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COMPARATIVE ULTRASTRUCTURE OF DIGESTIVE

DIVERTICULAE IN BATHYMODIOLIN MUSSELS: DISCOVERY

OF AN UNKNOWN SPHERICAL INCLUSION (SIX) IN DIGESTIVE

CELLS OF A SEEP MUSSEL

CAROL R. LOGAN,1 MEGAN B. EVANS,1 MEGAN E. WARD,1 JOSEPH L. SCOTT,1

RYAN B. CARNEGIE2 AND CINDY LEE VAN DOVER3*
1Biology Department, The College of William & Mary, Williamsburg, Virginia; 2Virginia Institute
of Marine Science, The College of William & Mary, Gloucester Point, Virginia; 3Duke University
Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, North Carolina 28516

ABSTRACT Mussels in the genusBathymodiolus host endosymbiotic bacteria in their gills, fromwhich the mussel derives much

of its nutrition. Bathymodiolin mussels also have functional digestive systems and, as in shallow-water mytilid mussels, cells of the

digestive diverticulae are of two types: basophilic secretory cells and columnar digestive cells. Cellular contents of secretory and

digestive cells of Bathymodiolus thermophilus and Bathymodiolus brevior from deep-sea hydrothermal vents are comparable to

cellular contents of these cell types observed in shallow-water mytilids. In the seep mussel Bathymodiolus heckerae, cellular

contents of columnar cells were anomalous, being dominated by an unknown cellular inclusion herein called spherical inclusion

unknown or SIX. SIX was observed in all digestive cells and some basophilic cells of B. heckerae examined with TEM. It is a large

(2–10-mm diameter) and abundant (7 ± 1.5 inclusions per epithelial cell section) inclusion, with a double external membrane and

stacked internal lamellae. Nomicrobial DNAwas detected in digestive tubules ofB. heckerae usingmolecular probes, preferential

DNA amplification techniques, or DAPI staining, suggesting that SIX is not a unicellular parasite or symbiont. The ubiquity and

abundance of SIX within cells of the digestive diverticula suggest that it has an important cellular function (positive or negative),

yet to be determined.

KEY WORDS: seep mussel, Bathymodiolus, digestive diverticula, lysosomal progression

INTRODUCTION

Bathymodiolin mussels have been found at vent sites on
all major ridge systems of the oceans and at seep sites on

continental margins, where they often represent the dominant
invertebrate biomass (Sibuet & Olu 1998, Van Dover 2000,
Levin 2005). Vent mussels were initially assumed to be suspen-

sion feeders like their shallow-water relatives, relying on
photosynthetically derived detritus (Lonsdale 1977, Enright
et al. 1981). Evidence of chemoautotrophic primary production

at deep-sea vents and seeps and ultrastructural and enzymatic
studies of mussel gill tissue led to the conclusion that bathy-
modiolin mussels depend on chemoautotrophic endosymbiotic
bacteria (thiotrophic and/or methanotrophic, Cavanaugh 1983,

Fisher et al. 1993, Distel et al. 1995, Fiala-Médioni et al. 2002)
for all or most of their nutrition requirement, with digestion
of bacteria or organic detritus fulfilling any remaining energy

requirements (Rau 1981, Cavanaugh 1983, Childress & Fisher
1992).

Uptake of radiolabeled bacteria by Bathymodiolus thermo-

philus Kenk & Wilson demonstrate that this species can clear
and assimilate particulate organic matter. In situ, mussels could
ingest bacteria sloughed from their gills, bacteria from the envi-

ronment, or organic detritus (Page et al. 1991). Vent and seep
mussels are thus considered to be mixotrophic organisms,
capable of obtaining nutrition from chemoautotrophic gill
bacteria and from normal trophic processes (Le Pennec et al.

1990).
Unlike endosymbiont-bearing vestimentiferan tubeworms

and vesicomyid clams, which have reduced or nonexistent

digestive systems (Boss & Turner 1980, Jones 1981), digestive

systems of bathymodiolin mussels appear to be anatomically

and enzymatically complete (Kenk & Wilson 1985, Le Pennec

et al. 1990, Le Pennec et al. 1995, Von Cosel et al. 1994).

Grooves on the gills, well-developed labial palps and the

presence of both secretory and digestive cells in the digestive

diverticulae suggest that morphologically, B. thermophilus

contains a functional digestive system (Kenk & Wilson 1985,

Le Pennec et al. 1990).
Ultrastructurally, cells of the digestive diverticulae of vent

mussels B. thermophilus from the East Pacific Rise (Hily et al.

1986a, Hily et al. 1986b) are similar to those of the shallow-

water musselMytilus edulis Linnaeus (Owen 1972, Owen 1973).

Basophilic secretory cells in both species are filled with endo-

plasmic reticulum for synthesis and secretion of digestive

enzymes into the lumen of the tubule. Digestive columnar cells

in B. thermophilus and M. edulis are more numerous than

secretory cells and contain lysosomal bodies in various stages of

the cellular digestive process.
This study focuses on the ultrastructure of epithelial cells

in the digestive diverticulae of the seep mussel, Bathymodiolus

heckerae Turner, Gustafson, Lutz & Vrijenhoek, from the

Blake Ridge methane hydrate site. Digestive diverticulae of

Bathymodiolus cf. thermophilus from a vent site along the

Pacific Antarctic Ridge and of Bathymodiolus brevior Cosel,

Métivier & Hashimoto from North Fiji back-arc basin vents

were also examined to determine the scope of ultrastructural

variation in representative Bathymodiolus species. The shallow-

water mussel Geukensia demissa Dillwyn was used as a refer-

ence. As reported here, digestive cells of B. heckerae lacked

the lysosomal progression observed in the other mussel

species and instead contained abundant, large, unidentified

inclusions.*Corresponding author: E-mail: c.vandover@duke.edu
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Figure 1. Digestive diverticulae of mussels (light microscopy, 3 40). (A) Geukensia demissa; (B) Bathymodiolus thermophilus; (C) Bathymodiolus

brevior; (D) Bathymodiolus heckerae. Scale bars: 25 mm. B: basophilic cell; in: inclusion; lu: lumen; nu: nucleus; mv: microvilli.
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MATERIALS AND METHODS

Sample Collection

Bathymodiolus heckerae were collected from the Blake

Ridge methane hydrate seep off the coast of South Carolina
(32�32#N, 76�12#W, 2,155 m) in September 2001 and July
2003 by DSV Alvin. Bathymodiolus cf. thermophilus (referred

to hereafter as B. thermophilus) collections were collected
from hydrothermal vent fields on the Pacific-Antarctic
Ridge (37�47#S, 110�54#W, 2,230 m) by ROV Jason II in

March 2005. B. brevior were collected from the Mussel
Hill vent of the North Fiji back-arc basin (16�59# S, 173� 55E,
1990 m). Shallow-water mussels (Geukensia demissa) were
collected from Felgate’s Creek, York River, VA in August

2005.

Light Microscopy

Mussels were fixed whole or in parts in a 10% formalin-
seawater solution or in Davidson’s Solution for 24 h, then
stored in 70% ethanol. For Bathymodiolus heckerae, the

digestive gland was bisected, with half the tissue fixed for light
microscopy, the other half fixed for transmission electron
microscopy (TEM). Formalin-fixed samples were dehydrated
in an ethanol series and embedded in paraffin, and sectioned

(4–6-mm thick). Stains included Gill’s hematoxylin and eosin
(B. heckerae n ¼ 62, B. cf. thermophilus n ¼2, B. brevior n ¼ 2,
Geukensia demissa n ¼ 2) (Stevens 1990), DAPI for DNA

([B. heckerae n ¼ 4, B. cf. thermophilus n ¼2] [Coleman et al.
1981]), and the Brown-Hopps method for gram-positive (blue

staining) and gram-negative bacteria (red staining) ([B. heckerae

n ¼3, B. cf. thermophilus n ¼ 1; Geukensia demissa n ¼1] [Luna
1968]).

In Situ Hybridization

To determine whether the inclusions in digestive cells of
B. heckerae were bacterial, in situ hybridization was carried

out on B. heckerae (n ¼ 2) paraffin-embedded digestive
tissue sections using UNI16S-1, a peptide nucleic acid (PNA)
probe ‘‘universal’’ in specificity for prokaryotes (Gauthier,

unpublished) that was synthesized with a digoxigenin label.
PNA is a DNA mimic that has a high affinity for comple-
mentary DNA/RNA sequences because of a neutrally charged
polyamide backbone. Negative (no probe) and positive

(methanotrophic and thiotrophic symbionts in B. heckerae
gill tissue) controls were included in in situ hybridization
experiments.

Transmission Electron Microscopy

Digestive tissues from all four mussel species (1 mm3) were

fixed for 2 h in 2% glutaraldehyde and 0.1 M phosphate buffer
with 0.25 M sucrose (pH 7.4) (B. heckerae n ¼ 8, B. cf.
thermophilus n ¼ 2, B. brevior n ¼ 2, Geukensia demissa n ¼
2). Bathymodiolus heckerae samples were stored in the same

buffer for up to 20 mo at 4�C before postfixation. The other
samples were immediately postfixed in 1% osmium tetroxide in
the same buffer and stored in 70% ethanol. Samples were

dehydrated in an acetone series, en bloc stained in 70% acetone-
2% uranium acetate, and embedded in Embed 812 epoxy

Figure 2. Digestive diverticulae of mussels (light microscopy, 3 100). (A) Geukensia demissa; (B) Bathymodiolus thermophilus; (C) Bathymodiolus

brevior; (D) Bathymodiolus heckerae. Scale bars: 25 mm. Arrows in B, C point to examples of brown-staining inclusions; arrows in D point to examples

of light-purple-staining inclusions.
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resin embedding medium. Sections (;90 nm thick) were

stained briefly with lead citrate and examined on one-hole
formvar grids with a Zeiss EM 109 transmission electron
microscope.

DNA Extraction and PCR

Digestive, foot, mantle, and gill tissues of mussels were fixed

in 95% EtOH (B. thermophilus, n ¼ 1), or whole mussels were
immediately frozen at –70�C (B. heckerae, n ¼ 3). DNA was
extracted from mussel tissue using a QIAamp DNA Stool Mini

Kit (QIAGEN Inc., Valencia, CA) on digestive tissue from B.
heckerae mussels collected in 2001 and B. thermophilus mussels
collected in 2005. Preferential PCR was used to target non-

metazoan DNA present in the digestive tissue for amplification.

An SSU rDNA region was amplified using primers targeting

sites that are highly conserved across Archaea, Bacteria, and
nonmetazoan eukaryotes, as published previously (Bower et al.
2004). Reaction volumes of 25 mL included PCR buffer at 3 1

concentration, MgCl2 at 2.5 mM, nucleotides at 0.2 mM,
primers (581F and 1134R; Bower et al. 2004) at 0.05 mM,
Platinum Taq polymerase at 0.05 units/mL, and 100–200 ng of
template DNA. Each experiment included no-probe treatments

and bacterial-inhabited tissues (gills) as negative and positive
controls, respectively. All reagents, including the synthesized
primers, were obtained from the Invitrogen Corporation

(Carlsbad, CA). Temperature cycling began with a denatur-
ation at 95�C for 7 min, followed by 35 cycles of denaturation at
95�C, annealing at 49�C, and extension at 72�C, followed finally

by a 7-min final extension at 72�C. Products were visualized

Figure 3. Basophilic cells of digestive diverticulae (transmission electron microscopy). (A) Geukensia demissa; (B) Bathymodiolus thermophilus; (C)

Bathymodiolus brevior; (D) Bathymodiolus heckerae; (E) Schematic of a typical basophilic cell. Scale bars: 3 mm. B: basophilic cell; bl$ basal lamina;

Co$ columnar cell; er$ endoplasmic reticulum; m: mitochondria; nu: nucleus; S: SIX.
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under UV light after electrophoresis in agarose gels and staining
with ethidium bromide.

RESULTS

Characterization of Digestive Tubules in Mussels from Vents and Seeps

Light Microscopy

Digestive tubules in all mussel species examined were lined
by two types of epithelial cells: dark-staining basophilic cells
(typically triangular in cross section) and light-staining, colum-

nar digestive cells (Fig. 1). The columnar digestive cells of
mussels from chemosynthetic environments contained numer-
ous cellular inclusions that were not evident in the shallow-

water mussel (Fig. 2). These inclusions were similar in size (2–4
mm) and staining characteristics (brown) in the two vent mussel
species, Bathymodiolus thermophilus and B. brevior; inclusions
in the seep mussel, B. heckerae, were larger (;3–5 mm) and

stained light purple.

Transmission Electron Microscopy (TEM)

Basophilic secretory cells contained extensive rough endo-
plasmic reticulum and numerous Golgi bodies; their ultrastruc-
ture did not differ among species (Fig. 3). Columnar digestive

cells of Geukensia demissa, Bathymodiolus thermophilus, and B.
brevior contained spherical, membrane-bound, granular lyso-
somal bodies (Figs. 4–6), often in various stages of the digestive

progression (including lysosomes, heterolysosomes, residual
bodies). Lysosomal bodies range from 2 mm (lysosomes) to 10
mm (heterolysosomes) in diameter and were far less common in

G. demissa columnar digestive cells than in those of vent mussels
(Figs. 5, 6). Brown inclusions under light microscopy corre-
sponded to lysosomal residual bodies in B. thermophilus and B.

brevior.
Lysosomal bodies were not observed in columnar digestive

cells of Bathymodiolus heckerae (Fig. 7). Instead, columnar

digestive cells of B. heckerae were filled with large (4.1 mm),
double-membrane-bound (in best preparations) spherical inclu-
sions (Fig. 8A), herein referred to as SIX, containing stacked
lamellae embedded in variably electron-dense material (Fig.

8B). Large, light-purple inclusions under light microscopy
corresponded to SIX in B. heckerae. SIX often appeared to
deform the nucleus (Fig. 8C). All digestive gland tissues of

B. heckerae examined under TEM contained bacteria-like inclu-
sions (hereafter referred to as bacteria based on ultrastructure)
in addition to SIX. In four individuals, bacteria were only

present in the basal lamina and tissues surrounding the tu-
bules. The other three individuals contained bacteria infecting
epithelial cells of the digestive diverticulae. Bacteria were

typically free in the cell cytoplasm (Fig. 8D) or, more rarely,
associated with stacked internal lamellae of SIX. Epithelial cells
lining the stomach and intestines of B. heckerae did not con-
tain SIX.

Characterization of SIX in Bathymodiolus heckerae

DNA Tests

Nuclei of the columnar digestive cells in B. heckerae stained
with DAPI, but the numerous cellular inclusions evident in light

Figure 4. Digestive cells of digestive diverticulae (transmission electron microscopy). (A) Geukensia demissa (scale bar: 5 mm); (B) Bathymodiolus

thermophilus (scale bar: 10 mm); (C) Bathymodiolus brevior (scale bar: 10 mm); (D) Bathymodiolus heckerae scale bar: 10 mm). B: basophilic cell; bl:

basal lamina; Co: columnar cell; hl: heterolysosome; li: putative lipid droplet; Lu: lumen; m: mitochondria;Mv: microvilli; N$ nucleus; rb: residual body;

S: SIX inclusion.
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microscopy (Figs. 1D, 3D), interpreted to be SIX, did not stain
with DAPI (Fig. 9). Bacterial symbionts in gill tissue of B.

heckerae reacted positively using the UNI16S-1 universal probe
for prokaryotes (Archaea and Bacteria; Fig. 10A), but SIX

in the columnar digestive cells did not react with the probe
(Fig. 10B).

PCR amplicons likely representing bacterial symbionts were
generated from gill tissue extractions of B. heckerae (Fig. 11A)
and B. thermophilus (Fig. 11B), but no strong bands plausibly
attributable to nonmussel DNA were amplified from B. heck-

erae digestive diverticulae or foot tissues (Fig. 11A). These
results suggested that no symbiont or parasite was present in
abundance in these tissues.

Brown-Hopps Stain for Bacterial Membranes

Cellular inclusions of epithelial cells of the digestive

diverticulae of Geukensia demissa and Bathymodiolus thermo-
philus did not react with the Brown-Hopps stain for gram-
negative cell wall material. SIX inclusions in digestive

diverticulae and symbiont-bearing gill tissues of Bathymodiolus
heckerae were similar in color, suggestive of being Brown-
Hopps positive (light purple to red), but this interpretation is

subjective.

DISCUSSION

The intracellular digestive process in shallow-water
bivalves was described by Owen (1972), and begins with

food uptake at the apical region through endocytosis, followed
by merger with membrane-bound heterophagosomes (2 mm
in diameter). Digested material is released into blood sinuses

of the mussel, and extraneous material is transformed
into heterolysosomes (up to 10 mm in diameter). As material
is digested and condensed, the heterolysosome shrinks to form

a smaller (5-mm diameter) residual body. Residual bodies
and mature heterolysosomes collect at the basal end of the
cell and residual bodies are cyclically released into the lumen of
the digestive tubules and eliminated via the stomach and

intestine.

Figure 5. Comparative schematic illustrations of digestive cells. (A)

Geukensia demissa; (B) Bathymodiolus thermophilus; (C) Bathymodiolus

brevior; (D) Bathymodiolus heckerae. B: basophilic cell; ci: cilia; ly:

lysosome; hl: heterolysosome; li: putative lipid droplet; m: mitochondria;

Mv: microvilli; nu: nucleus; rb: residual body; SIX: ‘‘spherical inclusion

unknown’’.

Figure 6. Cellular inclusions in digestive cells (TEM). (A) Geukensia demissa; (B) Bathymodiolus thermophilus; (C) Bathymodiolus brevior; (D)

Bathymodiolus heckerae. Scale bars: 3 mm. hl: heterolysosome; li: lipid droplet; nu: nucleus; rb: residual body; SIX: spherical inclusion unknown.
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The major elements of cellular digestion have been observed

in digestive cells of Bathymodiolus thermophilus (Hily et al.
1986a, Hily et al. 1986b, this study) and B. brevior (this study)
from deep-sea hydrothermal vents. Digestive cells of the seep

mussel B. heckerae appeared to lack the typical components
of the cellular digestive system of mussels. Instead of hetero-

lysosomes and residual bodies, B. heckerae digestive cells were
filled with large (;2–10 mm), double-membraned inclusions,
referred to as spherical inclusions unknown (SIX). SIX inclu-
sions vary in electron density, but all SIX inclusions contain

whorled lamellae. These lamellae are reminiscent of the
stacked lamellae of the methanotrophic bacteria found in the
gills of B. heckerae. Tests for bacterial and archaeal DNA

within digestive cells of B. heckerae were negative or inconclu-
sive; the Brown-Hopps histochemical test for bacterial cell
wall material provided subjectively positive but inconclusive

evidence for a microbial origin for SIX without a second,
independent assay. Despite the double membrane, which is
restricted to cellular organelles such as plastids, nuclei, bacte-
rial endosymbionts, and mitochondria, the evidence col-

lected to date suggests that it is unlikely that SIX are
endosymbiotic or parasitic microorganisms, although we can-
not eliminate the possibility that they are a derivative of a

microorganism.
In some respects, SIX resembles sulfide-oxidizing bodies

(SOBs), reported first in gills of the symbiont-bearing and

gutless clam Solemya reidi Bernard (Powell & Somero
1985) and subsequently in gill bacteriocytes of a lucinid calm
(Liberge et al. 2001), in gills of the vent shrimp Rimicaris

exoculata Williams (Compere et al. 2002), and in the cloacal
epithelium of the echiurans worm Urechis caupo Fisher &
Macginitie (Menon & Arp 1993). SOBs are generally (but
not always, as in the case of SOBs in U. caupo) associated

with sulfur-oxidizing endosymbionts and are coupled to ATP
production in S. reidi (Powell & Somero 1985). There are
important differences between SIX and SOBs: SIX are double-

(rather than single-) membraned inclusions, SIX occurred in
tissues that are remote from the seawater-tissue interface
where sulfide oxidation is an important element of the cellular

sulfide detoxification system, and SIX were not closely associ-
ated with mitochondria. Prevalence of SIX was uncorrelated

Figure 7. Detail of SIX and heterolysosome structure (TEM). (A) SIX in

Bathymodiolus heckerae; (B) heterolysosome in Bathymodiolus thermo-

philus. Scale bars: 0.5 mm. cm: cell membrane; dm: double membrane;

hl: heterolysosome; mi: mitochondrion; sm: single membrane.

Figure 8. SIX in Bathymodiolus heckerae digestive cells (TEM). (A) low magnification (scale bar: 10 mm); (B) SIX inclusions of various electron

densities (scale bar: 2 mm); (C) SIX apparently deforming nucleus of the digestive cell (scale bar$ 2 mm) (D) bacteria (arrows) associated with SIX

(scale bar 2 mm). nu: nucleus; S$ SIX.
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with the presence of bacterial-like inclusions, suggesting they

are independent phenomena.
The absence of the normal components of cellular di-

gestion in the seep mussel is surprising, particularly, because

seep mussels elsewhere are postulated to depend on phy-
todetritus to synchronize their reproductive cycles (Tyler
et al. 2007). Without further study, it is impossible to de-

termine whether the presence of SIX is an anomalous
condition or whether it represents a novel cellular
organelle involved in digestion or other aspects of cel-
lular physiology. Further studies, including cytochemical

assays to identify reactions taking place in SIX and lipid
analysis to constrain the origin of the SIX membranes
and lamellae, should help to determine the role that SIX

plays in the digestive cells of the seep mussel Bathymodiolus
heckerae.
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Figure 9. Digestive gland, Bathymodiolus heckerae, with the cross-

section of one digestive diverticula outlined; DAPI stain. Scale bar:

300 mm. Lu: lumen of digestive tubule

Figure 10. In situ hybridization using UNI16S-1 probe for prokaryotes in

Bathymodiolus heckerae. (A) Positive control using endosymbiotic bac-

teria in gills (arrows point to darkly staining bacteriocytes); (B) Digestive

diverticula showing no evidence of prokaryotic DNA (arrows point to SIX;

nu: mussel cell nuclei). Scale bars: 15 mm.

Figure 11. Gel electrophoresis of extracted and amplified SSU

rDNA. (A) Bathymodiolus heckerae n $ 3 individuals, with duplicate

lanes for digestive tissue; (B) Bathymodiolus thermophilus n $ 3

individuals. D: digestive tissue; G: gill tissue (positive control); F:

foot tissue (negative control); M: mantle tissue; +: Crassostrea

virginica Gmelin (oyster) digestive tissue. Units for numbers in ladder

bands: bp
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