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1 Introduction

With the advent of gauge-gravity duality, the study of classical fields in non-trivial gravita-

tional spacetimes, and in particular in Anti-de Sitter (AdS) space, has received an incredible

amount of attention. It is then natural to ask, what are the effects of quantum fluctuations

around the classical gravitational saddle point? One obvious question along these lines is

to consider the semi-classical calculation of the quantum gravity partition function, the

study of which has a long history [2]. In the context of gauge-gravity duality, the gravity

partition function in asymptotically AdS spacetimes is equated with the partition function

of a strongly coupled conformal field theory (CFT) in the “large-N” limit. One-loop con-

tributions to the quantum gravity partition function then correspond to “1/N” corrections

to the partition function of the boundary field theory.1

A particularly interesting application of gauge-gravity duality is in the study of strongly

coupled large-N gauge theories at finite temperature. In the duality such systems are de-

scribed by an asymptotically anti-de Sitter2 (AdS) black hole. One-loop corrections in

such a black hole background then give a window into finite-N corrections to thermody-

namic and transport properties of the gauge theory plasma. Such finite-N corrections are

of interest as there are phenomena in the field theory which simply cannot be seen in the

strict large-N limit. For example, hydrodynamic long-time tails are not visible in classical

gravity at infinite-N [5] but manifest as a one-loop correction in the bulk [6]. Other in-

teresting examples include quantum oscillations in the presence of a magnetic field [7, 8],

restoration of the Coleman-Mermin-Wagner theorem [9], non-Fermi liquid response [10, 11]

and quantum electron stars [12–14].

The computation of one-loop partition functions in black hole spacetimes is notoriously

difficult. In [1], Denef, Hartnoll and Sachdev (DHS) gave a beautiful expression for the

one-loop determinant of a bulk field. The result of [1] expresses the one-loop determinant

as a very explicit function in terms of a sum of the quasinormal frequencies of the bulk

fluctuation. This function uniquely specifies the temperature dependence of the one-loop

determinant, up to a set of ultra-violet (UV) local terms that can be computed in an

asymptotic expansion. [1] provides several examples where the quasinormal mode spectrum

can be computed analytically and then used to compare their formula with known results

in simple cases (see also [15–21]).

One drawback of applying the method of [1] is that for most black hole spacetimes

one does not have an analytic expression for the quasinormal mode spectrum. Instead one

typically computes the spectrum numerically. This poses a difficulty if one would like to

compute the one-loop determinant using the results of [1]. The difficulty lies in the fact that

the quasinormal mode sum which computes the determinant is UV divergent. In practice,

these UV divergences manifest themselves in two ways. The quasinormal mode spectrum

1In the most familiar example, N refers to the rank of an N = 4 supersymmetric SU(N) gauge theory,

and the leading “1/N” correction scales as 1/N2. There are known stringy corrections of order λ1/2/N2

(where λ is the ’t Hooft coupling) [3, 4] in addition to λ0/N2 one-loop gravity corrections that are the type

of correction explored in the current paper.
2We will focus on Schwarzschild anti-de Sitter black holes, in which case the dual gauge theory is a

conformal field theory at finite temperature.
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depends on two types of quantum numbers. The first labels the momentum transverse to

the radial direction of the black hole. And the second is a quantum number associated

with the radial direction, which in the Euclidean AdS black hole is the normal mode

number associated with requiring normalizable conditions at the asymptotic boundary.

UV divergences of the one-loop determinant occur when either of these quantum numbers

becomes large. A consistent and pragmatic method of regularizing these divergences is the

main goal of this paper.

Our goal is to extend the formalism of [1] to include spacetimes for which the quasi-

normal mode spectrum is not known analytically. We will describe a method which uses

asymptotic WKB expressions of the quasinormal frequencies to effectively regulate the large

radial momentum divergences. For the large transverse momentum divergence, we develop

a new heat kernel expansion which is valid for both fixed and asymptotically-large trans-

verse momenta. This expansion, together with the details of organizing the calculation of

the one-loop determinant to separate analytically-computable divergences from finite con-

tributions (which may be computed numerically), are the primary technical contributions

of this paper. As such, many results of the derivation of the heat kernel (although tedious)

are included in appendix A.

This paper is organized as follows. We begin with some preliminaries in section 2 to

introduce notation. In section 3 we briefly recap the results of [1] and outline our numerical

procedure for computing the determinant. Section 4 is devoted to understanding the UV

asymptotics of one-loop determinants at fixed values of quantum numbers such as the

momentum along the spatial boundary directions. In section 5 we provide an explicit

numerical calculation of the one-loop determinant in the three dimensional BTZ black

hole. Comparison of our result with known analytic results in this case provides a modest

proof of principle of our numerical procedure of computing one-loop determinants. Finally,

in section 6 we conclude with a discussion of future directions and potential caveats of

applying our prescription in more complicated scenarios.

2 Preliminaries

In order to set up our discussion of one-loop determinants we first set conventions and detail

the types of background geometry and fluctuations that we will analyze. We will study

asymptotically-AdS black holes/branes. Our primary example is the AdS Schwarzschild

black hole3 with metric given by

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2

d−1, (2.1)

where

f(r) = 1− M

rd−2
+
r2

L2
(2.2)

3The black brane solution is given by the same metric (2.1) with f(r) = r2

L2 (1− rdh
rd

) and dΩ2
d−1 replaced

by the (normalized) flat metric d~x2

L2 .

– 3 –
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and dΩ2
d−1 is the metric on Sd−1. We refer to the space transverse to the r-t plane as the

transverse space. We will be interested in one-loop corrections to the Euclidean partition

function at temperature T . It is natural to Wick rotate to periodic time as t = −iτ where

τ has period given by the inverse temperature, so that τ ∼ τ + 1/T.

The principal example in this paper will be scalar fluctuations about this background.

The Laplacian acting on a scalar φ is

∇2φ =
1
√
g
∂µ(
√
ggµν∂νφ)

=

[
1

rd−1
∂r

(
rd−1f(r)∂r

)
+

1

f(r)
∂2
τ +

1

r2
∇2

Ω

]
φ. (2.3)

A massive scalar will then satisfy the equation of motion

−∇2φ+m2φ = 0. (2.4)

In the context of holography, for asymptotically AdSd+1 spacetimes the mass m is related

to the conformal dimension ∆ of dual operators. For scalar operators this relation is simply

m2L2 = ∆(∆− d).

3 One-loop determinants

In this section we present a method to compute one-loop determinants for fluctuations

about static spacetimes and, in particular, about asymptotically-AdS black holes and black

branes. We will begin with an overview of the results in [1], which provide a method of

computing determinants using the quasinormal mode fluctuations about the background

geometry. We will then describe a proposal for extending these results to examples in which

the quasinormal modes are only known numerically. In particular, for the cases of inter-

est, the one-loop determinant can be separated into contributions from fixed-momentum4

sectors. The main obstacle in applying the formalism of [1] in such situations is that each

fixed-momentum determinant is divergent and, furthermore, the subsequent sum over mo-

menta is also divergent. We will see that the first of these divergences can be handled by

an appropriate WKB analysis of the quasinormal modes at fixed momentum k, while the

second divergence will be addressed later, in section 4.

3.1 One-loop determinants and quasinormal modes

To begin, let us discuss the DHS formalism [1]. In asymptotically AdS spacetimes, the

quasinormal mode spectrum of fluctuations provides a natural basis for linearized pertur-

bations about a background spacetime.5 From the holographic point of view, the quasi-

normal modes determine the poles of the retarded Greens function of the operator dual

4We will use the term momentum to refer to the quantum numbers of eigenmodes on the transverse

space. For the case of black branes these correspond to continuous momenta along the transverse directions,

whereas for black holes they label the eigenvalues of spherical harmonics.
5It should be emphasized that in a Lorentzian context the quasinormal modes do not form a complete

basis for arbitrary solutions of the Laplacian. In terms of discussing the contributions to the Euclidean path

integral we require analyticity of solutions to the Laplacian in imaginary time. In this case the quasinormal

modes are related to normal modes which can form a complete basis of such solutions [22].

– 4 –
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to the field in question. In this sense, the quasinormal modes provide the closest thing to

quasi-particle-like excitations in the strongly coupled dual field theory.

The key insight of DHS [1] is to realize that the quasinormal mode spectrum of an

operator also determines the poles of the corresponding one-loop determinant.6 This can

be seen by treating the partition function of an operator as a meromorphic function of its

conformal dimension, ∆, which (for scalar fields) is related to the mass of the perturbation

by m2L2 = ∆(∆ − d). The poles of the one-loop determinant correspond to zero modes

of the differential operator in Euclidean signature. Normalizability of a zero mode near

the boundary (r → ∞) fixes the behavior of the solution in terms of ∆. Matching this

behavior with regularity of the zero modes at the origin of the Euclidean black hole then

relates the values of ∆ to the thermal frequencies ωn = 2πnT, for integral n. When this

relation is Wick rotated back to Lorentzian signature it becomes identical to the condition

for the existence of a quasinormal mode. Therefore, as a complex function of ∆, the poles

of the partition function will occur precisely when ∆ is such that a quasinormal mode

(as a function of ∆) coincides with a Wick rotated thermal frequency. If we denote the

quasinormal frequencies by z?(∆), this means that poles of the one-loop determinant occur

at complex values of ∆ such that

z?(∆) = iωn = 2πiTn. (3.1)

As described in [23], given a meromorphic function of ∆ that has the correct poles one can

determine the entire function by taking the limit ∆ →∞ and matching to an appropriate

asymptotic of the function. As long as one can compute the large ∆ asymptotics of the

determinant, using for example the heat kernel, one can use this procedure to completely

determine the one-loop determinant in terms of the quasinormal mode frequencies.

Assuming the meromorphicity properties described in the previous paragraph, DHS [1]

proposed the following form for the partition function of a complex scalar7 field:

Z = ePol(∆)
∏
z?, z̄?

√
z?z̄?

4π2T
Γ

(
iz?

2πT

)
Γ

(
−iz̄?
2πT

)
, (3.2)

where z? (z̄?) are the quasinormal frequencies with ingoing (outgoing) boundary conditions

at the horizon and T is the Hawking temperature of the background. The function Pol(∆)

is a polynomial of ∆ which is to be determined by matching to a large mass (large ∆)

expansion of the partition function. The function (3.2) is constructed such that it has poles

whenever a quasinormal mode frequency z?(∆) coincides with a Wick rotated normal mode

frequency ω = 2πiTn.

6We will use the terms partition function and one-loop determinant interchangeably. For a bosonic

operator, the one-loop determinant appears in the denominator of the partition function and zero modes

of the differential operator correspond to poles of the partition function. For fermions, the determinant

appears in the numerator and zero modes correspond to zeroes of the partition function.
7[1] also determines the form of the determinant for arbitrary bosonic and fermionic operators. For

simplicity we will focus on scalar operators in the present work.

– 5 –
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3.2 Fixed-momentum determinants

In most non-extremal, finite temperature geometries the quasinormal mode spectrum is

not analytically known and one has to resort to numerical methods. One expands the

fluctuations in eigenfunctions of the transverse Laplacian and numerically determines the

quasinormal mode spectrum. The end result is a spectrum of frequencies at a fixed value of

the transverse momentum quantum number. In the case of a flat boundary geometry the

transverse fluctuations are plane waves (for spherical transverse spaces these are spherical

harmonics) and the state is labeled by the momentum k. For brevity, we will refer to

quantities at fixed transverse quantum number as being at fixed k, even when referring to

non-flat boundary geometries.

In order to compute the one-loop determinant one must sum over the spectrum at

fixed k, and then later perform a sum over the momentum eigenvalues k. The sum over

the fixed-k quasinormal mode spectrum will be divergent. However, as long as one can

determine the large frequency asymptotics (say in a WKB approximation), this divergence

can be subtracted to yield a finite sum.

To make this discussion precise, factorize the partition function into fixed momentum

sectors, writing

Z =
∏
k

Zk (3.3)

where Zk is the fixed-k partition function. Equation (3.2) can be written in this form, with

Zk given by

Zk = ePolk(∆)
∏

z?(k), z̄?(k)

√
z?(k)z̄?(k)

4π2T
Γ

(
iz?(k)

2πT

)
Γ

(
−iz̄?(k)

2πT

)
, (3.4)

or equivalently

lnZk = Polk(∆) +
∑

z?(k), z̄?(k)

ln

[√
z?(k)z̄?(k)

4π2T
Γ

(
iz?(k)

2πT

)
Γ

(
−iz̄?(k)

2πT

)]
. (3.5)

The only difference with (3.2) is that (i) the quasinormal modes in the sum are restricted

to the values at fixed k and (ii) the exponential prefactor now contains a polynomial of ∆

with k-dependent coefficients.

The quasinormal mode sum in (3.5) is divergent, which would be problematic for a

numerical calculation. Our general strategy will be to find a good analytic approximation

to the divergent piece of the sum (which can then be regulated) and to only use numerics

for the convergent piece that remains. The divergence of (3.5) comes from arbitrarily large

quasinormal mode frequencies. For those frequencies, one may generically use the WKB

expansion (instead of numerics) to determine the frequencies. In the WKB expansion, the

quasinormal mode frequencies are labeled by an integer mode number n ≥ 0 such that the

– 6 –
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quasinormal modes have an expansion of the schematic form8

z?,n(k)

2πT
' A

[
n+B(∆, k) + C(∆, k)n−δ + · · ·

]
(3.6)

where A is a dimension dependent complex constant, B(∆, k) and C(∆, k) are complex

functions of ∆ and k, and δ is a positive dimension-dependent number. For scalar fields

in AdS-Schwarzschild the functions B(∆, k) and C(∆, k) are polynomial in ∆ and k. In

particular for AdS-Schwarzschild black branes in d > 2, one finds the leading terms in the

expansion to be

B(∆, k) =
∆

2
− 1

2
− i ln 2

2π
, C(∆, k) ∝ k2, δ =

d− 2

d− 1
(3.7)

for scalar fields (the case we will focus on). The “ · · · ” in (3.6) represents terms with higher

negative powers of n, which can be systematically determined in this expansion. For scalars

in AdS-Schwarzschild, the coefficients of such terms will also be polynomial in ∆ and k.

We should note that for the BTZ black hole in d = 2, which is our test case in section 5,

the expansion (3.6) actually terminates such that C(∆, k) and the “ · · · ”s in (3.6) all van-

ish. In fact, the exact quasinormal mode frequencies are known for arbitrary spin fields in

the BTZ black hole background. In order to extend our results to higher dimensional black

holes one must compute the expansion (3.6) at least to high enough order in 1/n to re-

move all divergences in the sum over n in the fixed-k partition function. This would require

employing techniques such as those in [25, 28] to compute the asymptotic quasinormal spec-

trum to higher order in perturbation theory. We hope to return to this in the near future.

Once the z∗,n(k) are known to sufficiently high order in 1/n one can compute the di-

vergent terms in (3.4) and explicitly subtract them off. Doing so we can define a subtracted

sum for the logarithm of the partition function,

lnZsub
k = lnZQNM

k − (lnZQNM
k )div. (3.8)

Above, ZQNM
k (QNM for “quasinormal mode”) refers to the original divergent sum in (3.5)

without the Polk(∆) term (to which we return shortly),

lnZQNM
k =

∑
z?(k), z̄?(k)

ln

[√
z?(k)z̄?(k)

4π2T
Γ

(
iz?(k)

2πT

)
Γ

(
−iz̄?(k)

2πT

)]
. (3.9)

(lnZQNM
k )div is defined as the asymptotic (large n) WKB expansion of lnZQNM

k , truncated

at a finite order that includes all terms that diverge when summed as in (3.9). The

superscript “sub” on lnZsub
k stands for “subtracted.”

8This is the form for scalar fields in asymptotically-AdS black holes [24, 25]. Other bosonic fluctuations

presumably have a similar structure, although the ∆ and k-dependence of such an expansion for arbitrary

spin fields has not been worked out. In addition, there are known cases, such as fermionic fields in d > 2

and gauge fields in d = 3, where this expansion develops lnn terms which include logarithmic dependence

on functions of k and ∆ [25–27].

– 7 –
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The expression (3.8) is, by construction, a finite sum over n. It will differ from (3.5)

by k-dependent polynomial terms in ∆ which can be absorbed into Polk(∆). We call the

new polynomial P̃olk(∆). The log of the full fixed-k partition function can then be written

lnZk = P̃olk(∆) + lnZsub
k . (3.10)

We will operate under the assumption that this factorization is possible — in particular that

the fixed-k partition function satisfies the same analyticity properties as the full partition

function, so that P̃olk(∆) can be determined from a local expression in the r-τ plane

transverse to the spatial boundary directions and can be calculated in the ∆ →∞ limit.

In the next section we will describe how one can use a modified heat kernel to determine

the ultraviolet (UV) large-∆ asymptotics at fixed-k in order to determine P̃olk(∆) and,

furthermore, how to utilize this heat kernel to regulate the sum over momentum states.

4 Regularization and a fixed-k heat kernel

We now move on to the discussion of regularizing the fixed-k partition function described in

the previous section. There are two issues with the fixed-k partition function as expressed

in (3.4), even after subtracting out the large frequency asymptotics as in (3.8). First,

it is divergent as a product over k. This requires a method of determining the large-k

asymptotics of the fixed-k partition function and consistently subtracting the divergent

contributions to (3.4) when summed over all k. Second, in order to determine P̃olk(∆) we

will need a way of determining the large-∆ asymptotics of the fixed-k partition function.

We will find that both of these issues can be taken care of with an appropriate fixed-k heat

kernel. The goal of this section is to construct this fixed-k heat kernel.

4.1 Reducing the Laplacian to a two-dimensional problem

To derive the form of the fixed-k heat kernel it is convenient to rewrite the Laplacian as an

effective two-dimensional operator, where the k dependence is explicitly packaged into a

potential term as opposed to arising as a quantum number due to the background geometry.

Concretely, consider again the scalar Laplacian in the AdS-Schwarzschild black

hole (2.3). We can expand in eigenmodes of the transverse Laplacian. These satisfy

∇2
Ωd−1

ϕk(x⊥) = −k2ϕk(x⊥), (4.1)

where k2 labels the eigenvalues of the transverse Laplacian. In particular, k2 is dimension-

less and given by k2 = p2L2 and k2 = l(l + d − 2), with l a non-negative integer, for flat

and spherical boundaries, respectively. Expanding in these modes schematically as

φ(r, τ, x⊥) =
∑
k

φk(r, τ)ϕk(x⊥) (4.2)

the Laplacian acting on the modes φk becomes

∇2φk =

[
1

rd−1
∂r

(
rd−1f(r)∂r

)
+

1

f(r)
∂2
τ −

k2

r2

]
φk. (4.3)

– 8 –
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It is natural to rescale φk(r, τ) =
(
L
r

)(d−1)/2
ψk(r, τ). In terms of ψk, the Laplacian is

∇2ψk(r, τ) =

[
∂r (f(r)∂r) +

1

f(r)
∂2
τ −

k2

r2
− (d− 3)(d− 1)f(r)

4r2
− 2(d− 1)f ′(r)

4r

]
ψk(r, τ).

(4.4)

We can rewrite this as

∇2ψk =
[
∇2

(2) − U(r)
]
ψk, (4.5)

where ∇2
(2) is the Laplacian for a scalar in the two-dimensional background

ds2
(2) = f(r) dτ2 +

dr2

f(r)
. (4.6)

Here, f(r) is given in (2.2) and we have defined the potential

U(r) =
k2

r2
+

(d− 3)(d− 1)f(r)

4r2
+

2(d− 1)f ′(r)

4r
. (4.7)

For later convenience, we also quote the value for the Ricci curvature

R(2)ab
= −1

2
f ′′(r)gab. (4.8)

of the two-dimensional metric (4.6). Note that the geometry (4.6) is just the naive di-

mensional reduction of the original geometry (2.1). This represents the effective geometry,

along with the potential (4.7), that each fixed-k mode function probes. Here we use it as

a construct so that we can apply standard heat kernel techniques to determine the asymp-

totics of the fixed-k partition function. We therefore re-interpret the fixed-k partition

function Zk for a scalar in the AdS black hole/brane spacetime as the partition function

of a scalar in the two dimensional geometry (4.6) with the potential (4.7).

4.2 The heat kernel

A very useful method of determining the UV asymptotics of one-loop determinants is to

compute the heat kernel associated with the differential operator. (For a comprehensive

review of heat kernel techniques, see [29].) Considering a generic two-derivative operator

D, one constructs the heat kernel as the solution K(x, x′; t) of

(∂t +D +m2)K(x, x′; t) = 0, (4.9)

where we take D to act on the variable x and impose the boundary condition K(x, x′; 0) =

δ(d+1)(x, x′).

Given a solution K(x, x′; t), the logarithm of the one-loop determinant is determined as

ln det(D +m2) = const−
∫
dd+1x

√
g

∫ ∞
0

dt

t
K(x, x; t), (4.10)

where “const” corresponds to an undetermined overall normalization of the partition func-

tion. It is possible to solve the heat kernel in a small-t expansion, which we refer to
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as the heat kernel expansion. This is particularly useful in determining the high energy

asymptotics of the heat kernel, and hence, also of the partition function. The heat kernel

expansion gives the following expression for K(x, x′; t) in the x→ x′ coincidence limit,9

K(x, x; t) = (4πt)−(d+1)/2
∑
j=0

a2j(x) tje−tm
2
, (4.11)

where the coefficients a2j(x) are local functions of the background geometry constructed

out of curvature invariants. Taking the operator to be D = −(∇2 +E), with ∇2 the scalar

Laplacian and E an arbitrary potential, the first several heat kernel coefficients take the

universal form [29]

a0(x) = 1, (4.12a)

a2(x) =
1

6
R+ E, (4.12b)

a4(x) =
1

72
R2− 1

180
RµνR

µν+
1

180
RµνρσR

µνρσ+
1

30
∇2R+

1

6
E;µ

µ+
1

6
RE+

1

2
E2. (4.12c)

The above expansion is sufficient for discussing the UV asymptotics of the partition function

for d ≤ 4. In particular, if the UV contribution to the integral in (4.10) is regulated by a

strict cut-off t > 1/Λ2 then for d ≤ 4 all divergences in the Λ→∞ limit are contained in the

terms present above. These terms also suffice in determining the large mass (large ∆) limit

of the determinant. Precisely this type of regulator was used in [1] to determine Pol(∆)

by matching the large ∆ limits of the heat kernel and the logarithm of (3.2), completely

fixing the normalization of the free energy (up to an overall ∆-independent constant). For

our purposes we will need a slightly refined version of the heat kernel, as we discuss in the

following subsection.

In order to compare and contrast with the discussion we will have in the next subsec-

tion, it is worth taking a moment to briefly review why the heat kernel expansion can be

used to study the large mass limit. Combining (4.10) and (4.11) formally gives

ln det(D+m2) = const−(4π)−(d+1)/2

∫
dd+1x

√
g
∑
j

a2j(x)

∫ ∞
0

dt

t
tj−(d+1)/2e−tm

2
. (4.13)

For large enough j, the t integral is dominated by t ∼ m−2 and so is of order m−2j+d+1:

the expansion in j produces an expansion in m−2.

4.3 The heat kernel at fixed k

In order to regulate the asymptotics of the fixed-k partition function we will need an

expression for the heat kernel which has the correct asymptotic behavior both at large ∆

9In this equation we explicitly write the full dependence on (x, x). Aside from appendix A, in the

rest of the paper we will always write expressions in the coincidence limit and will therefore suppress the

second index.
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and large k. In particular, the product (3.3) over k sectors gives10

lnZ =
∑
k

lnZk =

∫
dd−1k

(2π)d−1
lnZk. (4.14)

Since numerics are not well suited to divergent expressions, we will need to be able to sub-

tract out all the contributions to lnZk that give divergent contributions to the integral (or

sum) over k. For that, we will need to find the large-k expansion of lnZk up to order k−(d−1).

Recall that our strategy for working at fixed k is to interpret the problem as a 2-

dimensional11 problem (4.5)–(4.6) in r and τ . Correspondingly, the generic heat kernel

expression (4.10) becomes

lnZk = 1
2 ln det

k

(
−∇2 +m2

)
= 1

2 ln det
(
−∇2

(2) + U +m2
)

=
1

2

∫
d2x
√
g(2)

∫
dt

t
Kk(x; t)

(4.15)

with x = (r, τ) here and

Kk(x; t) =
1

4πt

∞∑
j=0

a2j(x)tje−tm
2

(4.16)

and the E in expressions (4.12) for the coefficients corresponding to

E = −U(r) = −k
2

r2
− (d− 3)(d− 1)f(r)

4r2
− 2(d− 1)f ′(r)

4r
. (4.17)

However, to reproduce the correct behavior at large k, it is necessary to modify the

standard heat kernel expansion. To see this, note that E above contains a term propor-

tional to k2. The coefficient a2n(x) in the heat kernel expansion (4.12) contains a term

proportional to En, which in our application is therefore proportional to k2n. Each sub-

sequent order in the expansion will contain higher and higher powers of k2, and so the

usual heat kernel expansion (4.11) breaks down in the large-k limit. Fortunately, there is

a natural workaround.

Consider again the generic heat kernel expansion of an operator of the form

D = −(∇2 + E). First note that the terms with bare powers of E in the heat kernel

expansion (4.11)–(4.12) appear to exponentiate to etE . So let us reorganize the heat kernel

expansion to include the factor etE explicitly:

Kk(x; t) =
1

4πt

∞∑
j=0

b2j(x) tje−tm
2+tE(x), (4.18)

10 The
∑
k and

∫
k

forms in (4.14) assume that lnZk is normalized with discrete k and continuum k

conventions respectively. In this section, we will treat
∑
k and

∫
dd−1k/(2π)d−1 interchangeably and leave

the normalization implicit. When we take up the BTZ black hole in section 5, k will be discrete, and

explicit formulas will use the corresponding normalization for lnZk. In the appendices, we will occasionally

discuss the black brane limit, where k is continuous, but we will not bother to be explicit about changes

to normalization factors that appear in switching between the discrete and continuum k normalizations

involving the size
∫
dd−1x of the space of transverse coordinates.

11In the language of appendix A, the effective dimension is deff + 1 = 2.
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with

b0(x) = 1, (4.19a)

b2(x) =
1

6
R(2), (4.19b)

b4(x) =
1

72
R(2)

2 − 1

180
R(2)µν

R(2)
µν +

1

180
R(2)µνρσ

R(2)
µνρσ +

1

30
∇2

2R(2) +
1

6
E;µ

µ (4.19c)

[where all of the quantities, such as curvature tensors and covariant derivatives, are defined

with respect to the two-dimensional geometry (4.6)]. Putting the exponential factor

e−tE explicitly in the heat kernel removes the problematic En terms in the heat kernel

coefficients b2n(x) and also provides a suppression of the large-k sector for each term in

the reorganized expansion.

However, there remain terms proportional to derivatives of E (and hence proportional

to k2) in the new heat kernel coefficients bj above. These terms do not appear to expo-

nentiate, and we might worry that they spoil the convergence of the heat kernel expansion

at large k. Fortunately they do not, but we will see that one must keep more terms of the

reorganized heat kernel expansion than one might have expected.

Here’s the issue. Consider the case of large k (for fixed m and r). The exponential

factor in (4.18) will effectively restrict the t integration of (4.15) to t . r2/k2. There are

now two opposing effects as we go to higher and higher orders j in the expansion: (i) tj will

give us more and more powers of k−2 while (ii) we may get derivatives of E appearing in

the associated coefficients a2j , and each such derivative of E will give a power of k2. As an

example, the t−1×b4t2 term (i.e. j=2 term) in (4.18) has a contribution of order k0 because

of the E;µ
µ term in (4.19c), and this is the same size as the t−1 × b2t term (i.e. j=1 term)

in (4.18). Fortunately, we find that the contributions from higher and higher orders in the

reorganized expansion do not remain this size: they slowly decrease (by powers of k−2)

in steps. As an example, consider the case d = 4, for which we would like to analytically

extract the large k dependence down to k−(d−1) = k−3 in order to isolate the divergences

in (4.14). We find that all of these terms are accounted for by (4.19) supplemented by12

b6(x)
∣∣
∂E

=
1

90
R(2)

µνE;µν+
1

36
R(2)E;µ

µ+
1

30
R(2)

;µE;µ+
1

60
E;µ

µ
ν
ν+

1

12
E;µE

;µ, (4.20a)

b8(x)
∣∣
∂E2

=
1

72
R(2)E;µE

;µ+
1

72
(E;µ

µ)2+
1

90
E;µνE

;µν+
1

60
E;µE;µν

ν+
1

60
E;µE;ν

νµ, (4.20b)

12Given the effective two-dimensional geometry, it is straightforward to evaluate the bi’s in terms of

f(r), E(r) and their derivatives:

b2(x) = − 1
6

d2f

dr2
, b4(x) = 1

60

((
d2f

dr2

)2

− 2
df

dr

d3f

dr3
− 2f

d4f

dr4

)
+ 1

6

(
df

dr

dE

dr
+ f

d2E

dr2

)
,

b6 (x)
∣∣
∂E

= 1
60

(
−df
dr

d2f

dr2

dE

dr
−f d

3f

dr3

dE

dr
+5f

(
dE

dr

)2

+f
d2f

dr2

d2E

dr2
+2

(
df

dr

)2
d2E

dr2
+4f

df

dr

d3E

dr3
+f2 d

4E

dr4

)
,

b8 (x)
∣∣
∂E2

=

(
1
80

(
df

dr

)2

+ 1
90
f
d2f

dr2

)(
dE

dr

)2

+ 1
40
f2

(
d2E

dr2

)2

+ 11
120

f
df

dr

dE

dr

d2E

dr2
+ 1

30
f2 dE

dr

d3E

dr2
,

b10 (x)
∣∣
∂E3

=
1

45
f
df

dr

(
dE

dr

)3

+ 11
360

f2

(
dE

dr

)2
d2E

dr2
, b12(x)

∣∣
∂E4

= 1
288

f2(
dE

dr
)4.
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b10(x)
∣∣
∂E3

=
1

60
E;µνE

;µE;ν +
1

72
E;µ

µE;νE;ν , (4.20c)

b12(x)
∣∣
∂E4

=
1

12 · 4!
(E;µE;µ)2. (4.20d)

Details, based on a modified Seeley-DeWitt expansion, are given in appendix A. The sub-

script ∂En above is used to denote that, in that coefficient, we have kept terms with at

least n factors of (derivatives of) E and have dropped terms that are lower order in E.

Note, for example, that we have kept terms in b6 that contribute to t−1 × b2jtj (and so

the heat kernel expansion) at order k0 and k−2, but we have not bothered to include the

non-E terms, which contribute at order k−4.

Here’s an equivalent way of characterizing which terms need to be kept. Think of

the reorganized heat kernel expansion as an expansion in small t except considering tk2

as fixed13 [in order to account for the fact that tk2 can be as large as O(1)]. Using

the notation O(tneff) to denote terms of O(tn) multiplied by arbitrary powers of tk2, the

b0(x) term in the sum in (4.15) is O(t0eff), the {b2(x), b4(x), b6(x)} terms are O(t1eff), and

the {b8(x), b10(x), b12(x)} terms are O(t2eff). The important thing to note about this power

counting is that (after the constant term) the degree of divergence in teff jumps by one power

for every three powers of t using the naive power counting. This behavior is implied by the

heat equation and is necessary for the consistency of the fixed-k heat kernel expansion. The

origin of this power counting pattern is discussed in more detail in appendix A. Eqs. (4.19)

and (4.20) give all the terms necessary for determining the divergence of the free energy

for d ≤ 4. In higher dimensions d > 4, one needs additional terms in order to capture all

of the large-k divergences.

We include a detailed discussion of the consistency of the expansion and a derivation

of the appropriate heat kernel coefficients in appendix A. As a cross check, we show in

appendix A.4 that our fixed-k expansion reproduces the standard heat kernel expansion if

one integrates the fixed-k heat kernel over k before integrating over t.

Before moving on, we should note a possible danger in our power-counting arguments

above. We have discussed the large-k expansion for fixed r. However, when computing

lnZk as in (4.15), we will eventually need to integrate over r, including arbitrarily large

values of r for a given k. Could that cause trouble for our use of the preceding large-k

(fixed r) expansion? We will later briefly discuss in section 5.2 (in the context of a concrete

example) how we can sidestep this issue, followed by a more thorough discussion of the

problem in appendix B. For now, we blithely ignore it.

4.4 Determining the complete determinant

Having determined the fixed-k heat kernel we are now in a position to detail the appropriate

regularization procedure to compute the full one-loop determinant.

The full form of the determinant is given by summing equation (3.10) over all

momentum modes. Depending on the geometry this sum is either an infinite sum over

13When making power counting arguments, we will treat r as fixed and will often use tk2 as shorthand for

the dimensionless quantity tk2/r2. We will separately discuss the issue of boundary regularization (r→0)

later, in section 5.1.2.
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discrete modes or an integral over continuous momenta. For notational clarity we will

denote this as an integral, appropriate for black brane geometries with translationally

invariant horizons. The logarithm of the partition function is given by

lnZ =

∫
dd−1k

(2π)d−1

(
P̃olk(∆) + lnZsub

k

)
. (4.21)

The term P̃olk(∆) can be determined by taking the large ∆ limit of this expression and

matching to the large ∆ limit of the heat kernel in equation (4.18) of the previous sub-

section. Another crucial use of the heat kernel arises when one considers the integral over

momentum. The integral in equation (4.21) is divergent in the UV. To regularize this we

need to subtract out the divergences arising in the large-k regime of the integral. For this we

again use the heat kernel (4.18), however, now without taking the large ∆ limit. Since (4.18)

was constructed to contain all of the UV divergences associated with the integral over

momenta it should be sufficient to cancel all such divergences in the momentum integral

in (4.21). Formally we may add and subtract the heat kernel expression from the QNM sum.

Let Ktrunc
k (x; t) represent the truncation of the fixed-k heat kernel expansion (4.18)

to contain just those terms that will give divergences when integrated over k for a given

dimension d. For example, for d=4, Ktrunc
k (x; t) would contain all of the terms in (4.19)

and (4.20). Define I to be the result of fully integrating this truncated heat kernel expansion

(with appropriate regularization), i.e.

I =
1

2

∫
dd−1k

(2π)d−1

∫
dr dτ

∫
dt

t
Ktrunc
k (x; t) ≡

∫
dd−1k

(2π)d−1
F (k). (4.22)

One can then re-write lnZ by adding and subtracting the large-k heat kernel representation

of the partition function:

lnZ =

∫
dd−1k

(2π)d−1

(
P̃olk(∆) + lnZsub

k

)
= I +

∫
dd−1k

(2π)d−1

(
P̃olk(∆) + lnZsub

k − F (k)
)
. (4.23)

The integral on the first line is the bare quasinormal mode representation and is divergent.

On the second line we have added and subtracted the result from the large-k heat kernel.

The integrand in parentheses on the second line then gives a finite result when integrated

over k and can be computed numerically.

Note that while I and
∫
k F (k) are formally equivalent, in practice both are infinite, and

we will need to take care to consistently regularize our calculations of the different terms

in (4.23). Let Λ̃ be the momentum scale for UV regularization.14 As we will see explicitly

in the example of the next section, the UV divergences of P̃olk(∆) and F (k) cancel each

14In this generic discussion, we will be a little bit sloppy and think of the UV cutoff as directly a cutoff

k . Λ̃ on k. In the specific example of the next section, however, Λ will be the usual cutoff used in heat

kernel regularization, which we will see corresponds to a cutoff Λ̃ ∼ rΛ on k. Also, when we refer to UV

regularization in this paper, we are referring to the UV of the gravity theory. In particular, we are not

referring to boundary regularization of the asymptotically AdS space-time, which we will handle separately.
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other in the last line of (4.23), which is why we can do that k integral numerically. As

a result, when separately deriving the divergent P̃olk(∆) and F (k) terms to use in that

integrand, it is adequate to consider the limit of k � Λ̃, since the contribution from k ∼ Λ̃

will disappear as Λ̃ → ∞. In contrast, the k integral (4.22) defining I is divergent. So,

when computing I, we must also correctly treat the k ∼ Λ̃ case: a k � Λ̃ approximation

to F (k) in (4.22) will not do. In appendix A, we show that the calculation of the integral

I yields the usual heat kernel result for the partition function (up to computable finite

contributions for the case of compact horizons).

We now turn to a specific example to detail how this procedure works in practice.

5 Example — BTZ black hole

We now turn to an application of the formalism described in the previous sections. In

particular, we will use our method to compute the one-loop determinant of a scalar field in

the BTZ black hole background. The partition function of a scalar field in BTZ had been

previously computed using other methods in [30]. In fact, for this case, the quasinormal

modes are known analytically and an exact result for the determinant was derived in [1].

Here this example will serve as a simple test case to illustrate the formalism developed in

the previous sections.

The Euclidean BTZ black hole metric is given by

ds2 = f(r) dτ2 +
dr2

f(r)
+ r2dφ2. (5.1)

This is of the form (2.1) with d = 2 and f(r) = r2

L2

(
1− r2

h
r2

)
. The horizon radius is related

to the temperature of the spacetime by rh = 2πTL2. The coordinate φ can be chosen to

be periodic with φ ∼ φ+ 2π. One may also choose φ to not be periodic, in which case the

metric (5.1) is a black brane instead of a black hole. In holography, periodic φ corresponds

to placing the dual CFT on a spatial circle, whereas for non-periodic φ the dual CFT is

defined on the real line. We will assume periodicity in φ in what follows; so we consider

the black hole, but we will comment on the black brane limit at the end of this section.

5.1 Applying our method

To begin, let us write the partition function of a real scalar in the quasinormal mode

representation. From equation (3.2), the logarithm of the partition function is

lnZ = Pol(∆) +
∑
ω?

Re

[
1

2
ln

(
iω?
2πT

)
+ ln

(
Γ
( iω?

2πT

))
− 1

2
ln(2π)

]
, (5.2)

where we have incorporated a factor of 1/2 in order to describe a real rather than complex

scalar. In addition, we are now denoting the quasinormal frequencies as z? = ω? and

have assumed z̄? = ω̄? = (ω?)
∗, where an asterisk refers to complex conjugation. This

assumption is true for the BTZ scalar quasinormal mode frequencies, which are given by

ωk,n,± = ± k
L
− 2πT i(∆ + 2n), n = 0, 1, 2, · · · , k = 0,±1,±2, · · · , (5.3)
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where n and k are dimensionless numbers which label the mode number the momentum

around the spatial circle, respectively.

Using these frequencies, the fixed-k contribution (3.5) to the partition function for a

real scalar is given by

lnZk = Polk(∆) +
∞∑
n=0

[
− ln(2π) + Re

(
ln(2n+ ∆ + ik̂)

)
+ 2 Re

(
ln Γ(2n+ ∆ + ik̂)

)]
,

(5.4)

where we have defined

k̂ =
kL

rh
=

k

2πTL
. (5.5)

We will first discuss lnZk and will return to the sum on k later.

5.1.1 Regularizing the QNM sum

In order to regulate the large-n divergence in (5.4) we perform a simple subtraction as

in (3.8). In particular, we define a subtracted sum by explicitly removing the terms which

diverge as a sum on n at fixed k. (The extraction of the divergent terms is especially easy

in this case, since the quasinormal modes are known exactly. In cases where they are not,

one would need to use WKB for large n to get the necessary subtractions.) The resulting

BTZ expression corresponding to (3.10) is

lnZk = P̃olk(∆) + lnZsub
k

= P̃olk(∆) +

∞∑
n=0

[
− ln(2π) + Re

(
ln(2n+ ∆ + ik̂)

)
+ 2 Re

(
ln Γ(2n+ ∆ + ik̂)

)]
−
∞∑
n=1

[
2(2n+ ∆) ln(2n)− 4n+

1

12n

(
1 + 6(∆2 − k̂2)

)]
, (5.6)

where the second line is determined by taking the large n limit of the summand in (5.4),15

including all terms up to O(1/n). This sum gives a regularized version of lnZk. Note that

all of the subtraction terms are explicitly polynomials of ∆. As such, these can be absorbed

into Polk(∆) and the difference with (5.4) is absorbed into P̃olk(∆).

We now turn to determining P̃olk(∆) by matching the large-∆ asymptotics of (5.6) to

a regularized calculation of lnZk. First, we need the large ∆ limit of (5.6). Here, large ∆

means ∆� 1 and ∆� k̂, but, because n is summed over, we cannot make any assumption

about the size of ∆ relative to n. Extracting this limit is made easier in the BTZ case

by the fact that we have exact formulas for the frequencies and so a completely analytic

15The two sums in (5.6) should be understood as being combined into a single (convergent) sum over n,

with no contribution from the second summand for n = 0. Note that, since the goal of our subtraction

is to cancel the divergence coming from large n, we could choose the lower limit on n in the second sum

of (5.6) however we find convenient. Choosing a lower limit of n = 2 instead of n = 1, for example, could be

absorbed into a redefinition of P̃olk(∆). We have avoided choosing a lower limit of n = 0 because of the 1/n

term in our large-n expansion. We could have alternatively chosen to expand in 1/(n+ 1), again absorbing

the difference into P̃olk(∆). That would have worked just as well and allowed n = 0 as the lower limit.
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formula for the summand of the first sum in (5.6). Because of this, we can easily find a

completely analytic result for the large ∆ limit, which is

lnZk

∣∣∣
∆→∞

= P̃olk(∆) + 2∆ ln ∆− 2∆

+
∞∑
n=1

[
2(2n+ ∆) ln

(
1 +

∆

2n

)
− 2∆− ∆2

2n
−
(

1

6
− k̂2

)
∆

2n(2n+ ∆)

]
= P̃olk(∆) +

1

2

(
k̂2 − (∆− 1)2 +

1

6

)
ln ∆ +

1

2

(
ln 2 +

3

2
− γ
)

∆2

− (1 + lnπ)∆ +
1

12
(5− 6k̂2) ln 2− 1

12
γ(1− 6k̂2)− 4 lnA, (5.7)

where A ≡ exp
(

1
12 − ζ

′(−1)
)

is the Glaisher constant and ζ(x) the Riemann ζ-function.

In cases where exact frequencies are not known, we would need to either (i) get an

analytic result for the large ∆ limit of lnZsub
k by devising a WKB-like analysis of the

frequencies that was valid for large ∆ and any value of n (large, small, and in between), or

(ii) evaluate the analog lnZsub
k numerically for large ∆ and use that to numerically extract

the polynomial P̃olk(∆) in the matching procedure that will follow. Since our goal here

is just to test the structure of our method, we will just stick with the relatively simple

derivation (5.7) for the BTZ case.

In order to determine P̃olk(∆), (5.7) now needs to be matched to an appropriately

regularized calculation of lnZk. Following the procedure outlined earlier in section 4, we

will use a fixed-k heat kernel regularization.

5.1.2 Fixed-k heat kernel expansion

We need to evaluate the effective two dimensional fixed-k heat kernel (4.18) which arises

from the BTZ background. This expansion will be used both for (i) finding the large-∆

limit in order to extract P̃olk(∆) and (ii) regulating the large-k asymptotics of the partition

function for fixed ∆. Using (4.19) and the power counting of section 4.3, the expansion is

formally

Kk(x; t) =
1

4πt
e−t(m

2−E)

[
1 +

t

6

(
R(2) + tE;µ

µ +
1

2
t2E;µE

;µ

)
+O(t2eff)

]
, (5.8)

which shows all terms we’ll need for the d=2 case of BTZ. [We’ve included the subscript

“(2)” above as a reminder that the metric and curvature tensors of section 4.3 were with

respect to the two-dimensional geometry of (r, τ).]

It’s useful to reorganize this expansion slightly, first by isolating the k2 term of E.

Defining Ẽ and X by E = Ẽ − k2/r2 = Ẽ − k2X separates the potentially large k2 term

from the rest. The expansion can then be rewritten as

Kk(x; t) =
1

4πt
e−t(k

2X+m2)

[
1 +

t

6

(
R(2) + 6Ẽ − tk2X;µ

µ +
1

2
t2k4X;µX

;µ

)
+O(t2eff)

]
,

(5.9)
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where

Ẽ = −(d− 3)(d− 1)

4r2
f(r)− 2(d− 1)

4r
f ′(r), (5.10)

X =
1

r2
, (5.11)

X;µ
µ =

6

r4
f(r)− 2

r3
f ′(r), (5.12)

X;µX
;µ =

4

r6
f(r), (5.13)

R(2) = −f ′′(r) . (5.14)

The exponential in (5.9) would be awkward if we happen to be interested in the case of

negative m2 since then, no matter how large k is, exp[−t(k2/r2 +m2)] would be a growing

exponential in t for large enough values of r (i.e. close enough to the boundary). We find

it convenient to instead reorganize the expansion in terms of a shifted mass

m̂2 ≡ m2 +
d2

4L2
=

(∆− d
2)2

L2
. (5.15)

Then m̂2 is positive for all scalar perturbations with m2 > m2
BF , where m2

BF = −d2/4L2

is the Breitenlohner-Freedman (BF) bound [32] for stable scalar perturbations in asymp-

totically AdS spacetimes. A very useful property of the shifted mass m̂, which will sim-

plify matters later on, is that it is analytic (and in particular polynomial) in ∆, with

m̂L = (∆− d/2). Switching from m to m̂, we rewrite the expansion as

Kk(x; t) =
1

4πt
e−t(k

2X+m̂2)

[
1+

t

6

(
R(2)+6Ẽ+

3d2

2L2
−tk2X;µ

µ+
1

2
t2k4X;µX

;µ

)
+O(t2eff)

]
,

(5.16)

In order to compute the logarithm of the partition function we must integrate the heat

kernel over t as in (4.10). Integrating (5.16) over t with a UV cut-off t & 1/Λ2, expanding

for large Λ and dropping terms which vanish as Λ→∞, we have∫ ∞
Λ−2

dt

t
Ktrunc
k (x; t) =

1

4π

{
Λ2 +

(
k2 + m̂2r2

r2
+
f ′′(r)

6
+
d− 1

2r
f ′(r)

+
(d− 1)(d− 3)

4r2
f(r)− d2

4L2

)[
ln

(
k2 + m̂2r2

Λ2r2

)
+ γ

]
− k2 + m̂2r2

r2
− 1

3r2

(
3f(r)− rf ′(r)

) k2

k2 + m̂2r2

+
f(r)

3r2

k4

(k2 + m̂2r2)2

}
. (5.17)

Next we must integrate over the two-dimensional spacetime (4.6). This yields the

truncated large-k expansion F (k) of lnZk [defined by (4.22)]. Specializing to the d=2 case
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of BTZ with f(r) = r2

L2 (1− r2
h
r2 ), equation (5.17) gives16

F (k) ≡ lnZtrunc
k =

1

2

∫ rb

rh

dr

∫ 1/T

0
dτ

∫ ∞
Λ−2

dt

t
Ktrunc
k (x; t)

=
1

4

[
− Λ2L2 −

(
k̂2 − m̂2L2 +

1

6

)
ln(Λ2L2)− 3k̂2 + m̂2L2

+

(
k̂2 − m̂2L2 +

1

6

)(
ln(k̂2 + m̂2L2) + γ

)
+ 4k̂m̂L arctan

(
k̂

m̂L

)]
,

(5.18)

where we have used rh = 2πTL2 and again defined k̂ as in (5.5).

In (5.18) we have regulated the boundary divergence by cutting off the upper limit of

the r integral at some rb � 1 and then taken the rb → ∞ limit while discarding terms

proportional to rb. In particular, we have dropped the divergent boundary term

rb
8πT

[
Λ2 − m̂2 +

(
m̂2 +

1

12L2

)
ln

(
eγm̂2

Λ2

)]
(5.19)

from (5.18). If one prefers, one may get the same result (i.e. dropping the power law

divergence in rb) by using dimensional regularization in the gravity theory. (Note that this

would correspond to using dimensional regularization for the IR behavior of the gravity

theory, while we are using the more common heat kernel regularization with Λ to cut off

the UV behavior of the gravity theory. There’s no reason one can’t use both.) The proof,

perhaps, is in the pudding: we will see that this prescription for boundary regularization

indeed gives the correct result for the partition function.

The result (5.18) will prove useful in both determining P̃olk(∆) and in regulating the

large-k asymptotics of the partition function. For now, we focus on the former use and

take the ∆→∞ limit to obtain

(lnZk)
∣∣∣
∆→∞

=
1

4

[
− Λ2L2 −

(
k̂2 − (∆− 1)2 +

1

6

)
ln(Λ2L2)

+

(
k̂2 − (∆− 1)2 +

1

6

)
(2 ln ∆ + γ) + ∆2 − 2

]
. (5.20)

We determine P̃olk(∆) by comparing this with the large ∆ limit of the DHS QNM sum

in (5.7). This gives

P̃olk(∆) = −1

4
Λ2L2 − 1

4

(
k̂2 − (∆− 1)2 +

1

6

)
ln(Λ2L2)

− ∆2

4
(2 ln 2 + 2− γ) +

∆

2
(2 lnπ + 2 + γ) +

k̂2

4
(2 ln 2− γ)

− 1

2
− γ

8
− 5

12
ln 2 + 4 lnA. (5.21)

16We have split the logarithm up in (5.18) just for the convenience of clearly separating the UV-divergent

Λ dependence from the terms that depend on k.
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Note that the large ∆ expressions (5.7) and (5.20) both contain terms which are not

meromorphic in ∆. In particular, they have ln ∆ dependence. One key assumption in the

formalism of [1] is that the quasinormal modes determine the log of the partition function

up to a local polynomial in ∆. Similar to the case of even dimensional de-Sitter spaces

discussed in [1, 19], the fact that the non-meromorphic ∆ dependence in the heat kernel

and quasinormal mode representation of the partition function cancel when computing

P̃olk(∆) provides a non-trivial consistency check of the application of such techniques.

In our case, it provides a non-trivial consistency check to the application to the fixed-k

partition function. In particular we see that our P̃olk(∆) is a polynomial in ∆, as required.

Plugging this expression for P̃olk(∆) into (5.6) and summing over momentum modes

gives the complete partition function. However, as discussed earlier, the sum over momenta

is divergent. To regularize this divergence we add and subtract the truncation of the fixed-

k heat kernel expansion (5.16), as described in section 4.4. In this example, the function

F (k) in (4.23) is given by (5.18).

Expression (5.18) implicitly assumes that k is small compared to the UV momentum

cutoff determined by Λ. As discussed back in section 4.4, this assumption is adequate

except for the computation of the integral I =
∫
k F (k). Our UV regularization Λ was

introduced in integration over the heat kernel parameter t, as in (5.17). We find that the

simplest way to allow for k of order the UV momentum cutoff is to go back and sum over

k before the integral over t when computing I. In appendix C, we show how to employ

Poisson resummation to compute I for general X. For our specific case (5.11) of X = 1/r2,

we find the simple result

I =

∫
d3x
√
g

(
Λ3

24π3/2
− (∆− 1)2Λ

8π3/2L2
+

(∆− 1)3

12πL3

)
+

1

(2π)2

1

(2πTL)2
Li3(e−4π2(∆−1)TL)− 1

12
Li1(e−4π2(∆−1)TL), (5.22)

where g is the metric determinant of the three-dimensional spacetime, Λ is a UV cutoff

introduced in the same way as in (5.17), and Lin(x) are poly-logarithms which are defined by

Lin(x) =
∞∑
k=1

xk

kn
. (5.23)

In the first line of (5.22) we have recovered the usual asymptotics of the partition

function in standard heat kernel regularization. This agrees with the local terms given

in [1]. The second line in (5.22) however, contains finite contributions to the partition

function. These are non-zero at finite temperature and must be included in order to match

to previous results on the BTZ scalar partition function. We can now put together the

various contributions to the partition function.

5.2 A brief aside on an earlier warning

Before we put everything together, we should explain a subtlety of our formula for F (k).

In the large-k limit (for fixed m̂), the last term 1
4 × 4k̂m̂L arctan(k̂/m̂L) of (5.18) becomes

π
2 |k̂|m̂L. (5.24)
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This looks a little different than the other terms in (5.18) because it depends on m̂ instead

of m̂2. In fact, we show in appendix B that this particular term is generated by the region

of the r integral in (5.18) for which r ∼ k2/m̂2, which is large when k is large. This r

is large enough that the large-k expansion derived in section 4.3 cannot be trusted (for

non-large m̂), as we warned earlier. The other terms in (5.18), in contrast, turn out to

come from r ∼ rh, for which all is well.

So what to do? Note that (5.24) is polynomial in ∆ because m̂L = (∆− d/2) is. So, if

we wanted, we could simply redefine F (k) to drop the troublesome term (5.24) altogether

and then exactly absorb that change into a corresponding redefinition of the polynomial

P̃olk(∆). However we move things around between F (k) and P̃olk(∆) —whether we keep

the troublesome term in F (k) or drop it — we will get the same result for the combina-

tion (4.23). This suggests that it may not really matter whether we get the particular

term (5.24) wrong, as long as it’s a polynomial in ∆. And that’s the advantage to using

the shifted mass m̂ in the calculation instead of m, since the latter is not polynomial in ∆.

We will indeed see that the above suggestion is born out: in the next subsection, we

verify that blindly using (5.18) for F (k) correctly reproduces the known BTZ partition

function. However, we would like an argument other than answer-analysis that this pro-

cedure should work, so that we know it is not a special property of the BTZ black hole.

Our problem occurs at large r, where the space-time is well approximated by AdS. In

appendix B, we show that (5.24) actually does corresponds to the exact answer for logZk
in locally AdS3 space-time.

5.3 Final form of the partition function

Inserting the expressions derived in this section into equation (4.23) gives the final result

for the logarithm of the partition function,

lnZ =

∫
d3x
√
g

(
Λ3

24π3/2
− (∆− 1)2Λ

8π3/2L2
+

(∆− 1)3

12πL3

)
+

1

(2π)2

1

(2πTL)2
Li3

(
e−4π2(∆−1)TL

)
− 1

12
Li1

(
e−4π2(∆−1)TL

)
+

∞∑
k=−∞

(
P̃olk(∆) + lnZsub

k − F (k)
)
, (5.25)

where lnZsub
k , F (k) and P̃olk(∆) are given in (5.6), (5.18) and (5.21), respectively. Note

also that all UV-divergent terms are included on the first line above since the Λ-dependent

divergences explicit in F (k) and P̃olk(∆) exactly cancel [as can be seen by comparing

equations (5.18) and (5.21)].

In order to compute (5.25) there are two sums to perform. In particular, in addition to

the explicit sum on k, recall that lnZsub
k contains a sum over mode numbers labeled by n.

We do not know how to perform these sums analytically, but remember that our motivation

was to propose a method that could be used numerically for other black hole spacetimes.

The BTZ calculation here is offered simply as a check. We move now to demonstrating that

computing (5.25) numerically indeed recovers the expected result for lnZ by comparing to

the results of [1].
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Figure 1. Plot of lnZ(∆). The red dots are the numerical results of the last two lines of (5.25) for

∆ = {1.1, 1.2, 1.3, · · · , 1.9, 2.0, 2.5, 3.0} and with 2πTL = 1. The blue line is a plot of the logarithm

of the finite temperature partition function in the second line of (5.26) at the same value of TL.

5.4 Comparison to DHS [1]

The scalar partition function in the BTZ background has been previously computed in [1,

30]. The results of [1] are particularly straightforward for comparison as they derive the

partition function using the same heat kernel regularization as we have above. The result

of [1] is17

lnZ = const. +

∫
d3x
√
g

(
Λ3

24π3/2
− (∆− 1)2Λ

8π3/2L2
+

(∆− 1)3

12πL3

)
+ ln

∞∏
κ=0

(1− qκ+∆)−(κ+1), (5.26)

where q = e−4π2TL. The first lines of (5.25) and (5.26). So, in order to check our repre-

sentation of the partition function, we should compare the last two lines of (5.25) with the

second line of (5.26).

We compute both sums numerically.18 The results are illustrated in figure 1 and

figure 2. In figure 1 we plot lnZ directly and compare to the results of [1]. Since the result

approaches zero rapidly as ∆ increases, we present the corresponding log plot in figure 2,

which clearly shows agreement up to ∆ = 3.

17Notice that in equation (63) of [1], DHS have absorbed the Λ3 term into the overall constant contribution

to lnZ. This is the overall normalization of the partition function, which is undetermined by the heat kernel.

In contrast, in (5.25) we have implicitly set to zero the corresponding “const.” introduced just before DHS

(63) and have explicitly kept the leading Λ3 divergence in lnZ.
18In practice, when numerically computing the sum in (5.25) we included extra subtraction terms in

lnZsub
k than are explicitly shown in (5.6). In particular, we subtract terms corresponding to higher order

powers of 1/n in the expansion of the summand in (5.4) that are convergent as a sum on n in order to

improve the rate convergence of the numerical sum. Since these terms have convergent sums we simply add

back the analytic result for them by hand.
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Figure 2. Plot of log10(lnZ(∆)). The red dots are the numerical results from the last two lines

of (5.25) for ∆ = {1.1, 1.2, 1.3, · · · , 1.9, 2.0, 2.5, 3.0} and with 2πTL = 1. The blue line is a plot of

log10 of the logarithm of the finite temperature partition function in the second line of (5.26) at the

same value of TL.

Finally, one can perform precisely the same calculation for the case where the horizon

is an infinite spatial line instead of a circle. As mentioned previously, this corresponds to

the same manipulations as above, except that the sum over momentum modes is replaced

by an integral. The analytic results for the integrals are worked out in appendix A. As is

straightforward from the results of appendix A, the end result is the same as equation (5.25),

except that the finite terms in the second line of (5.25) are absent. Numerically evaluating

the integral of the last line of (5.25) (instead of the sum) we find that the integral vanishes

to within the accuracy we computed. This is consistent with the TL→∞ limit of the last

line of (5.26) and with the expectations that, in the de-compactification limit, the finite

temperature contributions to the free energy should vanish. This fact can also be seen by

taking the large temperature limit TL→∞ in (5.26).

6 Discussion

In this paper, we have presented a procedure to compute numerically the partition function

of fluctuations about asymptotically anti-de Sitter black holes using the quasinormal mode

spectrum. We illustrated the method by computing the scalar partition function in the

BTZ black hole and reproduced the known result. Our method provides a straightforward

generalization of the method proposed in [1] to cases in which the quasinormal mode

spectrum is not known analytically. The key new ingredient is the development of the

fixed momentum partition function and corresponding heat kernel.

There are many obvious extensions of this current work. First, we have only considered

scalars in the BTZ black hole. It is natural to consider other spin fields and develop the

corresponding fixed-k heat kernel, which should be straightforward.
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A more ambitious goal is to apply this methodology to higher dimensional asymp-

totically AdS black holes. This is the main motivation for our work and would provide a

non-trivial test and application of our proposed method to a scenario in which the quasinor-

mal modes are not known analytically. There are several potential difficulties in performing

such a calculation. First, one has to determine the asymptotic values of the quasinormal

frequencies as in (3.6). While this can be done in a WKB approximation, the calculation

requires going to higher subleading orders in the inverse mode number 1/n than have so

far been computed in the literature, in order to ensure convergence of the sum in lnZsub
k .

Second, having such a result, one needs to determine Polk(∆). If this can only be done

numerically then, in order to reliably fit to a numerical result of Polk(∆), it would be ben-

eficial to have an understanding of the expected dependence of this function on k. Based

on our experience with BTZ, it appears likely that (at least for scalar fields) Polk(∆) is a

polynomial in both ∆ and k2. However, it would be desirable to have an analytic argu-

ment for such functional dependence of Polk(∆) on k2. Another hope is that an appropriate

WKB expression of the quasinormal modes can be determined in the limit of large-∆ which

is valid for arbitrary mode number n. This would interpolate between the large-∆ result

of [31] for small values of n and the large-n results of [24] for asymptotically large values

of n. Armed with such an expression one should be able to determine Polk(∆) analyti-

cally, and we are currently investigating this possibility. Clearly, much work is necessary

to extend the current results to more interesting examples, and we hope to turn to such

calculations in the near future.
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A Derivation of fixed-k heat kernel coefficients

In this appendix we provide the details of the derivation of the fixed-k heat kernel expansion.

The heat kernel K(x, x′; t) satisfies the heat equation

(∂t +Dx)K(x, x′; t) = 0, (A.1)

where Dx = −(∇2 + E). We will be particularly interested in the case where E depends

on a parameter that can become parametrically large. In our application in the main text,

E has a term proportional to k2, where k can be thought of as momentum eigenvalues for

mode functions along the space transverse to the r-τ plane. Small values of t in the heat

kernel correspond to high energies. When k2 becomes parametrically large and of the order

of 1/t as t→ 0 we will need to solve (A.1) in an expansion that remains valid for such large
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values of momentum. For our purposes this means we will need a solution Kk(x, x
′; t) as

an expansion for small t while allowing tk2 ∼ O(1) or, equivalently, tE ∼ O(1).

To illustrate how the potential E affects the heat kernel expansion, first consider the

usual case where E is independent of k. There is an elegant solution to the heat equation

due to DeWitt [33] which in (d+1)-dimensions takes the form

K(x, x′; t) = (4πt)−(d+1)/2∆
1
2 (x, x′) e−

σ(x,x′)
2t Ξ(x, x′; t). (A.2)

In (A.2), σ(x, x′) is one-half of the square of the geodesic distance between x and x′

σ(x, x′) =
1

2

(∫ x

x′

√
gµν(x̄)dx̄µdx̄ν

)2

, (A.3)

where the path of integration is given by the geodesic connecting x to x′. Alternatively,

this can also be written in terms of Synge’s world function

σ(x, x′) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gµν(x̄(λ)) tµtν dλ, (A.4)

where x̄(λ) is the geodesic connecting x = x̄(λ1) and x′ = x̄(λ0), tµ = dx̄µ/dλ is a tangent

vector to the geodesic and λ is an affine parameter. In addition, ∆(x, x′) is the van Vleck

determinant, which we define as

∆(x, x′) = − 1√
g g′

det

[
∂

∂xα
∂

∂x′β
σ(x, x′)

]
≡ − 1√

g g′
det[σαβ′(x, x

′)]. (A.5)

See [34] for a detailed discussion of the properties of these and other bi-scalar quantities

encountered in the expansion (A.2).

Going back to (A.2), the function Ξ is then expanded in a power series in t

Ξ(x, x′; t) =

∞∑
k=0

a2k(x, x
′) tk, (A.6)

where the bi-scalars a2k(x, x
′) are called heat kernel coefficients. The coefficients a2k(x, x

′)

can be solved iteratively by inserting the ansatz (A.2) into the heat equation (A.1). Usually,

the potential E is a local function of the coordinates. As long as this function is well

behaved, it will not interfere with the expansion in t. In fact, the leading dependence

on E can naturally be seen by considering the heat kernel expansion as an expansion of

Tr e−t(Dx+m2) = Tr e−t(−∇
2−E+m2) for small t. One can choose to factor out the etE from

this trace expression.19 Note however that this operation does not commute with the trace,

and there remains dependence on derivatives of E that is not captured in the etE term.

A proper understanding of these derivative terms is crucial in developing the fixed-k heat

kernel that we discuss next.

Now consider a situation, as in the main text, where E has dependence on a parameter

which can become parametrically large compared to t−1. In the following, we will call this

19This behavior is apparent in the heat kernel coefficients (4.12), where one can see that leading E

dependent terms (which do not include derivatives of E) appear to exponentiate into etE .
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parameter k and assume that it appears quadratically in E. Furthermore, we will assume

that this dependence arises from decomposing the space of eigenfunctions of our operator

into eigenmodes of a (d− deff)-dimensional transverse space such that (after dimensionally

reducing on this transverse space) the problem can be formulated in a space of effective

dimension deff+1. In the application in the main text we will be interested in the case

deff = 1, but for sake of generality we leave it arbitrary in this appendix. We will refer to

the heat kernel in the dimensionally reduced problem as the fixed-k heat kernel and denote

it by Kk(x, x
′; t), where here and in what follows all bi-scalar quantities will be defined

with respect to the (deff+1)-dimensional geometry.

Consider the modified deWitt ansatz

Kk(x, x
′; t) = (4πt)−(deff+1)/2∆

1
2 (x, x′) e−

σ(x,x′)
2t

+tE(x) Θ(x, x′; t), (A.7)

where x and x′ are now coordinates on the effective (deff + 1)-dimensional space. We have

chosen to keep the tE term in the exponential. This keeps an explicit term schematically

of the form e−tk
2

in the heat kernel. This term both removes the leading k2 dependence

of the heat kernel coefficients and effectively provides a cut-off for the large-k modes. We

now seek a series solution for Θ(x, x′; t) by expanding as a power series in t as

Θ(x, x′; t) =
∞∑
j=0

b2j(x, x
′) tj . (A.8)

Inserting this ansatz into the heat equation now yields a modified recursion relation for the

coefficients b2j . Doing this we find the following recursion relation:

0 = (j + σ;µ∇µ) b2j
(
x, x′

)
−
(

∆−
1
2∇µ∇µ∆

1
2 − σ;µE

;µ
)
b2j−2

(
x, x′

)
−
(

2∆−
1
2 ∆

1
2 ;µE

;µ + E;µ
;µ + 2E;µ∇µ

)
b2j−4

(
x, x′

)
− E;µE

;µ b2j−6

(
x, x′

)
, (A.9)

where all quantities are defined with respect to the dimensionally reduced space and all

explicit covariant derivatives act on everything to their right. When applying the recursion

relation it is important to remember that all quantities (except for the potential E) are bi-

scalars having both x and x′ as arguments. We are eventually interested in the coincidence

limit of these quantities, which corresponds to the limit x′ → x. However, at intermediate

steps it is important to keep the full bi-scalar dependence. Finally, note that setting

derivatives of E to zero in (A.9) and replacing the ∇2 term with ∇2 +E, one recovers the

standard heat kernel coefficient recursion relations (see, for example [29]).

The benefit of the recursion relation (A.9) is that it explicitly contains the E;µ terms

which, at any given order in the small-t expansion, can multiply a factor of t to give a

parametric dependence such that tE ∼ O(1). This can effectively reduce the order of any

given term in the small-t expansion as we will see in the following.
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A.1 Evaluating the heat kernel coefficients

Before discussing the validity of the above expansion, we will evaluate the first several heat

kernel coefficients in order to set up notation for the upcoming discussion and to illustrate

the methodology used in solving the recursion relation (A.9).

We start the recursion relation by setting b2j(x, x
′) = 0 for j < 0, and use the initial

condition b0(x, x′) = 1. Next, the coincidence limit of b2(x, x′) can be determined directly

from (A.9) yielding

b2(x, x) =
1

6
R(eff), (A.10)

where we have taken the coincidence limit x′ → x and we have put a subscript “(eff)” to

emphasize when tensors are defined in the dimensionally reduced geometry. We will often

denote this limit by putting a quantity inside of square brackets. For example we may

write [b2] = b2(x, x) = b2(x). Also, here we used the rudimentary results on coincidence

limits for σ and ∆
1
2 that

[σ] = [σ;µ] =
[
∆

1
2 ;µ

]
= 0,

[σ;µν ] = g(eff)µν
,[

∆
1
2

]
= 1,[

∆
1
2 ;µν

]
=

1

6
R(eff)µν

. (A.11)

These expressions follow from the coincidence limits of derivatives of the defining relations

σ;µσ
;µ = 2σ,

∆
1
2σ;µ

µ + 2σ;µ∆
1
2 ;µ = (deff + 1)∆

1
2 . (A.12)

One can derive relations similar to (A.11) for the coincidence limit of higher derivatives

of σ and ∆
1
2 by further differentiating (A.12). The resulting expressions become quite

cumbersome, and we do not include them here but refer the reader to [34] for further

discussion. (See also [35] for similarly useful expressions involving derivatives of the van

Vleck determinant.) Finally, before continuing, notice that (A.10) is not the same as the

usual a2(x). In particular, it is missing a term linear in E. This dependence has instead

been included in the exponential etE in (A.7).

For b4(x), (A.9) gives

2[b4] =
1

6
R(eff)[b2] + [b2;µ

µ] + E;µ
;µ . (A.13)

In order to determine b4 we see that we not only need b2 but we also need its derivatives.

The relevant derivatives on b2 have the form

[b2;µ
µ] = −1

3

[(
∆

1
2

);ν

ν

]2
+

1

3

[
(∆

1
2 );ν

ν
µ
µ

]
− 2

3
E;µ

;µ . (A.14)
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Inserting this and (A.10) into the expression for [b4] gives the usual contribution to the

heat kernel, where the term proportional to E;µ
;µ will give an O(k2) contribution. Explicitly,

evaluating (A.13) we find

[b4] =
1

72
R(eff)

2− 1

180
R(eff)µν

R(eff)
µν+

1

180
R(eff)µνρσ

R(eff)
µνρσ+

1

30
∇2R(eff)+

1

6
E;µ

µ. (A.15)

The remaining heat kernel coefficients can be evaluated similarly, and we include their

results later in this appendix.

A.2 Determining the relevant terms in the heat kernel expansion

In the following we will focus on the case d ≤ 4. In order to incorporate all of the large-k

divergences of the partition function we need to keep all terms of at most O(t2eff) in the

heat kernel expansion, where the power of teff is determined by the power of t in the

expansion (A.8) after setting tk2 ∼ tE ∼ O(1). As mentioned in the main text, one may

worry that this expansion could be contaminated by ever higher powers of k in the heat

kernel coefficients. For example, at O(tn) one would naively expect terms of the form

b2n ∼ ∇2netE ∼ (tk2)2netE ∼ O(t0eff), (A.16)

which would lead to divergences occurring at all orders in the heat kernel expansion. Factor-

ing out etE as in (A.7) helps this situation but does not completely remove all large-k terms.

Thankfully, a well behaved expansion does exist. Let us start by analyzing the relevant

power counting. From the previous analysis we know that [b0] and [b2] are both independent

of k2 and [b4] is proportional to k2. Next, consider the recursion relation (A.9). Recalling

that in the coincidence limit [σ], [σ;µ] and
[
∆

1
2 ;µ

]
all vanish, one can see that (once the

coincidence limit is taken) the leading dependence on k2 of the coefficient [b2j ] will be the

same as the leading k-dependence of k2[b2j−4] and k4[b2j−6]. This implies the term in the

heat kernel expansion at j = 3 will scale as t3[b6] ∼ O(teff).

Given the scaling of the leading heat kernel coefficients, and applying the recursion

relation argument of the previous paragraph, we see that the terms in (A.8) including

{[b6j−4], [b6j−2], [b6j ]} will have leading behavior that scales as O(tjeff). So, in general, in

order to keep terms up to O(tjeff) one needs to compute up to the leading k-dependence

of [b6j ], which will be proportional to k4j . To include all large-k divergences for d up to

d=4 we should keep up to O(t2eff) in the expansion. So we need to compute (the relevant

k-dependence of) all heat kernel coefficients up to the t6 coefficient [b12].

For completeness, we list below the coincidence limit of the recursion relation (A.9) up

to the b12 term, including only those terms required in order to keep all large-k divergences

for d ≤ 4. Similar to the notation in section 4.3 we will use brackets with a subscript ∂En

to denote that we keep only terms containing n or more powers of E when taking the
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coincidence limit for that particular term. The recursion relations are

0 = 2[b4]− [b2;µ
µ]− 1

6
R(eff)[b2]− E;µ

;µ,

0 = 3[b6]
∂E
− [b4;µ

µ]
∂E
− 1

6
R(eff)[b4]

∂E
− E;µ

;µ[b2]− 2E;µ[b2;µ]− E;µE;µ,

0 = 4[b8]
∂E2 − [b6;µ

µ]
∂E2 −

1

6
R(eff)[b6]

∂E2 − E;µ
;µ[b4]

∂E
− 2E;µ[b4;µ]

∂E
− E;µE;µ[b2],

0 = 5[b10]
∂E3 − [b8;µ

µ]
∂E3 −

1

6
R(eff)[b8]

∂E3 − E;µ
;µ[b6]

∂E2 − 2E;µ[b6;µ]
∂E2 − E;µE;µ[b4]

∂E
,

0 = 6[b12]
∂E4 − [b10;µ

µ]
∂E4 −

1

6
R(eff)[b10]

∂E4 − E;µ
;µ[b8]

∂E3 − 2E;µ[b8;µ]
∂E3 − E;µE;µ[b6]

∂E2 .

(A.17)

A.3 [∇nbm] relations

In this subsection we list the results for the relevant heat kernel coefficients and their

derivatives required to evaluate (A.17). When inserted into (A.17) these reproduce the

results (4.19) and (4.20) quoted in the main text.

[b2] =
1

6
R(eff)

[b2;µ] =
1

12
R(eff);µ

− 1

2
E;µ

[b2;µν ]
∂E

= −2

3
E;µν

[b2;µ
µ] =

1

15
∇2R(eff) −

1

90
R(eff)µν

R(eff)
µν +

1

90
R(eff)µνρσ

R(eff)
µνρσ − 2

3
E;µ

µ

[b2;µνρ]∂E = −3

4
E;µνρ +

1

6
R(eff)ρµν

λE;λ +
1

12
R(eff)µνρ

λE;λ

[b2;µ
µ
ν
ν ]
∂E

= − 4

45
R(eff)

µνE;µν −
1

10
R(eff);µ

E;µ − 4

5
E;µ

µ
ν
ν (A.18)

[b4] =
1

72
R(eff)

2− 1

180
R(eff)µν

R(eff)
µν+

1

180
R(eff)µνρσ

R(eff)
µνρσ+

1

30
∇2R(eff)+

1

6
E;µ

µ

[b4;µ]
∂E

= − 1

12
R(eff)E;µ +

1

12
E;ν

νµ

[b4;µ
µ]
∂E

=
1

30
R(eff)

µνE;µν −
1

9
R(eff)E;µ

µ − 1

15
R(eff)

;µE;µ +
1

20
E;µ

µ
ν
ν +

1

4
E;µE

;µ

[b4;µν ]
∂E2 =

1

4
E;µE;ν

[b4;µνρ]∂E2 =
1

3
(E;µE;νρ + E;νE;ρµ + E;ρE;µν)

[b4;µ
µ
ν
ν ]
∂E2 =

5

6
E;µE;µν

ν +
2

3
E;µE;ν

νµ +
4

9
(E;µ

µ)2 +
8

9
E;µνE

;µν (A.19)

[b6]
∂E

=
1

90
R(eff)

µνE;µν +
1

36
R(eff)E;µ

µ +
1

30
R(eff)

;µE;µ +
1

60
E;µ

µ
ν
ν +

1

12
E;µE

;µ

[b6;µ]
∂E2 =

1

12
(E;νE

;ν
;µ − E;µE

;ν
;ν)

[b6;µ
µ]
∂E2 =

1

24
R(eff)E;µE

;µ − 1

9
(E;µ

µ)2 +
2

45
E;µνE

;µν +
1

15
E;µE;µν

ν − 1

10
E;µE;ν

νµ
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[b6;µνρ]∂E3 = −1

8
E;µE;νE;ρ

[b6;µ
µ
ν
ν ]
∂E3 = −2

3
E;µE;νE;µν −

1

3
E;µE

;µE;ν
;ν (A.20)

[b8]
∂E2 =

1

72
R(eff)E;µE

;µ +
1

72
(E;µ

µ)2 +
1

90
E;µνE

;µν +
1

60
E;µE;µν

ν +
1

60
E;µE;ν

νµ

[b8;µ]
∂E3 = − 1

24
E;νE

;νE;µ

[b8;µ
;µ]

∂E3 = − 1

12
E;µE;νE

;µν − 1

72
E;µE

;µE;ν
;ν

[b8;µνρσ]
∂E4 =

1

16
E;µE;νE;ρE;σ (A.21)

[b10]
∂E3 =

1

60
E;µνE

;µE;ν +
1

72
E;µ

µE;νE;ν

[b10;µν ]
∂E4 =

1

48
E;ρE

;ρE;µE;ν (A.22)

[b12]
∂E4 =

1

12 · 4!
(E;µE;µ)2 (A.23)

Using these relations we can then write the final result for the heat kernel at coincident

points as

K(x, x; t) = (4πt)−(deff+1)/2
∑
k=0

b2kt
ketE , (A.24)

where the relevant heat kernel coefficients are given by

[b0] = 1,

[b2] =
1

6
R(eff),

[b4] =
1

72
R(eff)

2 − 1

180
R(eff)µν

R(eff)
µν +

1

180
R(eff)µνρσ

R(eff)
µνρσ +

1

30
∇2R(eff) +

1

6
E;µ

µ,

[b6]
∂E

=
1

90
R(eff)

µνE;µν +
1

36
R(eff)E;µ

µ +
1

30
R(eff)

;µE;µ +
1

60
E;µ

µ
ν
ν +

1

12
E;µE

;µ,

[b8]
∂E2 =

1

72
R(eff)E;µE

;µ +
1

72
(E;µ

µ)2 +
1

90
E;µνE

;µν +
1

60
E;µE;µν

ν +
1

60
E;µE;ν

νµ,

[b10]
∂E3 =

1

60
E;µνE

;µE;ν +
1

72
E;µ

µE;νE;ν ,

[b12]
∂E4 =

1

12 · 4!
(E;µE;µ)2. (A.25)

As a cross-check, we can compare our results for the coefficients above with the results of [29,

36]. To see this, one must first expand the exponential etE as a power series in t. Doing so,

and carefully accounting for cross-terms between the expansion of etE and the heat kernel

expansion itself, one recovers the results of [29] for the [b0], [b2], [b4] and [b6]∂E terms. The

terms [b8]∂E2 , [b10]∂E3 and [b12]∂E4 , on the other hand, can be matched with the flat space

results of [36]. The only term that this procedure does not account for is the term in [b8]∂E2

which includes the Ricci scalar R(eff) and which has not (to our knowledge) previously been

computed. Interestingly, this term (along with several others) can be seen to appear if one

assumes the lower-order heat kernel coefficients each individually exponentiate. It would

be interesting to understand this apparent exponentiation property further.
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A.4 Reproducing the standard heat kernel expansion

We now turn to verifying that the fixed-k heat kernel expression derived above integrates

to the usual form of the heat kernel expansion. In particular, we perform the integral

over k for asymptotically AdS black branes, with metrics of the form (2.1) with f(r) =
r2

L2 (1− rdh
rd

) and dΩ2
d−1 replaced with L−2d~x2. This means that in this subsection we specialize

to the geometry in (4.6) with deff+1 = 2, which is relevant for (d+1)-dimensional AdS

Schwarzschild black branes.

A.4.1 Leading heat kernel coefficients for black branes

We will first verify the leading order heat kernel coefficients for the generic (d+1)-dimen-

sional AdS-Schwarzschild black brane. This will include all of the divergences for scalar

fields in the BTZ black hole. The heat kernel (including the appropriate measure factors)

expressed as an integral of the fixed-k heat kernel is given by

rd−1K(x, x; t) =
1

4πt

∫
dd−1k

(2π)d−1
e−t(k

2X+m2)

(
1+

t

6

(
R(2)+6Ẽ−tk2X;µ

µ+
1

2
t2k4X;µX

;µ

))
,

(A.26)

where we have defined E = Ẽ − k2X with

Ẽ = −d
2 − 1

4L2
− (d− 1)2

4L2

rdh
rd
,

X =
1

r2
, (A.27)

and we have expanded the k-independent term Ẽ of the exponential as a power series in t.

The factor of rd−1 on the left-hand side of (A.26) arises from20 the different volume factors
√
g and

√
g(2) in

lnZ =
1

2

∫
dd+1x

√
g

∫
dt

t
K(x, x; t) =

1

2

∫
dd−1k

(2π)d−1

∫
d2x
√
g(2)

∫
dt

t
Kk(x, x; t). (A.28)

In what follows, recall that the curvature invariants and covariant derivatives in (A.26) are

defined with respect to the two-dimensional geometry (4.6).

The relevant momentum integrals are given by∫
dd−1k

(2π)d−1
k2n e−

tk2

r2 =
Vol(Sd−2)

(2π)d−1

∫ ∞
0

dk kd−2+2n e−
tk2

r2

= (4πt)−(d−1)/2t−nrd−1+2n Γ
(
n+ d−1

2

)
Γ
(
d−1

2

) . (A.29)

Evaluating (A.26) we find

K(x, x; t) =
e−tm

2

(4πt)(d+1)/2

(
1 +

t

6

(
−d(d+ 1)

L2

))
, (A.30)

20Dimensional analysis is the simplest way to get straight whether there should have also been any overall

factors of L in (A.26). Note that we are keeping here the convention of the main text that ~k is dimensionless.

That is, ~k = ~pL here, where ~p is the momentum conjugate to the transverse position ~x.
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which is the correct expression for the leading terms of the heat kernel expansion in the

AdS-Schwarzschild black brane in d+1 dimensions, given that the (d+1)-dimensional Ricci

curvature is R = −d(d+ 1)/L2.

A.4.2 Including the a4 coefficient

We now move on to the O(t2) coefficient in the heat kernel expansion, called a4 in the

notation of equation (A.6). This is given by a sum of terms from the coefficients b4 to b12.

Including this term in the heat kernel gives

rd−1K(x, x; t) =
1

4πt

∫
dd−1k

(2π)d−1
e−t(k

2X+m2)

×

(
1 +

t

6

(
R(2) + 6Ẽ − tk2X;µ

µ +
1

2
t2k4X;µX

;µ

)
+

t2

6

(
R(2)Ẽ + 3Ẽ2

)
+

t2

360

(
5R(2)

2− 2R(2)µν
R(2)

µν+ 2R(2)µνρσ
R(2)

µνρσ+ 12R(2);µ
µ+ 60Ẽ;µ

µ
)

− k2t3

180

(
R(2)

µνX;µν + 5R(2)X;µ
µ + 6R(2)

;µX;µ

+ 6X;µ
µ
ν
ν + 30Ẽ;µX;µ + 30ẼX;µ

µ
)

+
k4t4

360

(
5R(2)X;µX

;µ + 5 (X;µ
µ)2 + 4X;µνX

;µν

+ 6X ;µXµν
ν + 6X ;µXν

νµ + 30ẼX;µX
;µ
)

− k6t5

360
(6X;µνX

;µX ;ν + 5X;µ
µX;νX

;ν) +
k8t6

12 · 4!
(X ;µX;µ)2

)
, (A.31)

where Ẽ and X are given in (A.27) and again all curvature invariants and covariant deriva-

tives are defined with respect to the two-dimensional geometry (4.6).

After evaluating the various terms, performing the momentum integrals we find the

final expression

K(x, x; t) = (4πt)−(d+1)/2e−tm
2 ×

(
1 +

t

6

(
−d(d+ 1)

L2

)

+
t2

360L4

(
d(d+ 1)(5d2 + 3d+ 4) + 2d(d− 1)2(d− 2)

r2d
h

r2d

))
. (A.32)

One can verify that this is the appropriate expression for a minimally coupled scalar in the

AdSd+1 black brane by evaluating the curvature invariants for the metric (2.1) with flat

horizon. These are

R;µ
µ = 0,

R2 =
d2(d+ 1)2

L4
,

RµνR
µν =

d2(d+ 1)

L4
,

RµνρσR
µνρσ = 2

d(d+ 1)

L4
+ d(d− 1)2(d− 2)

r2d
h

r2dL4
. (A.33)
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Evaluating the known heat kernel coefficient

a4 =
1

360

(
5R2 − 2RµνR

µν + 2RµνρσR
µνρσ + 12R;µ

µ
)

(A.34)

[which is (4.12c) with E in that context set to zero to obtain the (d+1)-dimensional calcu-

lation of ln det(−∇2 +m2)], we find precise agreement with (A.32).

B Large-k expansion vs. large r

B.1 Potential breakdown of large-k expansion (5.24)

In the main text, we reported that one of the terms in our large-k heat kernel expansion

F (k) comes from large enough r to cast into doubt the usefulness of the expansion. Here

we provide a little more detail about the power counting. As in (5.18), start from

F (k) ≡ lnZtrunc
k =

1

2

∫ rb

rh

dr

∫ 1/T

0
dτ

∫ ∞
Λ−2

dt

t
Ktrunc
k (x; t) ≡ 1

2T

∫ rb

rh

dr K(r), (B.1)

and use the formula (5.17) for what we define here as

K(r) ≡
∫
dt

t
Ktrunc
k (x; t). (B.2)

The IR divergence (5.19) comes from the fact that (5.17) approaches a constant, K(∞),

as r → ∞. The IR divergence is uninteresting; so let’s isolate it from our discussion by

subtracting it away, focusing on the IR-regulated contribution

Freg(k) ≡ 1

2T

∫ ∞
rh

dr
[
K(r)−K(∞)

]
. (B.3)

Let’s now focus on a particular term in (5.17):∫ ∞
Λ−2

dt

t
Ktrunc
k (x; t) = · · ·+ k2 + m̂2r2

4πr2
ln

(
k2 + m̂2r2

Λ2r2

)
+ · · · , (B.4)

which is one of the terms generated from integrating the leading “1” term in the expan-

sion (5.16) of Kk. The corresponding contribution to Freg(k) above is

1

2T

∫ ∞
rh

dr

[
k2 + m̂2r2

4πr2
ln

(
k2 + m̂2r2

Λ2r2

)
− m̂2

4π
ln

(
m̂2

Λ2

)]
. (B.5)

There are two important scales in this integral for large k: the scale r ∼ rh set by the

integration limit, and the scale r ∼ k/m̂ characteristic of the integrand. The contribution

to (B.5) from r ∼ rh will be of order rh/T times the integrand evaluated at r ∼ rh, and so

of order k2/rhT ∼ k̂2 (times a logarithm) for large k. In contrast, the contribution to (B.5)

from r ∼ k/m̂ will be of order r/T times the integrand evaluated at that r, and so of order

km̂/T ∼ k̂m̂. This is the origin of the contribution (5.24) discussed in the main text. In
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fact, the entire k̂m̂L arctan(k̂/m̂L) term in (5.18) comes from the integral (B.5), which

gives

1

4

[
−k̂2 ln(Λ2L2)−2k̂2+

(
k̂2− m̂2L2

)
ln(k̂2+m̂2L2)+4k̂m̂L arctan

(
k̂

m̂L

)
+2m̂2L2 ln(m̂2L2)

]
.

(B.6)

If one looks at the other terms in (B.4), there are also individual contributions of order

km̂ from r ∼ k/m̂, but these all cancel among those other terms, leaving only the km̂

contribution that comes from (B.5).

The moral of the story is that there are large-r contributions from r ∼ k/m that

generate the contribution (5.24) to F (k). The large-k expansion that we truncated to

determine F (k) assumed that the expansion parameter teff described in section 4.3 was

small. Recall for the discussion in that section that the exponential exp
(
−t(m2 − E)

)
'

exp
(
−t(m2 + k2/r2)

)
in (4.18), or equivalently exp

(
−t(k2X + m2)

)
in (5.16), forces t .

r2/k2. For the largest t, which is t ∼ r2/k2, the expansion in teff , which is given by (5.16)

in the BTZ case, is an expansion in t/L2 ∼ r2/k2L2. For r as large as r ∼ k/m̂, this is then

an expansion in t/L2 ∼ (m̂L)−2. Unless m̂L is large (which we do not want to generally

assume in our problem), this expansion parameter is not small at those large values of r.

B.2 Using AdS for large r

At large r, the spacetime is approximately AdS. AdS is simple enough that we do not

have to resort to the fixed-k heat kernel expansion in powers of t; we may instead directly

compute the exact result for fixed k (equivalent to summing up the expansion to all orders).

In this section, we will see that the exact result reproduces (5.24), and so there was no

problem after all as long as we indeed used m̂ for our calculations in the main text. [If we

had instead done our fixed-k heat kernel expansion in the main text in terms of the original

m rather than m̂, we would have found something different than (5.24) at the order of our

expansion, which would have been (a) wrong, and (b) not a polynomial in ∆ and so the

mistake would not be absorbable into P̃olk(∆).]

B.2.1 Three dimensions

So let’s turn to the analysis in AdS. We will focus first on the case of Euclidean AdS3 (also

known as H3) relevant to the large r behavior of BTZ. In this appendix, we will work in

units where L = 1, and we work in the parametrization

ds2 =
dz2 + dτ2 + dx2

1

z2
, (B.7)

where z corresponds to L2/r in our earlier notation, and x1 is the transverse spatial coordi-

nate. The full partition function is given in terms of the heat kernel K(x, x′; t) as in (4.10)

as

lnZ =
1

2

∫
d3x
√
g

∫ ∞
0

dt

t
K(x, x; t). (B.8)

The heat kernel K(x, x′; t) depends on (x, x′) only through the chordal distance

u(x, x′) ≡ (z − z′)2 + (τ − τ ′)2 + (x1 − x′1)2

2zz′
≡ cosh ξ(x, x′)− 1 (B.9)
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and is given by [37, 38]

K(ξ; t) =
1

(4πt)3/2

ξ

sinh ξ
exp

(
−(m2 + 1)t− ξ2

4t

)
. (B.10)

[For AdS, ξ2/2 is the σ of (A.3).]

We are interested in a fixed-k heat kernel, where k is the conjugate variable to x1. We

can rewrite (B.8) as

lnZ =
∑
k

lnZk (B.11)

with

lnZk =
1

2

∫
dz dτ

√
g

∫ ∞
0

dt

t

∫ ∞
−∞

d(∆x1) e−ik∆x1K(z, τ, x1; z, τ, x1 + ∆x1; t). (B.12)

So we are interested in (i) the coincident case of z = z′ and τ = τ ′ but (ii) the Fourier

transform with respect to ∆x1 ≡ x′1 − x1. In this case,

u =
(∆x1)2

2z2
= cosh(ξ)− 1 = 2 sinh2( ξ2). (B.13)

We trade the integral over ∆x1 for an integral over ξ while holding z fixed. Substituting

∆x1 = 2z sinh(ξ/2) gives

Kk(z; t) ≡
∫ ∞
−∞

d(∆x1) e−ik∆x1K(z, τ, x1; z, τ, x1 + ∆x1; t)

=
z

(4πt)3/2
e−(m2+1)t

∫ ∞
−∞

dξ e−2ikz sinh(
ξ
2 )e−

ξ2

4t
ξ

2 sinh( ξ2)
. (B.14)

Note that the ξ integration limits are −∞ and ∞ because the x1 integration limits are.

Using
√
g = z−3, the z and t integrals in (B.12) give∫ ∞

0
dz
√
g

∫ ∞
0

dt

t
Kk(z; t)

=

∫ ∞
0

dz

∫ ∞
0

dt

∫ ∞
−∞

dξ
1

z2t(4πt)3/2
e−(m2+1)te−2ikz sinh(

ξ
2 )e−

ξ2

4t
ξ

2 sinh( ξ2)
. (B.15)

Given the behavior of the integrand under ξ → −ξ and under z → −z, we can trade the

range (−∞,+∞) on the ξ integral for a range (−∞,+∞) on the z integral to rewrite∫ ∞
0

dz
√
g

∫ ∞
0

dt

t
Kk(z; t)

=

∫ ∞
−∞

dz

∫ ∞
0

dt

∫ ∞
0

dξ
1

z2t(4πt)3/2
e−(m2+1)te−2ikz sinh(

ξ
2 )e−

ξ2

4t
ξ

2 sinh( ξ2)
. (B.16)

The z integral is ∫ ∞
−∞

dz

z2
e−2ikz sinh(

ξ
2 ) = −2π|k| sinh( ξ2). (B.17)
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The ξ integral can then be done with∫ ∞
0

dξ e−
ξ2

4t ξ = 2t, (B.18)

and then the remaining t integral with∫ ∞
0

dt

(4πt)3/2
e−(m2+1)t = − m̂

4π
, (B.19)

where m̂2 ≡ m2 + 1 (for the case d=2 here) is the same shifted mass (5.15) introduced in

the main text. The final result for the integrals is∫ ∞
0

dz
√
g

∫ ∞
0

dt

t
Kk(z; t) =

1

2
|k|m̂, (B.20)

giving

lnZk =

∫
dτ

1

4
|k|m̂. (B.21)

In the context of thermal AdS or the asymptotic AdS region of BTZ, the integral over

τ just gives a factor of 1/T , in which case the above result becomes

lnZk =
|k|m̂
4T

=
π

2
|k̂|m̂, (B.22)

using the definition (5.5) of k̂. Restoring factors of L, this is exactly the same as the

term (5.24) identified in the main text, and so (5.24) is correct in spite of the worries one

might have had about the fixed-k heat kernel expansion for this term.

B.2.2 Generalizing to higher dimensions

The linear-in-m̂ term above generalizes to higher odd-dimensional cases Hd+1 (or Euclidean

AdSd+1) as well. We will see that it has precisely the same form as (B.22), but with m̂

replaced by the general-d formula (5.15) for the shifted mass.

To start, we note a few properties of the geometry, Laplacian and heat kernel in Hd+1.

The geometry of Hd+1 is given by replacing the coordinate x1 with a (d−1)-vector ~x in the

metric (B.7) and similarly in the chordal distance (B.9). When acting on a function of the

geodesic distance ξ, the scalar Laplacian ∆d+1 on Hd+1 can be written in the simple form

∆d+1 = ∂2
ξ + d coth ξ ∂ξ. (B.23)

As observed by Camporesi [37], this implies the following recursion relation between Lapla-

cians in different dimensions:

∆d+1D = D(∆d−1 − d+ 1), (B.24)

where we have defined the operator

D ≡ 1

sinh ξ

∂

∂ξ
. (B.25)
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Since the heat kernel in Hd+1, which we denote here by Kd+1(ξ, t), satisfies(
∂t −∆d+1 +m2

)
Kd+1(ξ; t) = 0, (B.26)

we can use (B.24) to derive the recursion relation

Kd+1(ξ; t) = − 1

2π

e−(d−1)t

sinh ξ

∂

∂ξ
Kd−1(ξ; t), (B.27)

where the normalization is fixed by demanding the appropriate behavior as t → 0. This

recursion relation will prove useful in evaluating lnZk for Hd+1. We also note in passing

that the exponential in (B.27) is precisely that required to shift the m̂2 in (d−1)-dimensions

to the m̂2 in (d+1)-dimensions, as appropriate for the higher dimensional heat kernel such

that

Kd+1(ξ; t) ∝ e−tm̂
2
(d+1) , (B.28)

with m̂2
(d+1) = m2 + d2

4 =
(
∆− d

2

)2
.

To derive lnZk we follow precisely the same steps as in the previous section. In what

follows we will explicitly compute lnZk for the physically relevant cases of d = 4 and

d = 6. We again define the fixed-k heat kernel by taking the coincidence limits in the z

and τ coordinates as in (B.14) and perform the higher dimensional version of the Fourier

transform

K
(d+1)
k (z; t) ≡

∫ ∞
−∞

dd−1(∆x) e−i
~k·∆~xKd+1(ξ; t)

= Vol(Sd−3)

∫ ∞
0

ρd−2dρ

∫ π

0
dθ(sin θ)d−3e−ikρ cos θKd+1(ρ, z; t), (B.29)

where ρ = |∆~x|, k = |~k|, and θ is the polar angle which we define as the angle between ~k

and ∆~x. Evaluating the polar integral for d = 4 and d = 6 we find

K
(5)
k (z; t) =

2πi

k

∫ ∞
−∞

dρ ρ e−ikρK5(ρ, z; t),

K
(7)
k (z; t) =

4π2i

k3

∫ ∞
−∞

dρ ρ (1 + ikρ)e−ikρK7(ρ, z; t). (B.30)

To compute lnZ
(d+1)
k we should take these expressions and use them to evaluate the

integrals

lnZ
(d+1)
k =

1

2

∫ 1/T

0
dτ

∫ ∞
0

dz
√
g

∫ ∞
0

dt

t
K

(d+1)
k (z; t)

=
1

2T

∫ ∞
0

dz

zd+1

∫ ∞
0

dt

t
K

(d+1)
k (z; t). (B.31)

Making the change of variables from ρ to ξ by using ρ = 2z sinh ξ
2 and focusing on the z

and ξ integrals we have∫ ∞
0

dz

z5
K

(5)
k (z; t) =

2πi

k

∫ ∞
0

dz

z3

∫ ∞
−∞

dξ sinh ξ e−2ikz sinh( ξ
2

)K5(ξ; t),∫ ∞
0

dz

z7
K

(7)
k (z; t) =

4π2i

k3

∫ ∞
0

dz

z5

∫ ∞
−∞

dξ sinh ξ

(
1 + 2ikz sinh

ξ

2

)
e−2ikz sinh( ξ

2
)K7(ξ; t).

(B.32)
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We can now use the recursion relation to replace K5(ξ; t) with K3(ξ, t) and K7(ξ; t) with

K5(ξ, t). In particular,

K5(ξ; t) = − 1

2π

e−3t

sinh ξ

∂

∂ξ
K3(ξ; t),

K7(ξ; t) = − 1

2π

e−5t

sinh ξ

∂

∂ξ
K5(ξ; t). (B.33)

Inserting these relations in (B.32) and integrating by parts we find∫ ∞
0

dz

z5
K

(5)
k (z; t) = e−3t

∫ ∞
0

dz

z3

∫ ∞
−∞

dξz cosh(
ξ

2
) e−2ikz sinh( ξ2)K3(ξ; t),∫ ∞

0

dz

z7
K

(7)
k (z; t) = e−5t 2πi

k

∫ ∞
0

dz

z3

∫ ∞
−∞

dξ sinh ξ e−2ikz sinh( ξ2)K5(ξ; t). (B.34)

There are two things to notice here. First, if we substitute (B.10) into the expression

on the first line we reproduce precisely the same integral in (B.15) that computed lnZ
(3)
k

(the fixed-k partition function in three dimensions), up to a factor of e−3t. As mentioned

previously, this additional exponential factor is precisely that required to shift the m̂2
(3) =

m2 + 1 in (B.10) to m̂2
(5) = m2 + 4 such that −m̂2

(5)t appears in the exponential. This all

means that lnZ
(5)
k will have the same expression as lnZ

(3)
k and will be given by (B.22),

except that the m̂ in (B.22) will be the appropriate expression for five dimensions. The

second thing to notice in (B.34) is that a similar relation exists between the K
(7)
k (z; t)

integral on the second line of (B.34) and the K
(5)
k (z; t) integral on the first line of (B.32).

Similar reasoning, and applying one additional step of recursion, then implies that ln Z
(7)
k

also has the same form as lnZ
(3)
k .

In the end, we see that the recursion relation between heat kernels in odd-dimensional

Hd+1 implies a simple relation between the fixed-k partition functions lnZ
(d+1)
k . In partic-

ular, we have

lnZ
(d+1)
k =

π

2
|k̂|m̂(d+1), (B.35)

when d+ 1 is odd.

The case when d + 1 is even can be worked out similarly, and one can verify that

lnZ
(d+1)
k is linear in k. However, evaluating the explicit dependence on m̂ is more com-

plicated because in this case the recursion relation should reduce the final result to an

expression as an integral of the heat kernel on H2, which is not known to be expressible in

terms of elementary functions [37].

C Doing the momentum sums for BTZ

The sum over momentum modes in equation (5.16) can be done analytically using Poisson

resummation (see [39] for a related discussion). Consider first the sum on k of the leading

term in (5.16), which can be rewritten as

1

4πt

∞∑
k=−∞

e−t(k
2X+m̂2) =

1

4πt

√
π

Xt

∞∑
`=−∞

e−
π2`2

Xt
−tm̂2

. (C.1)
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To find the partition function we need to integrate this over t as in (4.22). For ` = 0 the

integral is divergent, and so we evaluate that term independently. Using a strict UV cutoff

t ≥ 1/Λ2, one finds∫ ∞
1/Λ2

dt

t

1

4πt

√
π

Xt
e−tm̂

2
=

1

4
√
πX

(
2

3
Λ3 − 2m̂2Λ +

4

3
m̂3√π

)
+O(Λ−1). (C.2)

This is precisely the behavior expected for the UV-divergent contribution arising in stan-

dard heat kernel regularization. In particular, substituting X = 1/r2, we see that the

prefactor is proportional to the BTZ volume element factor 1/
√
X =

√
g = r.

For ` 6= 0, the integral on t is finite and yields a Bessel function. Using the integral

representation

Kα(z) =
1

2

(z
2

)α ∫ ∞
0

dt

t
t−αe−t−

z2

4t , (C.3)

and performing the sum on ` 6= 0, we find

∑
6̀=0

∫ ∞
0

dt

t

1

4πt

√
π

Xt
e−

π2`2

Xt
−tm̂2

=
m̂3/2X1/4

π2

∞∑
`=1

1

`3/2
K3/2

(
2πm̂`√
X

)

=
X

4π3

∞∑
`=1

1

`3
(1 + y`) e−y`

=
X

4π3

(
Li3
(
e−y
)

+ y Li2
(
e−y
))
, (C.4)

where we have defined y = 2πm̂√
X

, Lin(x) are poly-logarithms, and in the second line we have

used K3/2(x) =
√

π
2x
−3/2e−x(1 + x). Finite contributions of this sort will be crucial in

comparing with the standard results for the partition function.

A similar analysis for the second term in (5.16) can be done. The only difference is

that the integrand contains one additional factor of t. The ` = 0 mode is again divergent.

Performing that integral with the same regulator we find∫ ∞
1/Λ2

dt

t

1

4π

√
π

Xt
e−tm̂

2
=

1

4
√
πX

(
2Λ− 2m̂

√
π
)

+O(Λ−1), (C.5)

which is again the expected UV divergence and local contributions in a heat kernel reg-

ularization. The sum over non-zero ` in this case gives a representation of K1/2(x) =√
π
2x
−1/2e−x. Performing similar manipulations to the previous case, one finds

∑
6̀=0

∫ ∞
0

dt

t

1

4π

√
π

Xt
e−

π2`2

Xt
−tm̂2

=
1

2π
Li1(e−y). (C.6)

Putting it together, this yields∫
dt

t

1

4π

∞∑
k=−∞

e−t(k
2X+m̂2) =

1

4
√
πX

(
2Λ− 2m̂

√
π
)

+
1

2π
Li1(e−y) +O(Λ−1). (C.7)
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Finally, we need expressions for the two sums with factors of tk2 in (5.16). These can be

determined from the previous result in a simple manner. We can generate the tk2 terms

by simply differentiating the previous result with respect to X, namely∫
dt

t

1

4π

∞∑
k=−∞

tk2e−t(k
2X+m̂2) = − d

dX

(∫
dt

t

1

4π

∞∑
k=−∞

e−t(k
2X+m̂2)

)
, (C.8)

∫
dt

t

1

4π

∞∑
k=−∞

t2k4e−t(k
2X+m̂2) =

d2

dX2

(∫
dt

t

1

4π

∞∑
k=−∞

e−t(k
2X+m̂2)

)
. (C.9)

Applying these relations to (C.7) we find∫
dt

t

1

4π

∞∑
k=−∞

tk2e−t(k
2X+m̂2) =

Λ

4
√
πX3

− m̂

4
√
X3

(
1 + 2 Li0(e−y)

)
+O(Λ−1), (C.10)

∫
dt

t

1

4π

∞∑
k=−∞

t2k4e−t(k
2X+m̂2) =

3Λ

8
√
πX5

− 3m̂

8
√
X5

(
1 + 2 Li0(e−y)

)
+
m̂2π

2X3
Li−1(e−y) +O(Λ−1). (C.11)

Note that many of the poly-logarithms above can be simply expressed in terms of elemen-

tary functions. In particular,

Li1(e−y) = − ln(1− e−y),

Li0(e−y) =
e−y

1− e−y
,

Li−1(e−y) =
e−y

(1− e−y)2 . (C.12)

Poly-logarithms are convenient, as they satisfy the simple relation

d

dy
Lin(e−y) = −Lin−1(e−y). (C.13)

Taking the expressions from this section and evaluating I by performing the integral

over d2x = dr dτ in (4.22) with X = 1/r2 as in (5.11), one can derive the result for I quoted

in (5.22). Interestingly, as we will see below, the r dependence of the integral ends up as a

total derivative and the final result is easily expressed in terms of temperature dependent

poly-logarithms plus a local integral containing the UV divergent terms.

Putting together (C.2 and (C.4) and integrating we find

1

2

∫ ∞
rh

dr

∫ 1/T

0
dτ

∫ ∞
1/Λ2

dt

t

1

4πt

∞∑
k=−∞

e−t(k
2/r2+m̂2) =

∫
d3x
√
g

(
Λ3

24π3/2
− Λm̂2

8π3/2
+
m̂3

12π

)
+

1

(2π)2

1

(2πTL)2
Li3(e−4π2m̂TL2

), (C.14)
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where rh = 2πL2T and we have replaced 2π =
∫
dφ in order to write the measure in the

first line. In the second line we have used that, for X = 1/r2, the final line of (C.4) is a

total derivative

1

r2

[
Li3

(
e−2πm̂r

)
+ 2πm̂r Li2

(
e−2πm̂r

)]
= −

(
1

r
Li3

(
e−2πm̂r

))′
(C.15)

and lim
r→∞

1
rLi3

(
e−2πm̂r

)
= 0.

Next, using (C.7), (C.10), and (C.11) we can evaluate the remaining terms in (5.16),

1

2

∫ ∞
rh

dr

∫ 1/T

0
dτ

∫ ∞
1/Λ2

dt

t

1

4πt

∞∑
k=−∞

e−t(k
2X+m̂2) t

6

(
R(2)+6Ẽ+

3d2

2L2
−tk2X;µ

µ+
1

2
t2k4X;µX

;µ

)

= − 1

2T

∫ ∞
rh

dr

[
r

24πL2

(
Li1(e−y) + y Li0(e−y)

)
−

r2
hm̂

4πL2

(
1

y
Li1(e−y) +

1

3
Li0(e−y)

)]′
= − rh

24πTL2
Li1

(
e−2πm̂rh

)
= − 1

12
Li1

(
e−4π2m̂TL2

)
, (C.16)

where y = 2πm̂r and where a prime denotes a derivative with respect to r. In deriving

the second line of (C.16) we have used the relation (C.13). Finally, it is worth noting that

with m̂ as the mass in the exponential all of the Λ dependence (as well as all non-vanishing

terms in the large mass limit) sits in the first term in the heat kernel expansion, which was

evaluated in (C.14).
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