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PRE–IMAGES OF EXTREME POINTS OF THE

NUMERICAL RANGE, AND APPLICATIONS

ILYA M. SPITKOVSKY AND STEPHAN WEIS

Abstract. We extend the pre-image representation of exposed points of the numerical range of
a matrix to all extreme points. With that we characterize extreme points which are multiply
generated, having at least two linearly independent pre-images, as the extreme points which are
Hausdorff limits of flat boundary portions on numerical ranges of a sequence converging to the
given matrix. These studies address the inverse numerical range map and the maximum-entropy
inference map which are continuous functions on the numerical range except possibly at certain
multiply generated extreme points. This work also allows us to describe closures of subsets of
3-by-3 matrices having the same shape of the numerical range.

Mathematics subject classification (2010): 47A12, 54C10, 62F30, 94A17.
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