model (n ¼ 79). The data for GC in the corpus were visually

assessed for normality, independent variables were checked for
collinearity, and the residuals were visually examined for
homogeneity of variance. Significance of the model was de-

termined using an F-test (a ¼ 0.05) and significance of each
regression coefficient was determined from the t-test statistic
(a¼ 0.05). TheMLR and associated statistical evaluations were

done using R 3.0.2 (R Core Team 2013).

RESULTS

Calibration of NIRS Model for Glycogen on Freeze-Dried Samples

To build the freeze-dried NIRS model, a calibration set of 381
sampleswas used (Table 1). In the calibration set, theGCestimated
in freeze-dried tissues was highly variable, from 0%–30.3% of

the dry weight, with a mean ± SD of 8.7% ± 6.7% (Table 2).
The best NIRS glycogen model used the wavelength range of

1,154–2,500 nm, multiplicative scatter correction, and first de-
rivative correction Savitzky–Golay at 53 points. This calibration
model had an R2

cal of 0.96 and an SECV of 1.27% (Table 3).
Independent validation showed high R2

val (¼ 0.96) and high

RPD (¼ 5.2) (Table 3).

Relationships between the GC in the Slab, Corpus, and Whole Oyster

Correlation between the Glycogen Content in Corpus and the Whole

Oyster

The glycogen concentration in samples of the slab and corpus
were estimated using the newly developed NIRS calibration
model for freeze-dried tissues. To determine if the sample was
represented by the NIRS model, the Mahalanobis distance was

used. The range and mean of the estimated GC were both
slightly higher in the slab than in the corpus as the slab GC
ranged from 2.0%–36.7% and the corpus GC ranged from

1.4%–31.9%. Themean GC ± SD in the slabwas 16.6% ± 9.2%
and 15.6% ± 8.5% in the corpus. The whole GC ranged from
2.0%–31.7%with amean and standard deviation of 15.8% ± 8.4%

(Table 2). Differences between paired observations of GC in
the corpus and whole were not normally distributed, so the
signed-rank test was used, and the null hypothesis that the

median difference between paired observations was zero was
rejected (V ¼ 1136, P < 0.05). A simple linear regression was
used to model the whole GC from the corpus GC. The model
indicated a strong correlation with anR2 of 0.99, a slope of one,

and an intercept of 0.31 (Fig. 1). From an F-test, the overall
model was determined to be significant (F¼ 5362, P < 0.05) and
the factor of corpus GC was significant (t ¼ 73.22, P < 0.05).

Two outliers were identified in the model, defined as having
a studentized residual greater than three (3.6 and 5.1). Notably,
both outliers had a much lower ratio of corpus GC: whole GC

(0.61 and 0.45) than the mean ratio (0.98).

Corpus GC, Shell Height, and Dry Weight Ratio of the Corpus to Whole

for Diploids and Triploids

CorpusGC, shell height, and dry weight ratio of the corpus to
the whole oyster meat varied between diploids and triploids

TABLE 2.

Glycogen concentration (% dry weight) measured by iodine

method inCrassostrea virginica used in calibration of the NIRS
model on freeze-dried tissue and estimated glycogen concen-

tration in the slab, corpus, total oyster meat, and ratio of

glycogen concentration in the corpus to the total oyster meat

(corpus: total oyster meat).

Set n Range x ̄ % SD

Calibration set 381 0.0–30.3 8.7 ± 6.7

NIRS predicted glycogen concentration estimation

Corpus 79 1.4–31.9 15.6 ± 8.5

Slab 79 2.0–36.7 16.6 ± 9.2

Total oyster meat 79 2.0–31.7 15.8 ± 8.4

Corpus: total oyster meat 79 0.5–1.2 0.98 ± 0.1

Indicated are number of samples (n), range, sample mean (x)̄, and

standard deviation (SD).
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used in the slab experiment. CorpusGC in diploids ranged from
1.4%–20.2% with a mean ± SD of 9.1% ± 4.7%. In triploids,

corpus GC had a larger range (10.4% ± 31.9%), mean, and SD
(21.9% ± 6.2%) (Table 4). For shell height, diploids ranged
from 58–110mm, and themean ± SDwas 85.1 ± 15.1mm (Table

4). The triploid shell height had a smaller range of 57–99 mm
and a smaller mean ± SD of 81 ± 8.4 mm. Oysters were divided
into three size classes based on the shell height for comparison

of corpusGC and shell height (Table 5). The diploids with shell
height 58–75 mm had a range of 1.4%–11.7% and a mean ± SD
of 5.3% ± 3.2% for corpus GC. For triploids with shell height
58–75 mm, the range was 10.4%–23.8% with a mean ± SD of

16.1% ± 5.0%. For corpus GC in oysters 76–88 mm in shell
height, diploids had a range of 4.0%–19.2%and amean ± SD of
8.6% ± 4.5% and triploids had a range of 12.2%–31.9% and

23.4% ± 6.0% for the mean ± SD. At a shell height 88–110 mm,
the diploids had corpus GC ranging from 4.5%–20.2% with
a mean ± SD of 11.7% ± 4.0%, and triploids had a range of

17.0% ± 31.2% with a mean ± SD of 24.2% ± 5.1%. The range

of dry weight ratio of the corpus to the whole oyster meat in
diploids was 0.67–0.84 g with a mean ± SD of 0.79 ± 0.04 g. The

results were similar for triploids, with a range of 0.67–0.82 g and
mean ± SD of 0.78 ± 0.03 g.

MLR for Factors Affecting GC in the Corpus

A MLR involving shell height, ploidy, and the dry weight

ratio of the corpus to whole oyster meat was used to explain the
corpus GC in all sampled oysters (n ¼ 79). The distribution of
corpus GC data was approximately normal, homogeneity of

variance was confirmed from examining the residuals, and no
collinearity was present. Collectively, the factors had a signifi-
cant effect on corpus GC (F ¼ 48, P < 0.05). Shell height and

ploidy had significant effects on corpus GC (t ¼ 4.1, P < 0.05;
t ¼ 11.8, P < 0.05, respectively), whereas the dry weight ratio of
corpus: whole did not (t ¼ –0.04, P > 0.05) (Table 6). The

estimated coefficients for shell height were 0.002 and 0.136 for
triploids, meaning corpus GC increased with oyster size and was
greater in triploids (Table 6). The model explained 64% of the
variation in the corpus GC (adjusted R2 ¼ 0.64).

DISCUSSION

Freeze-Dry NIRS Glycogen Model

The main objective of this study was to develop a NIRS
model to quantify glycogen in freeze-dried samples of Crassos-

trea virginica. The range of GC encountered using the colori-
metric iodine method was representative of the natural range of
variation (4.4%–39.2%) reported for C. virginica in other
studies (Lee & Pepper 1956, Lee et al. 1960, Galtsoff 1964,

Sidwell et al. 1979). This range of GC can be explained by the
variation inherent among samples used for this glycogen model,
which differ in ploidy level, lineage, harvest date, collection site,

height, meat weight, and likely gametogenic stage. Compared
with previous NIRS models, this freeze-dry model includes the
highest number of individual samples (381) built into a model

for oysters.
The present study represents the first time a NIRSmodel has

been developed on freeze-dried Crassostrea virginica samples.

Several NIRS models that use homogenized tissues of whole
oysters to measure biochemicals, notably glycogen and lipids,
have been developed on different species of oysters, for
example, Crassostrea gigas (Brown 2011, Brown et al. 2012,

Madigan et al. 2013), Saccostrea glomerata (Brown et al. 2012),
and C. virginica (Gu�ev�elou & Allen 2016). Only one study
reports NIRS models developed on freeze-dried oysters, that

being for C. gigas (Wang et al. 2015). Wang et al. (2015)

TABLE 3.

Parameters used to develop models to predict glycogen concentration (% dry weight) and resulting statistics obtained for the
calibration set for Crassostrea virginica samples.

Model parameter Calibration Independent validation

Chemical parameter

Wavelength

range

Pathlength

correction Derivative

Number of

factors (PLS) R2
cal SECV Outliers R2

val SEP RPD

Glycogen 1,154–2,500 MSC SG 1st - 53 pts 15 0.96 1.27 1 0.96 1.31 5.2

MSC, multiplicative scatter correction; PLS, partial least squares; R2, coefficient of determination; RPD, residual predictive deviation; SECV,

standard error of cross validation; SEP, standard error of prediction; SG, Savitzky–Golay smoothing.

Figure 1. Linear regression comparison between estimated glycogen

concentration (% dry weight) measured by NIRS in the corpus and in

the whole oyster meat forCrassostrea virginica sampled in the York River

and Rappahannock River, VA, in August 2016 (n$ 79). White circles

represent data for diploids and black triangles for triploids.
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developed models to quantify glycogen, protein, fat, taurine,
zinc, selenium, and ash in the gonad-visceral mass and
adductor muscle. The glycogen model reached an R2

val of

0.99, an SECV of 1.71%, and an RPD of 6.70 (Wang et al.
2015). In the present study, the glycogen model was de-
veloped on the soft tissue of the entire oyster and reached an

R2
val of 0.96 and an RPD of 5.2. These parameters confirmed

the robustness of this model. The model is considered suitable
for quantification if the R2 values are greater than 0.90 and if

the values from calibration (R2
cal) and validation (R2

val) are
similar (Urbano-Cuadrado et al. 2004). The RPD value is
also a criterion of robustness where a value greater than 3.0
indicates the model is adequate for analytical purposes for

agricultural products (Williams & Norris 2001). Although
there are several discrepancies in the material and methods
between the two studies, both reached high values of R2

val

and RPD. The main differences between these two studies are
that Wang et al. (2015) used only part of the oyster (gonad-
visceral mass and/or adductor muscle) and also sieved the

ground, freeze-dried powder on a 177 mm screen. Although
the reason behind the sieving is not completely explained, it
can be assumed the intention was to make the powder more

homogenous, and therefore may explain the higher R2
val and

RPD observed in their glycogen model. In this study, the
main difficulty occurring during the homogenization process
was the grinding of the adductor muscle. The adductor

muscle plays a crucial role of controlling the valves and is
composed of two parts: a translucent, larger section and
a smaller, white, crescent-shaped part (Eble & Scro 1996).

The muscle bands of the white part have been described to be
more compact and are surrounded by tougher connective
tissues than those of the translucent part (Galtsoff 1964).

Even after several minutes of grinding using mortar and

pestle, in some samples, relatively large pieces (>1 mm2) of the
white muscle were found in the powder. The presence of
relatively large pieces of the adductor muscle in the powder

may explain a certain imprecision in the glycogen estimation
using NIRS.

The first NIRS models developed on Crassostrea virginica

oysters included both moisture and glycogen models
(Gu�ev�elou & Allen 2016). The two models were developed
from oyster slurries of homogenized whole oyster meats, and

the glycogen model had an R2
cal of 0.94, an SECV of 0.36%,

and an of 4.1. The freeze-dry glycogen NIRS model in the
present study is an improved version of the model in Gu�ev�elou
and Allen (2016), as all of the samples used in Gu�ev�elou and

Allen (2016) were used for the present NIRS freeze-dry
glycogen model. Therefore, the freeze-dry model includes 138
samples used to build the previous model, as well as 243

additional samples. The result was a higher R2
cal value (0.96),

SECV (1.27%) and RPD (5.2).
To build a NIRS quantitative is an active process where the

developer goes through successive iterations from outlier re-
moval, choice of processing option, to region selection. Interest-
ingly, in this freeze-dried model, there was only one outlier from

the calibration set, whereas 12 outliers were identified when the
first model was developed. With more samples, this new model
presents a larger range of GC values, improving its robustness. In
this model, a broader wavelength selection appears to give better

experiment statistics (1,154–2,500 nm). In comparison, Gu�ev�elou
and Allen (2016) used a slighter wavelength selection (1,380–
2,095 nm) to develop a quantitative glycogen model on fresh

Crassostrea virginica tissues.Alternatively,Wanget al. (2015), claims
to have a better glycogenmodel on freeze-driedCrassostrea gigas
combining three distinctive wavelength regions 1,204–1,283;

1,768–1,936; and 1,978–2,167 nm. In addition, freeze-drying the

TABLE 4.

Glycogen concentration (% dry weight) in the corpus, shell height, and ratio of corpus dry weight to whole meat dry weight
for diploids, triploids, and all Crassostrea virginica samples sampled in the York River and Rappahannock River, VA, in

August 2016 (n ¼ 79).

Corpus GC (%) Shell height (mm) C:W

Range x̄ % SD Range x̄ % SD Range x ̄ % SD

Diploid 1.4–20.2 9.1 ± 4.7 58–110 85.1 ± 15.1 0.67–0.84 0.79 ± 0.04

Triploid 10.4–31.9 21.9 ± 6.2 57–99 81 ± 8.4 0.67–0.82 0.78 ± 0.03

All oysters 1.4–31.9 15.5 ± 8.5 57–110 83.0 ± 12.3 0.67–0.84 0.78 ± 0.03

GC, glycogen concentration; C, corpus; W, whole oyster meat; x,̄ sample mean; SD, standard deviation.

TABLE 5.

Glycogen concentration (% dry weight) in the corpus for diploid, triploid, and Crassostrea virginica sampled in the York River and

Rappahannock River, VA, in August 2016 (n$ 79) based on shell height.

Shell height 58–75 mm Shell height 76–88 mm Shell height 88–110 mm

n Range x̄ % SD n Range x ̄ % SD n Range x ̄ % SD

Diploid 11 1.4–11.7 5.3 ± 3.2 10 4.0–19.2 8.6 ± 4.5 18 4.5–20.2 11.7 ± 4.0

Triploid 8 10.4–23.8 16.1 ± 5.0 23 12.2–31.9 23.4 ± 6.0 6 17.0–31.2 24.2 ± 5.1

All oysters 19 1.4–23.8 9.9 ± 6.8 33 4.0–31.9 18.9 ± 8.8 24 4.5–31.2 14.8 ± 7.0

X, sample mean; SD, standard deviation.
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samples likely increased the accuracy of the measurements.Water

is an important constituent of oysters, often making up about
80% of oyster wet weight (Lee & Pepper 1956, Lee et al. 1960,
Galtsoff 1964, Sidwell et al. 1979), and removal of this moisture

allows theoperator tohavebetter control overbiochemical variation
in the concentration and temperature fluctuation. Generally, it
was easier to generate spectra using freeze-dry powder compared

with wet samples.

Case Study on Glycogen Concentration in Two Different Sections of the

Oyster

The second part of this study used the current model on
freeze-dried oysters to determine GC in two different sections of

an oyster: the histological cross-section usually used for histo-
logical analysis (slab) and the oyster meat remaining after
sampling (corpus). A cross-section of the visceral mass is often

dissected for health diagnostics and to examine the gametogenic
stage of the oyster, and often the corpus is analyzed and used
as a proxy for the whole oyster meat (e.g., Arcos et al. 2009,

Gu�ev�elou et al. 2013, Jeung et al. 2016). Although a common
proxy, the question remained, how accurate is the estimation of
GC in the corpus as a proxy for GC in the tissues of the whole

oyster? Given GC varies among different organs within the
oyster, it seemed possible that the slabGC and corpusGC could
be different, and thus the corpus and whole oyster could have
different GC. Berthelin et al. (2000) described the variation in

glycogen within Crassostrea gigas, as glycogen storage cells were
found mainly in the labial palps, mantle, and gonadal area, with
lesser numbers of cells in the gills and digestive area.

In the present study, a strong correlation (R2 ¼ 0.99) was
found between the GC in the whole oyster meat and in the
corpus, however, the median difference was not zero, as de-

termined by a signed-rank test. The difference suggests that
measuring the corpus slightly underestimates the GC in the
entire oyster, as the mean and median GC of the corpuswas less
than that of the whole oyster meat (means: 15.6% and 15.8%,

respectively; medians: 13.7 and 14.7, respectively). Despite the
statistical difference, the magnitude of the difference is small
and the correlation between the GC in the whole oyster and

corpus is strong (R2 ¼ 0.99) so that the corpus appears as an
accurate proxy for the GC in the whole oyster meat.

The second aspect of the present investigation in using the

corpus as a proxy for the entire oyster meat was to deter-
mine what factors could influence the GC of the corpus.
One consideration was that the GC of the corpus could be

significantly affected by the sampling process. For instance, the
relative ratio of the size of the corpus to the whole oyster meat

(0.67–0.84 in dry weight) differs with the overall size of the oyster.
Given these differences between the slab and the corpus were
observed. For one, theGCwas higher in the slab than in the corpus
(16.6% ± 9.2% and 15.6% ± 8.5%, respectively). Also, a higher

Mahalanobis estimation was observed in the slab in comparison
with the corpus (2.9 and 1.6, respectively), suggesting the slab was
not aswell represented by the glycogenNIRSmodel built onwhole

oyster samples. Both differences suggest the slab composition is
slightly different than that of the corpus, and therefore the relative
size of the slab could significantly affect the estimation ofGC in the

corpus. Other considerations were that the ploidy and the total size
of the oyster could affect GC. From a MLR, no significant effect
from the size ratio in the corpus to the whole oyster meat on GC
was found, but GC in the corpus was significantly affected by both

ploidy and the height of the oyster.
In both diploid and triploid oysters, the corpusGC increased

with the height of the animal, suggesting that bigger oysters

have higher GC. Size has been found to affect GC in several
bivalves where smaller, younger adults contain significantly
lower GC than larger, older adults (for Ostrea edulis see

Holland & Hannant 1974, 1976, for Chlamys islandica see
Sundet & Vahl 1981, and for Cerastoderma edule see Navarro
et al. 1989, Newell & Bayne 1980). The difference in GC

between small and large animals may be partly explained by
the relatively higher weight-specific metabolic demand in
smaller oysters (Dame 1972, Thompson & Bayne 1974). Higher
weight-specific metabolic demand could reduce the ability of an

oyster to build andmaintain glycogen reserves asmore glycogen
is required for metabolic needs.

Despite previous findings that size affects GC, many prior

studies have measured GC in oysters to assess condition or
reproductive status (e.g., Perdue et al. 1981, Allen & Downing
1986) without taking into account the possible bias associatedwith

using oysters of different sizes. Although it is logical that faster
growing, larger oysters may be in relatively better condition than
smaller oysters, a size metric such as shell height does not in itself
dictate a health status. Size does, however, appear to affect weight-

specific metabolic demand, and therefore a GC in a small oyster
may indicate a different health status than the sameGC in a larger
oyster. Size may, therefore, be a confounding variable in studies

comparing GC among oysters. In the future, a size metric, such as
shell height, should be considered as a covariate in studies
involving glycogenmeasurements, even when glycogen is reported

in percent, as was done in the current study.
From the 39 diploid and 40 triploid oysters sampled in this

study, triploids had a significantly higher mean concentration

of glycogen. In conditions conducive to gametogenesis, higher
concentrations of carbohydrates have been found in triploid
Crassostrea gigas compared with diploid counterparts, which
has been linked to the reduced fecundity in triploid oysters

(Allen & Downing 1986, Shpigel et al. 1992). The relationship
between the storage and utilization of carbohydrates, which in
oysters is primarily glycogen, and gametogenesis in oysters is

well established, as diploid oysters expend stored glycogen
reserves during gametogenesis. In diploid Crassostrea virginica,
glycogen content has generally been observed to reach a max-

imum before the onset of gametogenesis and fall to a minimum
immediately after spawning (Chipman 1947, Engle 1951, Barber
et al. 1988). The maximum and minimum can, therefore, occur

TABLE 6.

Factors, coefficient estimates, standard error (SE), t-test
statistic (t), and P value (P) for the intercept and independent

variables used in a multiple linear regression to model corpus
glycogen concentration in Crassostrea virginica sampled in
the York River and Rappahannock River, VA, in August 2016

(n$ 79).

Factors Coefficient estimates SE t P

Intercept –0.069 0.008 –8.445 <0.05

Shell length 0.002 0.001 4.055 <0.05

Ploidy (triploid) 0.136 0.012 11.784 <0.05

Corpus: Whole 0.006 0.189 –0.035 >0.05
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within as little as threemonths in diploids (Allen&Downing 1986).
Allen and Downing (1986) observed a much different pattern of

glycogen utilization in triploids, as glycogen content in triploids
decreased more steadily and remained higher than in diploids over
the spring and summer. Diploids and triploids were sampled in
August for this study, which is within the spawning window for

oysters in the lower part of the Chesapeake Bay (USA) and may
explain the higher concentration of glycogen in sampled triploids.

The first applications of the NIRS model to compare GC in

freeze-driedCrassostrea virginica samples had some limitations.
For one, oysters were only sampled at one time period inAugust
of 2016. Owing to changes in GCs seasonally, oysters sampled

in the fall, winter, or spring will certainly vary. In this study, the
majority of the 39 sampled diploid oysters had little visible
gonadal development (no reproductive data were collected).
The results may be especially different if oysters were sampled

earlier in the year while expending significant gametogenic
effort. Extensive gonadal development may concentrate high
levels of glycogen, lipids, and proteins to the viscera in the form

of gametes, increasing the difference in the biochemical com-
position of the slab and the corpus. The diploid outliers
identified in this study, which had a much lower ratio of GC

in the corpus as compared with the entire oyster (0.45 and 0.61
versus the mean of 0.98), could possibly be from advanced
gonadal development.

In this study, a NIRS model to measure glycogen in freeze-
dried Crassostrea virginica oyster tissues was successfully de-
veloped and applied to determine variation in GC within and
among oysters. The strong (R2

val ¼ 0.96) correlation between

the concentration of glycogen measured via NIRS and tradi-
tional methods indicates that this model provides a useful

alternative to costly and time consuming traditional laboratory-
based methods. More broadly, NIRS technology has potential
of multicomponent analysis. That is, once models have been
built, future, current, and older spectra can be used to qualify or

quantify new parameters. From the application of this new
model, a strong correlation in GC in the corpus and the whole
oyster meat was determined, and the average GC in the corpus

was nearly the same as that in the whole oyster meat. After
determining the corpus as an effective proxy for the whole oyster
meat, the corpusGCwas used to determine a significant positive

relationship between shell height and GC and that ploidy had
a significant effect on GC.
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GUÉVÉLOU ET AL.332



oyster Crassostrea gigas reared in contrasting natural environments.

Mol. Ecol. 11:1499–1514.

Gu�ev�elou, E. & S. K. Allen, Jr. 2016. Use of Near Infrared Reflectance

Spectroscopy (NIRS) for the rapid compositional analysis of di-, tri-, and

tetraploid easternoysters (Crassostrea virginica).Aquaculture459:203–209.

Gu�ev�elou, E., A. Huvet, C. E. Galindo-S�anchez, M. Milan, V. Quillien,

J.-Y. Daniel, C. Qu�er�e, P. Boudry & C. Corporeau. 2013. Sex-

specific regulation of AMP-activated protein kinase (AMPK) in the

Pacific oyster Crassostrea gigas. Biol. Reprod. 89:100.

Guo, X., Y. Wang, Z. Xu & H. Yang. 2009. Chromosome set

manipulation in shellfish. In: Burnell, G. & G. Allan, editors. New

technologies in aquaculture: improving production efficiency, qual-

ity and environmental management. Cambridge, UK: Woodhead

Publishing. pp. 165–194.

Heffernan, P. B. & R. L. Walker. 1989. Quantitative image analysis

methods for use in histological studies of bivalve reproduction.

J. Molluscan Stud. 55:135–137.

Holland, D. L. & P. J. Hannant. 1976. The glycogen content in winter

and summer of oysters, Ostrea edulis L., of different ages. J. Cons.

Int. Explor. Med 36:240–242.

Holland, D. L. & P. J. Hannant. 1974. Biochemical changes during

growth of the spat of the oyster, Ostrea edulis L. J. Mar. Biol. Ass.

U.K. 54:1007–1016.

Hong, L., W. Xiaoxue, Z. Bin, T. Haiqing, X. Changhu & X. Jiachao.

2002. Comparison of taste components between triploid and diploid

oyster. J. Ocean Univ. Qingdao 1:55–58.

Hudson, K. & T. Murray. 2014. Virginia shellfish aquaculture situation

and outlook report. Results of the 2013 Virginia shellfish aquaculture

crop reporting survey (VIMS marine resource report), Sea Grant

Marine Advisory Service. Virginia Sea Grant Marine Extension

Program Virginia Institute of Marine Science, Gloucester Point, VA.

Isaksson, T. & T. Næs. 1988. The effect of Multiplicative Scatter

Correction (MSC) and linearity improvement in NIR spectroscopy.

Appl. Spectrosc. 42:1273–1284.

Jeung, H.-D., S. Keshavmurthy, H.-J. Lim, S.-K. Kim & K.-S. Choi.

2016. Quantification of reproductive effort of the triploid Pacific

oyster, Crassostrea gigas raised in intertidal rack and bag oyster

culture system off the west coast of Korea during spawning season.

Aquaculture 464:374–380.

Jouaux, A., C. Heude-Berthelin, P. Sourdaine, M. Mathieu & K.

Kellner. 2010. Gametogenic stages in triploid oysters Crassostrea

gigas: irregular locking of gonial proliferation and subsequent

reproductive effort. J. Exp. Mar. Biol. Ecol. 395:162–170.

Konosu, S., K. Watanabe & T. Shimizu. 1974. Distribution of

nitrogenous constituents in the muscle extracts of eight species of

fish. Nippon Suisan Gakk. 40:909–915.

Lee, C. F., C. H. Kurtzman & L. Pepper. 1960. Proximate composition

of Southern oysters - factors of variability. In: Commercial Fisheries

Review. Washington D.C.: U. S. Fish and Wildlife Service, United

States Department of the Interior.

Lee, C. F. & L. Pepper. 1956. Composition of Southern oysters. In:

Commercial Fisheries Review. Washington D.C.: U. S. Fish and

Wildlife Service, United States Department of the Interior.

Madigan, T., A. Kiermeier, J. Carragher, M. de Barros Lopes & D.

Cozzolino. 2013. The use of rapid instrumental methods to assess

freshness of half shell Pacific oysters, Crassostrea gigas: a feasibility

study. Innov. Food Sci. Emerg. Technol. 19:204–209.

Maguire, G. B., N. C. Gardner, J. A. Nell, G. N. Kent & A. S. Kent.

1995. Studies on triploid oysters in Australia. 2. Growth, condition

index gonad area, and glycogen content of triploid and diploid

Pacific oysters, Crassostrea gigas, from oyster leases in Tasmania,

Australia. Aquaculture 137:357.

Mann, R. 1979. Some biochemical and physiological aspects of growth

and gametogenesis in Crassostrea gigas and Ostrea edulis grown at

sustained elevated temperatures. J. Mar. Biol. Ass. U.K. 59:95–110.

Mason, C. & J. Nell. 1995. Condition index and chemical composition

of meats of Sydney rock oysters (Saccostrea commercialis) and

Pacific oysters (Crassostrea gigas) at four sites in Port Stephens,

NSW. Mar. Freshw. Res. 46:873–881.

Matt, J. L. & S. K. Allen, Jr. 2014. Heteroploid mosaic tetraploids of

Crassostrea virginica produce normal triploid larvae and juveniles as

revealed by flow cytometry. Aquaculture 432:336–345.

Montagnani, C., F. Le Roux, F. Berthe & J.-M. Escoubas. 2001.

Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from

the Pacific oyster Crassostrea gigas with a potential role in wound

healing and defense mechanisms. FEBS Lett. 500:64–70.

Navarro, E., J. I. P. Iglesias & A. Larra~naga. 1989. Interannual

variation in the reproductive cycle and biochemical composition

of the cockle Cerastoderma edule from Mundaca Estuary (Biscay,

North Spain). Mar. Biol. 101:503–511.

Nell, J. A. 2002. Farming triploid oysters. Aquaculture 210:69–88.

Nell, J. A.&G. B.Maguire. 1998. Commercialisation of triploid Sydney

rock and Pacific oysters. Part 1: Sydney rock oysters. Final report to

Fisheries Research and Development Corporation.

Nell, J. A. & B. Perkins. 2005. Studies on triploid oysters in Australia:

farming potential of all-triploid Pacific oysters, Crassostrea gigas

(Thunberg), in Port Stephens, New South Wales, Australia. Aqua-

cult. Res. 36:530–536.

Newell, R. I. E. & B. L. Bayne. 1980. Seasonal changes in the physiology,

reproductive condition and carbohydrate content of the cockleCardium

(¼Cerastoderma) edule (Bivalvia: Cardiidae).Mar. Biol. 56:11–19.

Perdue, J. A., J. H. Beattie & K. K. Chew. 1981. Some relationships

between gametogenic cycle and summer mortality phenomenon in

the Pacific oyster (Crassostrea gigas) in Washington State.

J. Shellfish Res. 1:9–16.

R Core Team. 2013. R: a language and environment for statistical

computing. Vienna,Austria:RFoundation for Statistical Computing.

Royer, J., C. Seguineau, K.-I. Park, S. Pouvreau, K.-S. Choi &

K. Costil. 2008. Gametogenetic cycle and reproductive effort

assessed by two methods in 3 age classes of Pacific oysters,

Crassostrea gigas, reared in Normandy. Aquaculture 277:313–320.

Sakaguchi, M. & M. Murata. 1989. Seasonal variations of free amino

acids in oyster whole body and adductor muscle. Nippon Suisan

Gakk. 55:2037–2041.

Savitzky,A.&M. J. E.Golay. 1964. Smoothing and differentiation of data

by simplified least squares procedures. Anal. Chem. 36:1627–1639.

Shpigel, M., B. J. Barber & R. Mann. 1992. Effects of elevated

temperature on growth, gametogenesis, physiology, and biochemi-

cal composition in diploid and triploid Pacific oysters, Crassostrea

gigas Thunberg. J. Exp. Mar. Biol. Ecol. 161:15–25.

Sidwell, V. D., A. L. Loomis & R. M. Grodner. 1979. Geographic and

monthly variation in composition of oysters.Mar. Fish. Rev. 41:13–17.

Stokes, N. A. & E. M. Burreson. 2001. Differential diagnosis of mixed

Haplosporidium costale andHaplosporidium nelsoni infections in the

eastern oyster, Crassostrea virginica, using DNA probes. J. Shellfish

Res. 20:207–213.

Sundet, J. H. & O. Vahl. 1981. Seasonal changes in dry weight and

biochemical composition of the tissues of sexually mature and immature

Iceland scallops,Chlamys islandica. J.Mar. Biol. Ass.U.K. 61:1001–1010.

Thompson, R. J. & B. L. Bayne. 1974. Some relationships between

growth, metabolism and food in the mussel Mytilus edulis. Mar.

Biol. 27:317–326.

Urbano-Cuadrado, M., M. D. Luque de Castro, P. M. P�erez-Juan, J.

Garc�ıa-Olmo & M. A. G�omez-Nieto. 2004. Near infrared reflec-

tance spectroscopy and multivariate analysis in enology: determi-

nation or screening of fifteen parameters in different types of wines.

Anal. Chim. Acta 527:81–88.

Wang,W., J. Yang, Q. Li, R. Ji, X. Gong&L. Li. 2015. Development of

calibration models for rapid determination of chemical composition

of Pacific oyster (Crassostrea gigas) by near infrared reflectance

spectroscopy. J. Shellfish Res. 34:303–309.

Williams, P. & K. H. Norris. 2001. Near-infrared technology: in the

agricultural and food industries, 2nd edition, St. Paul, MN: Amer-

ican Association of Cereal Chemists.

NIRS GLYCOGEN MODEL FOR FREEZE-DRIED CRASSOSTREA VIRGINICA 333


	Glycogen Concentration In Freeze-Dried Tissues Of Eastern Oyster (Crassostrea Virginica) Using Near Infrared Reflectance Spectroscopy To Determine The Relationship Between Concentrations Of The Tissues Excised For Histological Sampling And The Remaining Tissues
	Recommended Citation

	tmp.1531152459.pdf.lpbNN

