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INTRODUCTION

The nursery role concept was introduced over a
century ago to characterize the ecological function of
near-shore shallow-water habitats, such as estuaries
and lagoons, in species with complex life cycles that
include ontogenetic shifts in habitat use. This early
formulation offered the entire estuary as a nursery,
but it was later suggested that specific habitats
within the estuary were more important as nurseries
than others (Beck et al. 2001). Typically, these were

structurally complex habitats, such as mangroves,
marshes, and seagrass meadows, which usually have
higher densities of juvenile fish and invertebrates
than adjacent unvegetated habitats (Heck et al. 2003,
Minello et al. 2003). For example, a recent working
group through the International Council for the
Exploration of the Sea (ICES) examined the habitat
utilization of all taxa for which ICES gives advice, as
well as 12 invertebrate species (ICES 2012). All of the
invertebrates and 17, or 29%, of the taxa examined
utilize coastal habitats as nurseries.
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Vegetated habitats, particularly marsh and sea-
grass, have often been described as nurseries for
blue crabs (e.g. Orth & van Montfrans 1990), as most
laboratory and field studies have found higher
 density, survival, or growth of young juveniles in sea-
grass habitats compared with nearby unvegetated
habitats (see Lipcius et al. 2007 for a review). Near
Ono Island, Alabama, juvenile blue crab abundance
was higher in vegetated habitats than unvegetated
habitats throughout most of the year (Williams et al.
1990). This pattern decreased with size, as the abun-
dance of juveniles >10 mm carapace width (CW) was
not significantly different between the habitats
(Williams et al. 1990). These patterns were also noted
in a seagrass bed and an adjacent, unvegetated
marsh creek in Chesapeake Bay (Orth & van Mont-
frans 1987). At 2 locations near Galveston Island,
Texas, the density of juvenile blue crabs <40 mm CW
was higher in vegetated habitats, including seagrass
and salt marsh, than in nearby unvegetated habitats
(Thomas et al. 1990). Though there were no signifi-
cant differences in juvenile density between vege-
tated and nearby unvegetated habitats at 2 locations
in Great Bay, New Jersey, the low densities (0 to
3 crabs m−2) may have obscured any trends (Wilson
et al. 1990). Juvenile density was also positively cor-
related with seagrass shoot density at Goodwin
Islands, Virginia (Hovel & Lipcius 2002).

Tethering experiments in Chesapeake Bay have
indicated that survival of juvenile blue crabs is a
function of both crab size and habitat (Pile et al. 1996,
Schulman 1996, Lipcius et al. 2005, Hines 2007). Sur-
vival of juveniles 2 to 14 mm CW was higher in sea-
grass than unvegetated habitats (Pile et al. 1996),
whereas survival of larger juvenile crabs, i.e. 14 to
16 mm CW (Pile et al. 1996) and 25 to 52 mm CW
(Lipcius et al. 2005), was similar in both habitats. In
plots of artificial seagrass of varying shoot density,
survival of juveniles was a function of size; survival of
the smallest juveniles, ranging from 3 to 6 mm CW,
was inversely related to shoot density, whereas sur-
vival of larger juveniles, 11 to 35 mm CW, was posi-
tively related to shoot density (Schulman 1996).
Despite these numerous studies, few have addressed
the role of habitat complexity within seagrass habi-
tats (e.g. Hovel & Lipcius 2001, 2002), and the find-
ings of these studies may not apply to the entire pop-
ulation because of their small spatial scale (i.e. 1 to 2
field locations).

Seagrass beds in Chesapeake Bay have undergone
severe fluctuations in the past 80 yr, with the most
dramatic losses occurring in the 1930s following the
wasting disease pandemic and in the 1970s following

significant water-quality changes (Orth & Moore
1983). Full recovery after the wasting disease was
evident by the 1960s. Although recovery from the
1970s decline was observed through the 1990s, sea-
grass beds have once again been declining (Orth et
al. 2010), prompting concerns that current declines
could further compromise blue crab nurseries
through reductions in the total seagrass bed extent
and density. The area of individual seagrass beds
and the presence of macroalgae, particularly the
complex red macroalga Gracilaria spp., may also
interact with the extent and density of seagrass beds
to influence the density of juvenile blue crabs.

Given the absence of an evaluation of the relation-
ship between features of seagrass habitats and juve-
nile blue crab density at a large spatial scale, we per-
formed such an assessment across seagrass beds
(and associated macroalgae) in Chesapeake Bay. The
primary objective of this study was to quantify the
relationship between the density of recently settled
blue crabs and the percent cover of vegetation. We
also evaluated the effects of environmental factors,
including region of Chesapeake Bay (eastern or
western shore), seagrass bed area, distance to the
mouth of the bay, and presence or absence of macro -
algae, on juvenile blue crab density.

MATERIALS AND METHODS

Field surveys

In 2007 and 2008, we used a stratified random sam-
pling survey in seagrass beds throughout lower
Chesapeake Bay in the fall (October and early
November), as postlarval recruitment to the bay typi -
cally occurs from August to November (van Mont-
frans et al. 1990). Sampling sites were randomly gen-
erated, using an algorithm in ArcGIS, across shallow
(<2 m) seagrass beds in lower Chesapeake Bay
(Fig. 1), where primary blue crab settlement occurs
(Van Engel 1958, Heck & Thoman 1984, Lipcius et al.
2007), delineated from an annual aerial monitoring of
all Chesapeake Bay underwater grass beds (for
detailed methodology, see Orth et al. 2011). In the
sampling, 2 species of seagrass were encountered,
eelgrass Zostera marina and widgeon grass Ruppia
maritima, which generally co-occur in many areas of
the lower Chesapeake Bay (Orth & Moore 1988).

The study was designed to be representative of the
population; thus, samples were allocated based on the
area of seagrass on both the eastern and western
shores during the annual aerial seagrass monitoring,
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rather than equally across the shores. Approximately
twice as many samples were taken on the eastern
shore than the western shore, as nearly two-thirds of
the seagrass beds in Chesapeake Bay are located along
the eastern shore and in Tangier Sound. In 2007, 43
samples were taken, with 33 and 10 on the eastern
and western shores, respectively; in 2008, 61 samples
were taken, with 40 and 21 on the eastern and
western shores, res pectively (Fig. 2). Samples were
taken over a period of 8 d in 2007 and 30 d in 2008.

At each randomly selected sampling location, a
1.68 m2 drop net was tossed off the boat as close as
possible to the randomly generated GPS coordinates.
The net was thrown from the bow of the boat while
the engine was in neutral to minimize disturbance of
the juvenile crabs at the sampling location. Although
multiple components of habitat complexity, including
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Fig. 1. Aerial extent of vegetated habitats (widgeon grass,
eelgrass and macroalgae) in Chesapeake Bay in 2007 (dark
gray patches). Black polygons represent distinct geographi-
cal regions separated by rivers and sandbars (modified from
Harwell & Orth 2002). The distribution of vegetated habitats
in 2008 was very similar, though the total area was slightly
higher (Orth et al. 2008). See Table 1 for area of each polygon. 

Gray shading: land; white: water

Fig. 2. Callinectes sapidus. Sampling locations and crab
density (≤30 mm carapace width) for (a) 2007 and (b) 2008.
In total, 43 samples were taken in 2007, 33 on the eastern
shore and 10 on the western shore. In 2008, 61 samples were
taken, 40 on the eastern shore and 21 on the western shore



shoot density, percent cover, and shoot height could
potentially influence the density of juveniles, we de -
cided to utilize percent cover within the net because
it was the most consistent measurement and least
likely to be influenced by observer bias (Dethier et al.
1993). Counting or measuring the length of each
blade within a 1.68 m2 area would influence density
estimates, and taking a small core (e.g. 0.018 m2,
Hovel & Lipcius 2001, 2002) was unlikely to
represent the entire area within the net given the
patchy nature of seagrass beds in the fall. Percent
cover of vegetation (i.e. seagrass and associated
macroalgae) was visually estimated to the nearest
5% increment. Although the amount of macroalgae
varied, it was rarely a dominant component, but was
included in the estimates due to its prevalence and
because it would increase habitat complexity within
the sample. Of the 104 samples, macroalgae was pre-
sent in 15, and comprised >15% of the total cover in
only 6 samples. A suction sampler, modified from
Orth & van Montfrans (1987), was used to collect blue
crabs to a sediment depth of about 5 to 10 mm. This
method samples blue crabs with 80% efficiency in
seagrass (R. Lipcius, unpubl. data), but leaves most of
the shoots intact. Each sample was pumped through
a 1 mm mesh collecting bag, then returned to the lab-
oratory, and frozen before processing. Each sample
was sorted twice for quality assurance, and the blue
crabs were counted, sexed, and measured for cara-
pace width with Vernier calipers, then preserved in
70% ethanol. Only crabs ≤30 mm CW were included
in the analysis, as this represents the size range of re-
cruited juveniles in seagrass (Orth & van Montfrans
1987, Pile et al. 1996, Lipcius et al. 2007); there were
relatively few crabs >30 mm CW in the samples.

To evaluate landscape-level effects on juvenile
density, 2 additional variables were calculated in Ar-
cGIS 10.1. Nominal measures of seagrass bed area
were calculated from the annual seagrass survey
(Orth et al. 2008, 2009, 2010) for the spring before the
sampling season and for the spring after (e.g. for sam-
ples taken in 2007, we used the 2007 and 2008 spring
aerial surveys). The distance from each sample to the
mouth of Chesapeake Bay via the deepest channels
was also calculated, where the deepest channels
were delineated from a National Oceanic and Atmo -
spheric Administration (NOAA), National Ocean
 Service (NOS) 30 m gridded digital elevation model.1

Statistical analyses and hypotheses

To address the shape of the relationship between
vegetation cover and juvenile crab density, we as -
sessed whether the data met the assumptions of the
linear model. Three other plausible models, hyper-
bolic, exponential, and sigmoid, were considered
during analysis of the data. While additions of vege-
tation at low levels of cover may lead to rapid
increases in crab density (i.e. a hyperbolic function),
high-density vegetation may provide additional
resources and refuge that can support much higher
densities of juveniles (i.e. an exponential function).
However, newly settled blue crabs exhibit density-
dependent emigration from vegetated habitats
(Blackmon & Eggleston 2001, Etherington et al. 2003,
Reyns & Eggleston 2004), suggesting an upper limit
to the number of juveniles within a given area (i.e. a
sigmoid function).

Seagrass bed area and location may also influ-
ence crab density. The eastern and western shores
of the Chesapeake Bay exhibit 2 distinct morpholo-
gies: the western shore is primarily composed of
large tributaries, whereas the eastern shore is dom-
inated by small creeks and shallow sand bars.
These differences and the greater area of seagrass
on the eastern shore were expected to result in
lower densities of juveniles on the eastern shore,
where there are fewer impediments to migration. A
positive relationship was also expected between
bed area (Table 1) and juvenile density, as larger
beds produce stronger chemical cues to which
immigrating postlarvae or young juveniles may
respond (Welch et al. 1997) and they have lower
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Region 2007 2008 2009

1 1.8 2.1 2.4
2 9.0 10.4 11.8
3 14.4 18.1 22.9
4 9.3 11.2 14.8
5 32.8 37.4 42.4
6 8.6 12.1 15.2
7 0.9 1.3 3.5
8 9.5 12.3 12.7
9 10.5 12.4 13.4

10 8.9 12.1 14.9
Total 105.7 129.4 154.1

Table 1. Area of vegetated habitat (km2) within each region
(1 to 10, see Fig. 1). Distinct geographic regions are sepa-
rated by rivers and sandbars (modified from Harwell & Orth
2002). Aerial extent of vegetated habitat was modified from
the Virginia Institute of Marine Science annual survey (Orth 

et al. 2008, 2009, 2010)

1NOAA/NOS (2006) Thirty meter gridded DEM for Chesa-
peake Bay bathymetry. Created by Robert Conkwright, us-
ing ESRI ArcInfo 9.1; http://estuarinebathymetry.noaa.gov/
bathy_htmls/M130.html
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edge-to-interior ratios, which could limit emigration
(Eggleston et al. 1998). As blue crab megalopae re-
invade the bay from the coastal ocean, a negative
relationship was expected between juvenile density
and distance from the bay mouth. The presence of
algae was expected to increase juvenile crab den-
sity, as it could provide additional structure and
refuge.

We used Akaike’s information criterion (AIC)
with in an information theoretic framework (Burn-
ham & Anderson 2002, Anderson 2008) to evaluate
which environmental variables were important in
predicting juvenile blue crab density. This method
relies on the development of multiple working
hypotheses with associated mathematical models.
The Kendall rank correlation coefficient (τ) was
used to determine colinearity between the covari-
ates, including juvenile density, percent cover of
seagrass, bed area, and distance to the bay mouth.
We proposed a total of 11 models comprised of the
main effects and the inter action between shore and
percent cover of vegetation (Table 2). All statistical
analyses were run in the open-source statistical
software package R (R Development Core Team
2008).

The benefit of using AIC compared with other
more traditional statistical methods is its ability to
compare hypotheses against each other, through the
likelihood of each model. To correct for a potential
bias due to small sample sizes, the corrected AIC
(AICc) was used (Anderson 2008). Each model was
assessed by calculations that result in a weight (wi) —

the probability that model i is the best model out of
the candidate set of models (Anderson 2008):

(1)

where n is the number of samples, k is the number of
parameters, and L̂ is the maximized values of the
likelihood function for the estimated model;

(2)
and

(3)

One caveat to the study is that sampling could not
be synoptic due to logistical constraints. The survey
was completed in October and November, but re -
cruitment can occur episodically through November
in the Chesapeake Bay (van Montfrans et al. 1990).
Thus, there was some unknown variability in the
samples that confounds year and month effects.
However, given that the majority of pulses have gen-
erally occurred in the 2 months immediately before
our sampling (van Montfrans et al. 1995), we are con-
fident that our sampling represents a reasonable esti-
mate of juvenile density in these habitats.

RESULTS

In 2007, the percent cover of vegetation ranged
from 5 to 100%, with 6 of the 43 samples having
<20% cover; in 2008, percent cover ranged from 20
to 100%. Percent cover within the samples was not
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Model k Variables
x1 x2 x3 x4 x5 x1 × x2

Intercept Cover Shore Bed Area Distance Algae Cover × Shore

g1 3 β0 β1

g2 3 β0 β2

g3 3 β0 β3

g4 3 β0 β4

g5 3 β0 β5

g6 4 β0 β1 β2

g7 5 β0 β1 β2 β3

g8 5 β0 β1 β2 β4

g9 5 β0 β1 β2 β5

g10 5 β0 β1 β2 β6

g11 7 β0 β1 β2 β3 β4 β5

Table 2. Models used in the Akaike’s information criterion analysis of blue crab density. k = the number of parameters in each
model. Cover refers to the percent of the sample ring that was covered with seagrass. x2 = 0 for eastern shore and 1 for western
shore. Bed Area refers to the area of the seagrass bed within which each sample was taken (i.e. patch size), based on the aerial
seagrass survey from May to June of the year after the sample was taken. Distance refers to the distance to the bay mouth
along the deepest channels. x5 = 1 if any algae was present in the sample and 0 if algae was absent. If a β is located in a column 

then that variable was included in the model. All models were run using the exponential transformation, ln(y)
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statistically different between eastern and
western shores (Fig. 3, Table 3).

Crab size was log-normally distributed
with an overall mean of 7.4 mm CW (95% CI:
6.6 to 8.2 mm). Crabs were significantly
smaller in 2008 than in 2007, and signifi-
cantly smaller on the western shore than the
eastern shore in both years. The difference
between the mean size of juvenile crabs on
the eastern and western shores was greater
in 2007 than in 2008, and the Year × Shore
interaction was significant (Fig. 4, Table 4).

Juvenile density was log-normally distrib-
uted with an overall mean of 24.0 crabs m−2

(SE = 2.7). Mean density of juvenile blue
crabs in 2007 was 16.9 crabs m−2 (SE = 3.1);
excluding the samples where seagrass cover
was <20% resulted in a density of 19.2 crabs
m−2 (SE = 3.5). In 2008, the density was 29.0
crabs m−2 (SE = 3.9). Density of juveniles was
significantly higher in 2008 than 2007 (t =
3.39, df = 58.7, p = 0.001).

The estimates of patch size from the year of
the sampling and the year after were highly
positively correlated in 2007 and 2008 (τ >
0.75). The correlations for all other pairs of
environmental factors were weak (|τ| < 0.20).
There was a small negative correlation
between juvenile density and distance to the
mouth of the bay (τ = −0.22 and −0.32 in 2007
and 2008, respectively).

The linear function for crab density vs. percent
cover of seagrass did not fit the data well, as evi-
denced by non-random residuals and heterogeneous
variance, and was removed from further analysis. A
polynomial fit to the data (LOWESS, locally weighted
scatterplot smoothing) did not exhibit a peaked or
asymptotic distribution, and indicated that an expo-
nential or sigmoid model would be most appropriate.
Given that the exponential model had randomly dis-
tributed residuals, that it did not exhibit heterogene-
ity of variance, and that the data did not approach an
asymptote, the exponential model was used for the
following analyses.

Based on the AIC model comparisons, models that
contained only one of the predictor variables (mod-
els g1 to g5) had virtually no support (i.e. wi <<
0.001). The additive model of percent cover and
shore, model g6, received the highest weight in
2007, while the additive model of percent cover,
shore, and distance to bay mouth, g8, received the
highest weight in 2008 (Table 5). However, includ-
ing additional parameters, beyond percent cover
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Source df MS F p

Shore 1 20.67 73.62 <<0.01
Year 1 66.84 238.10 <<0.01
Shore × Year 1 4.29 15.29 <<0.01
Residuals 3348 0.28

Table 4. Two-way ANOVA results for the size of blue crabs
in Chesapeake Bay, Virginia, by year (2007 and 2008) and 

shore (eastern and western)

Source df MS F p

Shore 1 0.48 0.08 0.57
Year 1 7.93 1.38 0.02
Shore × Year 1 1.79 0.31 0.74
Residuals 94 5.75

Table 3. Two-way ANOVA results for the percent vegetation
cover in Chesapeake Bay, Virginia, by year (2007 and 2008)
and shore (eastern and western). Percent cover of vegeta-
tion estimates are from the visual inspections of the drop net 

at each sampling location

Fig. 3. Frequency histograms for the percent cover of vegetated habi-
tats (widgeon grass, eelgrass and macroalgae) within each sample
according to year (2007, 2008) and shore (east, west). In 2008, samples
were not taken if the vegetation cover was <20%: 1 sample that had 

20% cover (in Panel B) is depicted in the 10 to 20% cover bar
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and shore, added little in terms of goodness of fit,
and in the supported models (i.e. with wi > 0.1) only
the parameter estimates for percent cover of vegeta-
tion and shore were estimated reliably (Table 6).
Therefore, the most plausible model was the addi-

tive model of percent cover and
shore (g6; Fig. 5). Specifically, juve-
nile density increased exponentially
with percent cover, but the steepness
of the increase varied spatially (by
shore) and temporally (by year).

We generated effect sizes for per-
cent cover and shore based on model
g6. On average, there were 30 and
14% more crabs for every 10%
increase in seagrass cover for 2007
and 2008, respectively. The ad dition
of seagrass at the low range of per-
cent cover had a relatively smaller
effect on the total density than the
addition of the same amount of cover
at the high range, but the percent
change was the same. The western
shore had higher densities of juve-
niles than the eastern shore at equiv-
alent percent cover, with 5.2 times
more crabs on the western shore in
2007 and 2.8 times as many in 2008.

DISCUSSION

Crab density vs. percent vegetation
cover

This study is the first to define the
relationship between vegetation co -
ver and density of juvenile blue crabs
at a broad spatial scale (100s of km)
representative of the population. We
found an exponential relationship be -
tween vegetation cover and juvenile
density in Chesapeake Bay, rather
than the expected sigmoid relation-
ship. The relationship was not static;
the shape of the curve varied both
spatially (eastern vs. western shore)
and temporally (by year), suggesting
that the relationship is driven by dif-
ferences in recruitment over space
and time.

Previous studies have found higher
density, survival, and growth of juve-

nile blue crabs in vegetated habitats relative to
nearby unvegetated habitats (e.g. Heck & Orth 1980,
Thomas et al. 1990, Williams et al. 1990, Lipcius et al.
2005, Seitz et al. 2005; see Lipcius et al. 2007 for a
review); similar work has expanded this view to
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Model k 2007 2008
Adjusted r2 ΔAICc wi Adjusted r2 ΔAICc wi

g1 3 0.382 14.3 <0.001 0.165 36.3 <0.01
g2 3 0.186 26.2 <0.001 0.331 22.8 <0.01
g3 3 −0.010 35.5 <0.001 0.004 47.1 <0.01
g4 3 −0.012 35.6 <0.001 0.168 36.2 <0.01
g5 3 0.024 33.0 <0.001 −0.016 48.4 <0.01
g6 4 0.571 0.0 0.29 0.514 4.6 0.07
g7 5 0.566 2.0 0.10 0.512 6.2 0.03
g8 5 0.578 0.8 0.19 0.559 0.0 0.74
g9 5 0.578 0.8 0.19 0.511 6.3 0.03
g10 5 0.579 0.7 0.20 0.514 5.9 0.04
g11 7 0.562 5.8 0.02 0.547 4.5 0.08

Table 5. Results of the Akaike’s information criterion (AIC) analysis of blue
crab density for 2007 and 2008. k = the number of parameters in each model.
The change in the corrected AIC (ΔAICc) and the weight of model i (wi) are
calcu lated from the log-likelihood of each model. Adjusted r2 was used
because it takes into account the number of parameters in the model. n = 43
for 2007 and n = 61 for 2008. All models were run using the exponential 

transformation, ln(y)

Fig. 4. Callinectes sapidus. Size-frequency histograms for juvenile blue crabs
(≤30 mm carapace width) ac cording to year (2007, 2008) and shore (east, west).
The dashed vertical line is the back-transformed mean size for each year by
shore combination based on the natural log transformation: (a) 10.6 mm, (b) 

7.1 mm, (c) 8.2 mm, and (d) 6.5 mm



Mar Ecol Prog Ser 488: 51–63, 2013

coarse woody debris (Everett & Ruiz 1993). The few
previous studies that assessed the shape of the rela-
tionship between juvenile blue crab variables (i.e.
density or survival) and features of vegetated habi-
tats were at small spatial scales. In a field experiment
in the York River, Virginia, there were size-specific
differences in the relationship between juvenile den-
sity and shoot density of small artificial eelgrass
patches for juveniles of 3 size classes (Schulman

1996), though the relationship between juvenile den-
sity and shoot density was approximately sigmoid.
Crab density was positively correlated with percent
cover of seagrass (eelgrass, widgeon grass, and shoal
grass Halodule wrightii) in field surveys of Core and
Back Sounds, North Caro lina, for juveniles 5 to
50 mm CW (Hovel et al. 2002) and at the mouth of
the York River, Virginia, for juveniles 10 to 30 mm
CW (Hovel & Lipcius 2001).
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Model k Parameter estimates (standard error)
x1 x2 x3 x4 x5 x1 × x2

Intercept Cover Shore Bed Area Distance Algae Cover × Shore

2007
g6 4 −0.08 (± 0.34) 0.03 (± 0.005) 1.64 (± 0.38)
g7 5 −0.21 (± 0.39) 0.031 (± 0.005) 1.72 (± 0.4) ~ 0
g8 5 −0.88 (± 0.71) 0.03 (± 0.005) 2.04 (± 0.49) ~ 0
g9 5 0.08 (± 0.36) 0.03 (± 0.005) 1.63 (± 0.37) −0.5 (± 0.39)
g10 5 −0.28 (± 0.37) −0.034 (± 0.006)  2.58 (± 0.81) −0.016 (± 0.012)
g11 7 −0.48 (± 0.91) 0.03 (± 0.005) 1.9 (± 0.54) ~ 0 ~ 0 −0.3 (± 0.47)

2008
g6 4 1.68 (± 0.22) 0.01 (± 0.003) 1.04 (± 0.16)
g7 5 1.72 (± 0.23) 0.01 (± 0.003) 1.01 (± 0.16) ~ 0
g8 5 2.31 (± 0.32) 0.02 (± 0.003) 0.76 (± 0.18) ~ 0
g9 5 1.72 (± 0.23) 0.01 (± 0.003) 1.06 (± 0.16) −0.2 (± 0.24)
g10 5 1.84 (± 0.27) 0.01 (± 0.003) 0.6 (± 0.45) 0.006 (± 0.006)
g11 7 2.31 (± 0.32) 0.02 (± 0.003) 0.78 (± 0.19) ~ 0 ~ 0 −0.15 (± 0.23)  

Table 6. Parameter estimates from the transformed data for models with wi > 0.01 for 2007 and 2008

Fig. 5. Callinectes sapidus.
Untransformed blue crab
densities and model predic-
tions for the best model as
determined by the correc -
ted Akaike’s information
criterion for (a) 2007 and (b)
2008. The predictions are
based on the natural log
transformation of the data
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This positive relationship may be a result of the
ideal free distribution — the theory that individuals
are distributed to match the available resources
(Fretwell & Lucas 1969). If juvenile blue crabs were
distributed according to this theory, there should be
higher densities of juveniles where resources are
more abundant. For instance, foraging male blue
crabs (130 to 170 mm CW) more than doubled their
consumption rates when prey resources doubled
(Clark et al. 2000), and growth of juvenile blue crabs
(25 to 52 mm CW) was highest in areas of the York
River where clam densities were highest (Seitz et al.
2005). If structural complexity, such as vegetation
cover, is a proxy for habitat quality, there should be a
positive relationship between habitat complexity and
juvenile density. Structurally complex habitats often
have higher densities of prey items (Beck et al. 2001)
and provide refuge from predation by visual preda-
tors for juvenile blue crabs (Heck & Thoman 1984,
Orth & van Montfrans 2002, Lipcius et al. 2005).

Although we identified a positive relationship be -
tween habitat complexity and juvenile density at a
broad spatial scale, it is important to differentiate
between component and demographic effects (Ste -
phens et al. 1999, Kramer et al. 2009). A component
effect changes a single or multiple components of fit-
ness (e.g. growth rate, survival) while a demographic
effect changes the overall fitness and drives popula-
tion growth rate (Stephens et al. 1999). A component
effect can suggest that there is potential for a demo-
graphic effect, but it does not necessarily translate
into a demographic effect (Stephens et al. 1999). Thus,
while we demonstrated a component effect, further
information is needed to determine whether habitat
complexity directly affects the population growth rate.

Spatial and temporal patterns

The relationship between percent cover of vegeta-
tion and juvenile crab density varied quantitatively,
both spatially (higher on the western shore than east-
ern shore) and temporally (higher in 2008 than 2007).
Potential explanations for these differences include
both physical and biological mechanisms.

Recruitment

One potential mechanism to explain spatial differ-
ences is variation in recruitment: i.e. more juveniles
might be imported to the western shore of the Chesa-
peake Bay compared with the eastern shore. In the

York River, a tributary of the western shore of Chesa-
peake Bay, a coupled biological and hydrodynamic
model suggested spatial differences in blue crab
postlarval settlement (Stockhausen & Lipcius 2003).
At the mouth of the river, predicted settlement was
higher on the northern shore than on the southern
shore. Furthermore, the high predicted settlement at
the mouth of the river created a settlement shadow
upriver (Stockhausen & Lipcius 2003). Although it is
possible that the coupling between postlarval behav-
ior and transport processes results in higher densities
of juveniles on the western shore compared with the
eastern shore, the evidence from circulation patterns
is ambiguous. Advection into the estuary from the
continental shelf occurs through wind-driven trans-
port of surface waters (Epifanio 2007), and via high-
density bottom water delivered via net nontidal flow
below the outflowing surface waters on the western
shore, and throughout the water column on the east-
ern shore (Tyler & Seliger 1978, Roman & Boicourt
1999). Thus, there are physical mechanisms that
could deliver postlarvae earlier to the western shore
than the eastern shore, but these are neither consis-
tent nor conclusive.

Interannual differences in recruitment could also
explain higher densities of juveniles in 2008 com-
pared with 2007. Consistent with this hypothesis,
the bay-wide density of Age 0 crabs (i.e. juveniles
<60 mm in CW) was 11.6 crabs 1000 m−2 (95% confi-
dence interval: 9.5 to 13.6 crabs 1000 m−2) in 2007
and 17.6 crabs 1000 m−2 (95% confidence interval:
14.5 to 19.9 crabs 1000 m−2) in 2008 (Miller et al.
2011), suggesting blue crab recruitment was higher
in 2008.

Habitat

The overall amount of seagrass available for settle-
ment could contribute to the estimates of juvenile
density. If postlarvae were approximately equally
distributed around the lower bay, but the area of veg-
etated habitats into which the postlarvae could settle
varied spatially, the densities of juveniles could also
vary spatially. For example, if there were twice as
much seagrass on the eastern shore than on the west-
ern shore, an equal number of juveniles recruiting to
both shores would result in densities on the eastern
shore being half that of the western shore. The
amount of seagrass estimated from aerial monitoring
in the late spring during this sampling on the eastern
shore was higher than that on the western shore in
May and June (Orth et al. 2008, 2009), potentially be -
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cause of a broader distribution across a greater depth
range on the eastern shore than on the western shore
(Orth & Moore 1988).

The spatial extent of seagrass could also explain
differences by year. In the lower bay, the area of sea -
grass increased 24% from 10650 ha in early summer
of 2007 to 13225 ha in early summer of 2008 (Orth et
al. 2008). This would suggest that, given constant
recruitment, densities would decrease between 2007
and 2008. Instead, there was a 51% increase in juve-
nile crab density in seagrass, agreeing well with a
52% increase in recruitment as determined by the
density of Age 0+ crabs in the bay-wide winter
dredge survey (Miller et al. 2011). However, the 2
dominant seagrass species in Chesapeake Bay (eel-
grass and widgeon grass) undergo spatially and tem-
porally variable annual defoliation during the late
summer and early fall — before our juvenile blue crab
sampling. As there is no quantitative measure of the
ex tent of seagrass during peak recruitment, this mech-
anism cannot be rigorously evaluated at present.

Growth and emigration

Juvenile blue crabs exhibit an ontogenetic shift in
habitat use from seagrass to unvegetated habitats
after ~20 to 30 mm CW (Orth & van Montfrans 1987,
Hines 2007, Lipcius et al. 2007, Johnston & Lipcius
2012). Spatial variability in growth rates could result
in juveniles moving out of seagrass beds faster in one
region than another. Such a pattern of spatial vari-
ability in growth has been observed in other species.
For example, spotted seatrout Cynoscion nebulosus
growth differed between the eastern and western
shores of Chesapeake Bay and in wet and dry years
(Smith et al. 2008). Under normal flow conditions,
growth was higher on the eastern shore than on the
western shore; under drought conditions, this trend
was reversed (Smith et al. 2008). Previous studies
found spatial differences in juvenile blue crab growth.
Small juvenile blue crabs (mean CW = 2.65 mm)
grew faster in seagrass compared with unvegetated
habitats in both field and laboratory experiments
(Perkins-Visser et al. 1996). Larger juveniles (25 to
52 mm CW) grew at similar rates in downriver vege-
tated habitats and upriver unvegetated habitats
(Seitz et al. 2005). If juveniles grow faster on the east-
ern shore compared with the western shore, juve-
niles from a single recruitment pulse would leave
vegetated habitats earlier on the eastern shore than
on the western shore, and potentially contribute to
the lower densities found on the eastern shore. This

scenario agrees with our demonstrated larger aver-
age juvenile crab size on the eastern shore than the
western shore.

The differences in sampling dates could also have
contributed to the significantly smaller sizes and
higher densities of juveniles collected on the western
shore compared with those on the eastern shore. In
2007, samples from the eastern shore were taken 4
to 8 d later than those from the western shore. The
delay in sampling the eastern shore could have
allowed the juveniles more time to grow, and die or
emigrate from vegetated habitats, resulting in fewer,
larger juveniles on the eastern shore. Newly settled
juveniles grew an average of 1.5 to 2.1 mm CW
week−1 in field enclosures (Perkins-Visser et al.
1996), which is close to the difference in size between
the eastern and western shores in 2007. However, it
is difficult to extrapolate those results to a more nat-
ural setting and larger crabs. Similar trends in den-
sity and size were observed in 2008. The samples
were taken over a larger spatial and temporal extent
in 2008, but again, most samples were taken earlier
on the western shore than on the eastern shore.

Landscape effects

Previous studies have shown that juvenile blue
crab survival can be influenced by landscape-level
factors, such as patch size (Hovel & Fonseca 2005, but
see Hovel & Lipcius 2001) and fragmentation type
(Hovel & Lipcius 2002). The relationship between
juvenile density and seagrass bed area may have
been masked by a bias in the estimates of bed area
from the aerial survey. These estimates may not
reflect the actual habitat encountered by the post -
larvae and young juveniles in late summer and fall,
as seagrasses in Chesapeake Bay undergo an annual
defoliation in late summer. Conversely, postlarvae
and young juveniles may not be responding to sea-
grass bed area at the scale measured by the aerial
survey, and localized patchiness may be more impor-
tant in controlling juvenile density.

Given the movement of postlarvae into Chesa-
peake Bay from the coastal ocean, the weak statisti-
cal relationship between distance to the bay mouth
and juvenile density was surprising. The use of dis-
tance via deep channels may be biased, as currents
and tides, strong drivers of postlarval recruitment,
are not in corporated in this measure. Perhaps a bet-
ter measure of distance could explicitly include
hydrodynamic drivers of postlarval and juvenile
advection.
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Climate change and the future of vegetated habitat
in Chesapeake Bay

Climate change will play a complex role in the life
cycle of the blue crab, especially as it relates to the
distribution and abundance of vegetated habitat.
Abundance of the temperate species, eelgrass, is
likely to continue to decline given the expected in -
creases in water temperature and phytoplankton
abundance, whereas the other abundant estuarine
seagrass in Chesapeake Bay, widgeon grass, is more
tolerant of higher water temperatures and may be
more resistant or resilient to these changes (Evans et
al. 1986). Other studies suggest that juvenile blue
crabs can have similar survival and growth in emerg-
ing eco systems such as Gracilaria spp., a complex
red macroalga (Falls 2008, Johnston & Lipcius 2012).
Juvenile blue crab densities in Gracilaria spp.
patches in Rehoboth Bay (Epifanio et al. 2003) and in
Chesapeake Bay were similar to those in seagrass
patches. Larval abundance and postlarval recruit-
ment decreased by an order of magnitude between
1992 and 2000 compared with earlier years (Lipcius
& Stockhausen 2002). Seagrass in Chesapeake Bay
was recovering through the mid-1990s, after which
another prolonged decline began (Orth et al. 2010).
While this period of relatively high seagrass abun-
dance and high juvenile abundance, followed by a
period of low seagrass and low juvenile abundance,
suggests that there might be a relationship between
seagrass cover and crab density at the population
level, other factors are probably at play. For example,
the blue crab population was classified as overfished,
with overfishing occurring for most of the decade
leading up to this study; after reductions in fishing
pressure in 2008, there have been recent increases in
the total population. Given the continued ability of
juveniles to utilize alternative vegetated habitats, it
is unknown what effect further declines of eelgrass
in the Chesapeake Bay will have on the blue crab
population as well as the availability of alternative
habitats.

Caveats and recommendations

This study was undertaken during a period of his-
torically low blue crab recruitment and should be
repeated during a period of high recruitment to test
the generality of the findings. The lack of a threshold
response of juvenile crabs to vegetation cover could
have been caused by low densities of juveniles over-
all. Perhaps the exponential response would become

a threshold response under higher recruitment.
Recently, abundances of adult female and juvenile
blue crabs have increased (Miller et al. 2011) in
waters >1.5 m, but blue crab sampling in shallow
waters is lacking. Continuing to sample juveniles in
shallow, vegetated habitats is critical and would pro-
vide more information about the relationship be -
tween juvenile density and vegetation under differ-
ent climate scenarios. Finally, the potential of the
component effect of vegetation cover on juvenile
blue crab density to be a demographic effect de -
mands assessment either through further bay-wide
population and vegetation sampling or by population
modeling.
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