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abstract: Hatching plasticity occurs in response to a wide range
of stimuli across many animal taxa, including annelids, arthropods,
mollusks, and chordates. Despite the prominence of echinoderms in
developmental biology and more than 100 years of detailed exami-
nation of their development under a variety of conditions, environ-
mentally cued hatching plasticity has never been reported in the
phylum Echinodermata. Here we report plasticity in the timing and
stage of hatching of embryos of the sand dollar Echinarachnius parma
in response to reductions in salinity. Embryos of E. parma increased
their time to hatching more than twofold in response to ecologically
relevant salinity reductions, while maintaining an otherwise normal
developmental schedule. Embryos that experienced the greatest delay
in hatching time emerged from the fertilization envelope as four-
arm pluteus larvae rather than hatching as blastulae or early gastrulae.
Salinity manipulations across multiple male-female pairs indicated
high variability in hatching time both within and among clutches,
suggesting significant intraspecific variation in developmental re-
sponses to salinity.

Keywords: echinoderms, hatching, plasticity, development.

Introduction

Hatching plasticity is a widespread phenomenon in which
the environment induces a change in the duration of the
embryonic period or the stage at which hatching occurs
(Warkentin 2011). Hatching plasticity is frequently adap-
tive in nature and can provide embryos with a short-term
means for avoiding a detrimental environment (e.g., pre-
dation; Vonesh and Bolker 2005). Environmentally cued
hatching can be exhibited as either early onset of hatching
or delay of hatching. For example, spitting spiders, Scytodes
pallida, are egg brooders that are prey for the jumping
spider, Portia labiata. In response to chemical cues from
jumping spiders, adult female S. pallida induce early-onset

* These authors contributed equally to this note.
†

Corresponding author; e-mail: jdallen@wm.edu.

Am. Nat. 2013. Vol. 181, pp. 264–272. � 2012 by The University of Chicago.

0003-0147/2013/18102-53860$15.00. All rights reserved.

DOI: 10.1086/668829

hatching in their embryos to increase survival rates of both
parent and offspring (Li 2002; Li and Jackson 2003, 2005).
Delay of hatching occurs in the California grunion, Leu-
resthes tenuis, an intertidal fish whose embryos delay
hatching for up to 1 month until the flood tide returns,
an adaptive response that ensures that hatching occurs
during immersion in water (Martin 1999; Martin et al.
2011).

Among deuterostomes, only vertebrate representatives
of the phylum Chordata have been shown to exhibit hatch-
ing plasticity (Warkentin 2011). Perhaps the best known
studies come from amphibians (Warkentin 2005, 2011).
Embryos of the red-eyed tree frog, Agalychnis callidryas,
hatch early in response to physical disturbance of clutches
by egg-eating snakes (Warkentin 1995). Similarly, in re-
sponse to pathogenic water molds, the embryos of the
American toad, Bufo americanus, hatch early to avoid in-
fection (Touchon et al. 2006). In contrast, embryos of the
streamside salamander, Ambystoma barbouri, delay hatch-
ing in the presence of chemical cues from flatworms, which
selectively prey on larvae rather than on eggs (Sih and
Moore 1993). Despite the apparent prevalence of hatching
plasticity in vertebrates, this phenomenon has not been
described in nonvertebrate chordates (i.e., Cephalochor-
data and Urochordata) or other deuterostome phyla (i.e.,
Hemichordata and Echinodermata; Warkentin 2011).

Like the offspring of other marine invertebrates, echi-
noderm and hemichordate eggs and embryos frequently
develop within a variable aquatic environment where there
are unique selective pressures on the evolution of life his-
tories (Strathmann 1990). Among all marine invertebrate
phyla, examples of hatching plasticity are rare, but they
do exist. For example, embryos of the polychaete Boccardia
proboscidea rely on the female to rip open egg capsules;
in cold temperatures, females will delay liberation of their
embryos and nearly double the embryonic period, yet the
stage at which embryos hatch is earlier than that at warm
temperatures (Oyarzun and Strathmann 2011).
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Hatching Plasticity in Echinoderms 265

In echinoderms, previous studies have reported alter-
ations in hatching time as a response to temperature and
salinity changes (Roller and Stickle 1985, 1994; Stickle and
Diehl 1987). Warmer temperatures generally yield faster
development, and decreased salinity tends to slow devel-
opment in some species of sea urchins (Roller and Stickle
1985, 1993). However, none of these environmental fluc-
tuations changed the stage at which embryos hatched.
Across echinoderms, hatching stage is reported to be rel-
atively invariant, with hatching occurring at the blastula
stage in echinoids and no later than the gastrula stage in
any echinoderm with free-swimming larvae (Staver and
Strathmann 2002). The onset of swimming at the blastula
stage is thought to be an adaptive mechanism for avoiding
both benthic and pelagic predators (McDonald 2004,
2012). Despite these and other studies on form and func-
tion at hatching in echinoderms, no studies have reported
environmentally induced plasticity of the hatching stage
in this phylum.

Here, we describe hatching-stage plasticity in the sand
dollar Echinarachnius parma, the first report of its kind
among nonvertebrate deuterostomes and one of only a
handful among all marine invertebrate phyla. In the course
of studying the effects of salinity fluctuations on fertili-
zation and early development in E. parma (Allen and Pe-
chenik 2010), we observed that changes in salinity fre-
quently lead to unusual developmental patterns, including
the production of twins (J. D. Allen and A. F. Armstrong,
unpublished manuscript) and significant delays of hatch-
ing. Nearshore, shallow subtidal, and intertidal habitats
have rapid and frequent changes in dissolved oxygen, sa-
linity, and temperature due to tides, weather, and fresh-
water input (Stickle and Denoux 1976; Breitburg 1990;
Sanford 2002; Kaplan et al. 2003). It would therefore not
be surprising to find potentially adaptive developmental
responses to environmental fluctuations among organisms
that live in these variable habitats. After our unexpected
initial observations, we conducted a set of experiments to
test the effects of temperature and salinity on hatching
timing and stage in E. parma, a species that experiences
wide variation in temperature and salinity throughout the
course of the spawning season.

Material and Methods

Preliminary Observations

Adult sand dollars were collected from the intertidal area
of Cedar Beach on Orr’s Island, Maine (43�45′N, 69�58′W)
in June and July of 2010. Spawning was induced by in-
tracoelomic injection of 1 mL of 0.5 M KCl, and after eggs
were rinsed in 0.45-mm filtered seawater (FSW), gametes
were combined in bowls containing 100 mL of FSW. With

heated water baths and a flow-through seawater system,
three different temperature treatments were created: am-
bient (17�–18�C), 19�, and 21�C. Embryos were reared in
glass bowls of 26-psu (practical salinity units) FSW. After
8 h of development, but before hatching, embryos were
transferred from bowls into six-well plates containing 10
mL of 30-psu FSW in order to track consequences of
temperature and salinity stress during embryonic devel-
opment. Three separate trials were run during the summer
of 2010, each on separate days with unique male-female
pairs.

Adult Collection and Spawning Methods

After the unexpected observations of 2010, we conducted
detailed studies of the effects of temperature and salinity
on hatching in Echinarachnius parma. In the fall of 2011,
adult E. parma were collected from St. Helena Island, Ston-
ington, Maine (44�07.58′N, 68�38.43′W) and shipped over-
night to the College of William and Mary in Williamsburg,
Virginia, where they were maintained in recirculating
aquaria at 12�C and 32 psu. Spawning was induced by
intracoelomic injection of 1 mL of 0.5 M KCl. To collect
gametes, adults were inverted over glass beakers containing
32-psu artificial seawater (ASW; Instant Ocean, Aquarium
Systems, Mentor, OH). In each trial, gametes from a dis-
tinct male-female pair were combined. Animals were not
reused. Eggs were rinsed with 32-psu ASW before
fertilization.

Experimental Setup

Glass bowls containing 100 mL of ASW were placed in
water baths to maintain temperatures of 18�, 20�, or 22�C.
Depending on the number of eggs released, 2–3 mL of
egg suspension were pipetted into each bowl, for a final
density of approximately 50 eggs mL�1. Eggs were allowed
5–10 min to acclimate to the salinity/temperature treat-
ment before 50 mL of dilute sperm were added. After at
least 30 min, fertilization was scored according to the pres-
ence of a fertilization envelope. Trial 1 consisted of three
replicate bowls of 26- and 32-psu salinity placed in each
of the three temperature treatments. Trials 2 and 3 con-
sisted of four replicate bowls of 26-, 29-, and 32-psu sa-
linity, each in a single temperature treatment of 18�C. The
single temperature treatment of 18�C was chosen because
the delay of hatching was greatest at this temperature in
trial 1 and because this temperature is also the closest to
natural spawning temperatures for E. parma in Maine (J.
D. Allen, personal observation).
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Figure 1: Hatched early gastrula at 22 h after fertilization (A) and
four-arm pluteus larva delaying hatching at 37 h after fertilization
(B). Arrowhead points to left posterodorsal arm. Note the retention
of the fertilization envelope in B. Both offspring were reared at 18�C
and 32 psu. Scale bar p 100 mm.

Data Collection and Analysis

To determine the percentage of embryos that had hatched
at a given time, three subsamples of 50 embryos were
examined from each bowl. Bowls were sampled in a ran-
dom order at each time point. The water in the bowl was
gently swirled with a disposable pipette to ensure that
unhatched embryos on the bottom of the bowl and
hatched swimming embryos were evenly distributed. Sam-
ples were transported gently to reduce the likelihood of
mechanically induced hatching. Each sample was then
placed under a dissecting microscope and scored for the
number of hatched and unhatched embryos. Each sample
was discarded after being scored for hatching to ensure
that any cues from stressed embryos had no effect on the
embryos remaining in the original treatment bowl.

During trial 3, one additional subsample was taken from
each bowl to compare larval sizes at 28 h after fertilization.
Length and width were measured in 10 hatched and 10
unhatched embryos from each replicate bowl. Measure-
ments were taken at 100# magnification under a com-
pound microscope fitted with an ocular micrometer.

We used the binomial logistic regression procedure in
SPSS (ver. 18.0) in order to analyze the effects of age,
temperature, salinity, and their interactions on the occur-
rence of hatching. The mixed-models procedure in SPSS
was used to analyze the fixed effects of salinity, hatching
status, and their interaction on embryo size. Replicate
bowls were modeled as random effects. Post hoc tests with
a Bonferroni correction were employed to distinguish be-
tween the three salinity treatments when significant main
effects of salinity were detected.

Results

Preliminary Observations

In the three preliminary trials in 2010, delay of hatching
was seen to some extent in all trials. A delay of up to 32
h after fertilization was seen in approximately 50% of em-
bryos. Whereas Echinarachnius parma larvae normally
hatch at the blastula or early gastrula stage, we frequently
observed the development of skeletal rods and arms char-
acteristic of the pluteus larval stage before hatching (fig.
1). However, since this phenomenon was unexpected, and
not the subject of the original study, we did not closely
monitor embryos for precise hatching times.

Effects of Salinity and Temperature on Hatching Time

In 2011, trial 1 examined delay of hatching at various
temperature and salinity combinations (fig. 2A). Along
with age, salinity (26 or 32 psu) and temperature treat-
ments (18�, 20�, or 22�C) and their interactions were sig-

nificant predictors of hatching status (fig. 2A; table 1). In
particular, embryos in the 18�C treatments exposed to 26-
psu ASW exhibited significantly delayed hatching relative
to those exposed to 32 psu (fig. 2A). A Hosmer-Lemeshow
test of the logistic regression model we used suggested a
significant lack of fit to the data ( ). However, sinceP ! .001
the Hosmer-Lemeshow statistic is known to yield signif-
icant lack of fit under conditions of large sample sizes (as
is the case here, with 40,500 embryos scored for hatching
status) and since our model accurately predicted hatching
status in 91% of cases, we continued to use this model
for our analysis (Kramer and Zimmerman 2007). As ex-
pected, both age and temperature had strong effects on
hatching status, but salinity also had a significant effect
on the likelihood of hatching at a given age: for every unit
increase in salinity, the odds of hatching increased by a
factor of 15.525 (table 1).

Trials 2 and 3 examined delay of hatching across salinity
treatments of 26, 29, and 32 psu (fig. 2B, 2C). As in trial
1, the 26-psu treatment exhibited the greatest delay in
hatching. The logistic regression model used to analyze
trial 2 again had a significant lack of fit, according to a
Hosmer-Lemeshow test ( ), yet it predicted hatch-P ! .001
ing status with 94% accuracy. Age, salinity, and their in-
teraction were found to be significant predictors of hatch-
ing status (table 1). Similarly, the logistic regression model
created from trial 3 exhibited a significant lack of fit to
the data (Hosmer-Lemeshow test; ) yet predictedP ! .001
hatching status with 85% accuracy. As in trial 2, the factors
of age, salinity, and their interaction were found to be
significant predictors of hatching. In trial 3, unlike the
other trials, treatments never reached 100% hatching. Em-
bryo hatching was followed closely for 88 h after fertili-
zation. After this point, embryos were assessed periodically
until 5 days after fertilization, by which time unhatched
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Figure 2: Percent hatching of Echinarachnius parma embryos during
salinity and temperature treatments. Each panel represents a single
trial using an independent male-female pair. Trial 1 (A) assessed
hatching under combinations of two salinity and three temperature
treatments. Circles, triangles, and squares represent 18�, 20�, and 22�C
treatments, respectively. Trials 2 (B) and 3 (C) tested three salinities
at 18�C. In all trials, age, salinity, temperature, and their interactions
were significant predictors of hatching (table 1).

embryos had died within their fertilization envelopes at
the four-arm pluteus stage.

Comparisons of Larval Size

Length was measured in 10 hatched and 10 unhatched
embryos from each replicate of trial 3 at 28 h after fer-

tilization (fig. 3A). Hatched embryos were significantly
longer than unhatched embryos (mixed-effects ANOVA:

, ). Based on the estimated marginalF p 81.350 P ! .0011, 18

means for the mixed-effects ANOVA, the average un-
hatched length was mm, while the average191.2 � 1.3
hatched length was mm. For both hatched and207.8 � 1.3
unhatched embryos, length increased significantly as sa-
linity decreased (mixed-effects ANOVA: ,F p 10.7342, 18

). Post hoc tests with Bonferroni correction re-P p .001
vealed significant differences between embryo length at 26
psu and both 29 psu ( ) and 32 psu ( ;P p .004 P p .002
fig. 3A). There was no significant effect of the interaction
between hatching status and salinity on embryo length
(mixed-effects ANOVA: , ).F p 2.559 P p .1052, 18

In contrast, hatched embryos were not significantly
wider than unhatched embryos at the same age (mixed-
effects ANOVA: , ; fig. 3B). Based onF p 3.580 P p .0911, 9

the estimated marginal means from the mixed-model
ANOVA, the average unhatched width was 184.1 � 1.9
mm, while the average hatched width was mm.188.9 � 1.9
There was, however, a significant effect of salinity on em-
bryo width (mixed-effects ANOVA: ,F p 11.628 P p2, 9

; fig. 4). Post hoc tests with Bonferroni correction.003
revealed that embryos at 26 psu were significantly wider
than those at 32 psu ( ). Embryos at 26 psu wereP p .003
not significantly wider than those at 29 psu ( ),P p .250
nor were embryos at 29 psu significantly wider than those
at 32 psu ( ). There was no significant effect ofP p .057
the interaction between hatching status and salinity on
embryo width (mixed-effects ANOVA: ;F p 0.0632, 9

).P p .940

Discussion

Our report describes the first incidence of plasticity in
hatching stage in the phylum Echinodermata. A delay in
hatching was first observed in clutches from three male-
female pairs of Echinarachnius parma during the summer
of 2010. Subsequent examination of an additional three
male-female pairs from a different location showed that
reduced salinity consistently increased hatching time and
resulted in hatching as pluteus larvae rather than as blas-
tulae. These results suggest that delay of hatching may be
a common phenomenon in E. parma in response to
changes in salinity.

Salinity stress is a common issue in nearshore animals,
as salinity can fluctuate greatly in intertidal and shallow
subtidal areas (Wheatley 1988). In particular, one of the
populations of E. parma used in our study experiences
salinities ranging from 21 to 32 psu over the course of the
spawning season, suggesting that embryos may commonly
experience the degree of salinity reductions tested here
(Allen and Pechenik 2010). Previous work on salinity tol-
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Table 1: Logistic regression analysis of the effects of temperature, salinity, and embryo age on
hatching success

Predictor b SE b Wald’s x2 df P eb(odds ratio)

Trial 1:
Age 5.934 .193 944.066 1 !.001 377.554
Temperature 35.834 1.415 641.329 1 !.001 3.653 # 1015

Salinity 2.742 .110 623.978 1 !.001 15.525
Age # temp �2.786 .097 826.927 1 !.001 .062
Age # salinity �1.225 .051 587.990 1 !.001 .294
Salinity # temp �.219 .007 900.007 1 !.001 .803
Age # temp # salinity .092 .003 693.730 1 !.001 1.096

Trial 2:
Age 1.313 .136 93.615 1 !.001 3.718
Salinity .717 .074 93.140 1 !.001 2.048
Age # salinity �.069 .005 192.116 1 !.001 .933

Trial 3:
Age .216 .008 645.720 1 !.001 1.241
Salinity .145 .014 107.985 1 !.001 1.156
Age # salinity �.010 .001 1,041.644 1 !.001 .990

Note: Trials represent independent male-female pairs.
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Figure 3: Larval length (A) and width (B) of hatched and unhatched
larvae in trial 3. Circles represent mean � SE length or width of
larvae at 28 h after fertilization. Larvae at lower salinity were sig-
nificantly longer and wider than larvae at high salinity. Hatched larvae
were significantly longer than but no different in width from un-
hatched larvae (see “Results” for statistical treatment).

erance in echinoid larvae has shown that larval survival is
reduced when salinity is lowered (Roller and Stickle 1985,
1994) and that larvae will move within the water column
to avoid low salinities (Sameoto and Metaxas 2008). Our
work complements these previous studies by showing that
embryos may reduce exposure to low salinities not only
through active swimming but also by delaying hatching.

The trend of a more extreme delay in hatching at lower
salinities was present in all trials, but the degree of delayed
hatching varied greatly across male-female pairs, suggest-
ing genetic variation in the degree of response to salinity
fluctuations. Significant intraspecific variation in repro-
ductive patterns may be a common phenomenon in echi-
noderms (Turner and Lawrence 1979) and in marine in-
vertebrates more generally (Marshall et al. 2008), but
studies of early development frequently examine offspring
responses from only a single male-female pair. Similarly,
intraspecific variation in larval responses to environmental
cues is infrequently investigated but appears to influence
rates of larval cloning (Vaughn 2009) and likely other en-
vironmental responses as well.

The mechanism by which sand dollars delay hatching
is unknown, but we predict that it is related to one or
both of two likely mechanisms: (1) heterochronic shifts in
production of hatching enzymes and (2) delay in the pro-
duction and/or function of cilia. Hatching in echinoderms
requires embryos to break free of their fertilization en-
velope through a combination of ciliary beating and chem-
ical degradation by release of a proteolytic hatching
enzyme (Lepage and Gache 1990; Mozingo 1993). Hatch-
ing-enzyme transcription is under zygotic control, and the
hatching-enyzme gene is the first zygotic gene expressed
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Hatching Plasticity in Echinoderms 269

Figure 4: Representative hatched and unhatched larvae of Echinarachnius parma at 37 h after fertilization. Unhatched larvae from the 32-
psu (A), 29-psu (B), and 26-psu (C) treatments are shown in the top row. Hatched larvae from the 32-psu (D), 29-psu (E), and 26-psu
(F) treatments are shown in the bottom row. Scale bar p 100 mm.

in the sea urchin embryo (Ghiglione et al. 1997). There
is a narrow window within which hatching-enzyme tran-
scription occurs. Activation of transcription begins at the
eight-cell stage, peaks at the 128-cell stage, and is com-
pleted by the prehatching blastula stage (Lepage and Gache
1990). This suggests that if embryos fail to hatch shortly
after this window of expression, then they may not be able
to produce more hatching enzyme in later stages. However,
it is not known whether hatching enzyme may be stored
for later release. Examination of the timing of expression
of the gene(s) responsible for producing the hatching en-
zyme at low salinity would allow a formal test of the hy-
pothesis that heterochronic shifts of enzyme production
drive hatching plasticity. Similarly, if the fertilization en-
velope has been chemically degraded but cilia formation
or activity is inhibited, then hatching may not proceed.
Rapid increases in salinity (from 30 to 60 psu) can cause
cilia to fall off of echinoderm embryos (Auclair and Siegel
1966). Ciliary activity may also be inhibited in hypotonic
seawater, as occurs in bivalve mollusks and ctenophores
(Wells et al. 1940). Although the fertilization envelope of
echinoderms has limited permeability (40 kDa; Wong and
Wessel 2008), it is permeable to salts in seawater (Harvey
1956), and we have observed significant swelling of the
fertilization envelope immediately after immersion in sea-
water of reduced salinity (J. D. Allen and A F. Armstrong,
unpublished data). On the basis of these observations, even
embryos that remain within the fertilization envelope may

be shielded only temporarily from salinity changes in the
external environment. It is, therefore, possible that the
delay of hatching that we observed was not an adaptive
response but rather a direct physiological consequence of
shifts in salinity. However, since cilia are able to regrow
after deciliation by salinity shock (Stephens 1995) and
since acclimation to salinity changes presumably occurs in
the hours before initial cilia growth, salinity-induced re-
ductions in ciliary function may be an unlikely explanation
for delay of hatching.

While still intact, the fertilization envelope may protect
developing embryos from pathogens or toxins (Wong and
Wessel 2008), but is unlikely to provide protection from
the planktonic predators that commonly consume eggs
and embryos (Vaughn and Allen 2010). It has previously
been demonstrated that embryos of marine invertebrates
that are unprotected during development have faster cell
cycles and shorter times to hatching and swimming
(Strathmann et al. 2002). Because swimming by echinoid
blastulae is sufficient to move embryos up into the water
column (McDonald 2012) and because the water column
appears to be a region of relative safety for marine embryos
and larvae (Allen and McAlister 2007), early swimming
may be the result of natural selection to reduce mortality
on marine invertebrate embryos through migration into
the plankton (Strathmann 2007). Therefore, staying in the
fertilization envelope longer may be adaptive only if out-
side conditions are sufficiently stressful to outweigh the
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benefits of swimming as a mechanism for negatively buoy-
ant eggs and developmental stages to avoid benthic
predators.

The increase in larval length but not width in hatched
relative to unhatched larvae suggests that unhatched larvae
were not simply slow growers but rather that retention of
larvae within the fertilization envelope diminished growth
of larval arms (fig. 4). The mechanism for this diminished
arm growth appeared to be simple physical obstruction of
arm extension. In rare cases, one arm would protrude
through the envelope while the other remained within it;
in these cases, the protruding arm was much longer than
the enclosed one. Since arm length is correlated with ciliary
band length and clearance rates in pluteus larvae (Hart 1991;
Hart and Strathmann 1994), another cost of delayed hatch-
ing may be reduced feeding capacity as early pluteus larvae.

Despite their generally stenohaline distribution, echi-
noderms must be able to deal with short-term fluctuations
in salinity in order to persist in nearshore habitats. Pre-
vious work has shown spatial avoidance of low-salinity
waters in echinoid larvae (Sameoto and Metaxas 2008),
but reduction of low-salinity exposure through delayed
hatching has not previously been shown. From the prev-
alence of sand dollars and other echinoderms in nearshore
habitats, delay of hatching could potentially be an adaptive
response for avoiding release of embryos into a physio-
logically stressful environment.

The reunification of the fields of ecology, evolution, and
development as “eco-evo-devo” allows biologists an op-
portunity to provide a more complete view of how de-
velopment proceeds in natural settings and how variation
in the environment affects both individuals and popula-
tions (Gilbert 2001; Gilbert and Bolker 2003). The field
of eco-evo-devo is especially important for developing pre-
dictions of how a changing climate may cause major eco-
logical shifts and/or novel developmental patterns (Sultan
2007). As eco-devo-evo continues to emerge as a disci-
pline, finding appropriate study systems is crucial. It has
been proposed that the organisms best suited for eco-evo-
devo research include those whose development is well
documented and who experience significant environmen-
tal variation in their natural habitats (Ledon-Rettig and
Pfennig 2011). Echinoid echinoderms perfectly fit this de-
scription, as they have a long history in developmental
biology and, by living near shore (often intertidally), they
experience significant environmental fluctuations on a
short, developmentally relevant timescale. The environ-
mental stress that echinoderms deal with in the short term
by virtue of living in nearshore habitats is often greater
than the changes in average environmental conditions that
are expected to occur under future climate conditions.
Studying developmental responses to environmental stress
(e.g., temperature and salinity fluctuations) may be par-

ticularly fruitful in echinoderms and other nearshore an-
imals that currently exist in highly variable environments
(e.g., California grunion; Matsumoto and Martin 2008),
as they may yield insights into the potential of organisms
to deal with future extreme environmental conditions. The
results of our study not only show an exciting new ob-
servation in sand dollar development but also highlight
how studying development under different ecologically rel-
evant environmental conditions can yield insights into the
biology of even well-studied taxa.
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Unhatched larvae of the sand dollar Echinarachnius parma in response to exposure to reduced salinity. Development to the larval stage
while still within the fertilization envelope (seen here as fine circles around each embryo) has not previously been reported in any echinoderm
species. Photograph by Jonathan D. Allen.
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