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Solutions to the hierarchy problem that require partners for each standard model particle often require
that these states live at or above the electroweak scale, to satisfy phenomenological bounds. Partners to
possible dark sector particles may be significantly lighter, due to the assumed weakness of the couplings
between the dark and visible sectors. Here we consider the possibility that a dark sector might include
light Lee–Wick particles. We present the formulation of a theory in which a dark photon and its Lee–
Wick partner have kinetic mixing with hypercharge. We point out that the Lee–Wick partner of the dark
photon will lead to an apparent violation of causality at small distance scales that might be discerned in
low-energy experiments.

© 2014 The Author. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.

1. Introduction

The strong indirect evidence for the existence of dark matter has motived great interest in the possibility of an associated sector of
new particles that communicates only weakly with the standard model. Such a sector may include a spontaneously broken U(1) gauge
symmetry under which a dark matter candidate is charged. If the scale of spontaneous symmetry breaking in the dark sector is below
a GeV, then one can potentially account for the cosmic ray electron and positron excess observed in the PAMELA [1], Fermi LAT [2] and
other experiments [3]: dark matter may annihilate to the sub-GeV scale dark photons, which subsequently decay to leptons [4]. Decays to
protons and anti-protons (for which there is no observed excess) are not kinematically allowed. Assuming this mechanism, the possibilities
for additional particles and symmetries of the dark sector are not substantially constrained.

One possibility for the additional particle content of the dark sector are partner particles associated with a mechanism that addresses
the hierarchy problem. In the visible sector, such partner particles are typically above the electroweak or TeV scale, given stringent collider
and indirect constraints. However, the assumed weakness of the couplings between the dark and visible sectors allows the dark-sector
partners to be substantially lighter. For example, in supersymmetric models, each standard model particle has a partner with opposite spin
statistics that cancels the quadratic divergence in the Higgs boson squared mass. The masses of these partners are input via terms that
softly break the supersymmetry; the value of the soft-breaking parameters are free, unless one specifies a model for the supersymmetry
breaking sector. If the minimal supersymmetric standard model is extended by a dark sector (for example, see Ref. [5]) nothing forbids the
mass scale of the dark superpartners from being substantially smaller than that of the visible sector. This may lead to new experimental
avenues for the discovery of supersymmetry [5]. On the other hand, in models where the hierarchy problem is solved via a warped extra
dimension, it is possible that a dark sector lives in its own warped “throat” [6] with a distinct infrared scale. In such models, towers of
dark-sector Kaluza–Klein (KK) excitations may begin below the electroweak scale, but have evaded detection due to the weakness of their
couplings.

Here we suggest a different possibility, namely, that the dark sector may include light Lee–Wick (LW) partners. The Lee–Wick Standard
Model (LWSM) has been proposed as a solution to the hierarchy problem [7] and has received attention in the recent literature [8]. In
the LWSM, each standard model field is given a higher-derivative kinetic term which introduces an additional pole in the propagator,
corresponding to a partner particle. Eliminating the higher-derivative term using an auxiliary field approach (which we will illustrate in
the next section), one finds that the LW partner has wrong-sign kinetic and mass terms; this implies that the LW state must have negative
norm. Lee, Wick [9] and others [10] showed that at least up to one loop the presence of negative norm states does not lead to a violation
of the unitarity of the S-matrix or Lorentz invariance provided that (i) the LW particles are unstable and (ii) loop integrals are evaluated
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with a carefully chosen pole prescription. It has been speculated that a prescription that preserves unitarity and Lorentz invariance
exists beyond one loop. Cancellations between diagrams involving ordinary particles and diagrams involving LW partners eliminates the
unwanted quadratic divergences. The result is a theory with only logarithmic sensitivity to high scales.

No phenomenological constraint prevents the LW partners of a sub-GeV scale dark sector from being much lighter than the partners
of the visible sector particles. Since there are no known examples of theories that predict the LW mass spectrum ab initio, this is simply
a parametric possibility. However, it is an interesting one for the following reason: Lee–Wick theories have been argued to be the only
known consistent examples of acausal quantum field theories [11–13]. One indication of acausality is the presence of “wrong displaced
vertices”: decay products from an LW resonance move towards a primary production vertex rather than away from it [11,13,14]. This
phenomenon has been discussed in the context of Large Hadron Collider (LHC) searches for Lee–Wick particles in Ref. [14]. Here we point
out that the potential lightness of dark-sector LW particles may make such a phenomenon accessible at low-energy fixed target or collider
experiments as well. In analogy to the examples of dark sector supersymmetry or extra dimensions, the possibility of light LW partners
in a dark sector may provide new avenues for the experimental discovery of LW particles and the observation of their unusual acausal
phenomenology.

Given the motivation for dark photons that we described earlier, we focus here on the possibility that the LW partner to the dark
photon is light. We assume for simplicity that all other LW partners are heavy and decoupled from the effective theory. In this Letter we
discuss the formulation of the theory and some of its phenomenological consequences.

2. Framework

We consider a theory with higher-derivative kinetic terms as well as kinetic mixing between a dark Abelian gauge field Âμ
D and the

hypercharge gauge field B̂μ . We use hats to denote fields in the higher-derivative formulation of the theory. After electroweak symmetry
breaking, B̂μ mixes with the third component of the weak SU(2) gauge multiplet, Ŵ μ

3 ; hence, we begin by considering the pure gauge

field part of the Lagrangian that is quadratic in Âμ ≡ ( Âμ
D , B̂μ, Ŵ μ

3 )T . In terms of this column vector of fields, the quadratic portion of the
Lagrangian may be written

L2 = −1

4
F̂ T
μν K2 F̂ μν + 1

2Λ2
∂μ F̂μν K4∂

λ F̂λ
ν + 1

2
ÂT

μM2 Âμ, (2.1)

where Λ is the Lee–Wick scale and F̂μν = ∂μ Âν − ∂ν Âμ . The kinetic terms that are quadratic order in derivatives include the conventional
kinetic mixing term via

K2 =
(1 c 0

c 1 0
0 0 1

)
, (2.2)

where c is the kinetic mixing parameter, which we will assume is much smaller than one. The higher-derivative term in Eq. (2.1) can
also introduce further mixing between ÂD and B̂ . We adopt the simplest form that is consistent with the assumption that the Lee–Wick
partners of the visible-sector particles are decoupled, namely

K4 =
(1 0 0

0 0 0
0 0 0

)
. (2.3)

In this minimal formulation, all communication between the dark and visible sectors is controlled by the parameter c. Finally, the mass
squared matrix M2 in Eq. (2.1) includes all masses that arise via spontaneous symmetry breaking in both the dark sector and the visible
sector. Since we assume no Higgs fields that are charged under both the visible and dark gauge groups, this matrix takes the form

M2 = v2

4

⎛
⎝ ξ 0 0

0 g2
Y −ggY

0 −ggY g2

⎞
⎠ , (2.4)

where g and gY are the weak SU(2) and hypercharge gauge couplings, respectively. The parameter ξ is given by g2
D v2

D/v2, where gD is
the dark gauge coupling and v D is the scale at which the U(1)D is spontaneously broken. We assume that v D is at or below the GeV
scale, so that ξ � 1.

We wish to ascertain the spectrum and couplings of the dark sector states that are implied by Eq. (2.1). We first perform the change
of basis Â = R1 Â1, where

R1 =
( 1/

√
1 − c2 0 0

−c/
√

1 − c2 cw −sw

0 sw cw

)
, (2.5)

with sw = sin θw and cw = cos θw = g/

√
g2 + g2

Y . The effect of this redefinition on the matrices in Eq. (2.1) is

RT
1 K2 R1 = 1, (2.6)

RT
1 K4 R1 = 1

2
K4, (2.7)
1 − c
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and

RT
1 M2 R1 =

(
(mD

2 + c2s2
wmZ

2)/(1 − c2) 0 c swmZ
2/

√
1 − c2

0 0 0
c swmZ

2/
√

1 − c2 0 mZ
2

)
. (2.8)

In Eq. (2.8), m2
D = g2

D v2
D/4 and m2

Z = (g2 + g2
Y )v2/4 are the mass eigenvalues of the dark gauge boson and the Z boson, respectively, in

the c → 0, Λ → ∞ limit. By studying the form of the covariant derivative, it is straightforward to confirm that the second component
of the column vector Â1, which corresponds to the vanishing row and column of Eq. (2.8), couples to matter proportional to e(Y + T 3),
where e = cw gY = sw g and Y (T 3) is the generator of hypercharge (the third component of weak isospin). Hence, we identify the second
component of Â1 as the photon field. Since Eq. (2.7) provides no higher-derivative kinetic term for this field, we may drop the hat; we
recover an ordinary photon with the usual couplings and no (i.e., a completely decoupled) Lee–Wick partner. Hence, we ignore the QED
sector of the theory and focus on the remaining fields, the first and third component of Â1, which we will call Â1D and Ẑ1, respectively.

We next rid ourselves of the Â1D higher-derivative kinetic term by employing the standard auxiliary field approach [7]

Laux = −1

4
F̂1Dμν F̂ μν

1D − 1

4
Ẑ1μν Ẑμν

1 − 1

2
Λ2(1 − c2) Ãμ

1D Ã1Dμ + ∂μ Ãν
1D F̂1Dμν +LSSB, (2.9)

where LSSB represents the mass terms originating from spontaneous symmetry breaking (i.e. from the non-vanishing two-by-two sub-block
of Eq. (2.8)). Substitution of the equation of motion for the auxiliary field Ãμ

1D into Eq. (2.9) reproduces the higher-derivative Lagrangian
defined by Eqs. (2.6), (2.7), and (2.8). Now defining a shifted field A1D by

Â1D = A1D + Ã1D , (2.10)

and Ẑ1 = Z1 (with no shift), Eq. (2.9) may be rewritten as

LLW = −1

4
F1Dμν F μν

1D − 1

4
Z1μν Zμν

1 + 1

4
F̃1Dμν F̃ μν

1D − 1

2
Λ2(1 − c2) Ãμ

1D Ã1Dμ +LSSB (2.11)

where

LSSB = 1

2
AT

s M2
SSB As (2.12)

where, after the shift, we define As = ( Ã1D , A1D , Z1) and

M2
SSB =

⎛
⎝ (mD

2 + c2s2
wmZ

2)/(1 − c2) (mD
2 + c2s2

wmZ
2)/(1 − c2) c swmZ

2/
√

1 − c2

(mD
2 + c2s2

wmZ
2)/(1 − c2) (mD

2 + c2s2
wmZ

2)/(1 − c2) c swmZ
2/

√
1 − c2

c swmZ
2/

√
1 − c2 c swmZ

2/
√

1 − c2 mZ
2

⎞
⎠ . (2.13)

The mass matrix for the dark gauge boson, its Lee–Wick partner and the Z boson is obtained by adding the fourth term of Eq. (2.11)
to Eq. (2.12). The resulting matrix can be diagonalized by a sequence of three rotations: (i) a unitary rotation acting on the 2–3 block,
(ii) a symplectic rotation acting on the 1–3 block, and (iii) a symplectic rotation acting on the 1–2 block. By a symplectic rotation, we
mean a rotation of the form(

cosh θ sinh θ

sinh θ cosh θ

)
(2.14)

which preserves the normalization and relative sign difference between the kinetic terms of an ordinary and a Lee–Wick field. Since c � 1,
the 2–3 and 1–3 rotation angles are small, while the 1–2 angle generically is not. Evaluating the small angles to lowest order in a series
expansion in the kinetic mixing parameter c, as well as the small mass ratios m2

D/m2
Z and Λ2/m2

Z , we find

As = R2 A2, (2.15)

where the mass eigenstate fields are A2 ≡ ( ÃD , AD , Z) and

R2 ≈
( cosh θ sinh θ −c sw

sinh θ cosh θ c sw

−c sw eθ −c sw eθ 1

)
, (2.16)

where tanh 2θ ≈ 2m2
D/(Λ2 − 2m2

D).
We now determine the couplings of the dark photon and its LW partner to ordinary standard model matter. To do so, we begin with

the covariant derivative in our original basis, retaining only the neutral gauge fields:

Dμ = ∂μ − igD Y D Âμ
D − igY Y B̂μ − igT 3Ŵ3

μ. (2.17)

After the field redefinition specified by R1 in Eq. (2.5) and the shift of Eq. (2.10),

Dμ = ∂μ − i
gD Y D − cgY Y√

1 − c2

(
Aμ

1D + Ãμ
1D

) − ie
(
Y + T 3)Aμ − i

e

sw cw

(
c2

w T 3 − s2
w Y

)
Zμ

1 . (2.18)

Ignoring the photon, this corresponds to the basis previously called As , with the non-diagonal mass matrix given by Eqs. (2.11)–(2.13).
Rotating to the mass eigenstate basis, again working only to lowest order in the kinetic mixing parameter and small mass scale ratios,

Dμ = ∂μ − ie Q Aμ − ieθ (gD Y D − ceQ cw)
(

Ãμ
D + Aμ

D

) − i
e (

T 3 − s2
w Q

)
Zμ. (2.19)
sw cw
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The field redefinitions that we have employed to obtain canonical and diagonal quadratic terms (aside from LW signs) have had the
following cumulative effect: The LW dark photon has the same couplings to standard model particles as the dark photon itself, proportional
to εe Q , where we define ε ≡ ccw exp θ . Corrections to the Z -boson couplings occur at higher order in the small parameters, and will be
negligible for the parameter choices relevant to our subsequent discussion.

3. Divergences

In this section, we verify that the presence of kinetic mixing does not alter the cancellation of quadratic divergences in gauge boson
loops. For this purpose, we ignore masses generated via spontaneous symmetry breaking (which do not affect the ultraviolet behavior of
the theory) and focus on the equivalent unbroken U(1)D × U(1)Y LW gauge theory. Hence, we start with a simpler version of Eq. (2.1),
defining in this case Âμ ≡ ( Âμ

D , B̂μ)T and setting M2 = 0. Since we wish now to retain LW partners for both the dark and hypercharge

gauge bosons, we assume a completely general form for the matrix K4. We perform the first field redefinition Â = R1 Â1 with

R1 =
(

1/
√

1 − c2 0
−c/

√
1 − c2 1

)
, (3.1)

which again diagonalizes the matrix K2. Unlike Eq. (2.7) however, RT
1 K4 R1 ≡ K ′

4 is, in the present case, a completely general two-by-two,
real, symmetric matrix. Thus we write

K ′
4 = O T K D O , (3.2)

where O is an orthogonal matrix and K D is diagonal. We can now state the generalizations of the auxiliary field and LW Lagrangians,
including only terms quadratic in the fields,

Laux = −1

4
F̂ T

1μν F̂ μν
1 − 1

2
Λ2 ÃT

μK −1
D Ãμ + ∂μ ÃTν O F̂1μν, (3.3)

LLW = −1

4
F ′ T
μν F ′μν + 1

4
F̃ T
μν F̃ μν − 1

2
Λ2 ÃT

μK −1
D Ãμ, (3.4)

which are related by the shift Â1 = A′ + O T Ã. Hence, fields in the original basis are related to the fields in Eq. (3.4) by

Â = R1
(

A′ + O T Ã
)
. (3.5)

Couplings of the fields A′ and Ã to the Higgs doublet field H arise through the kinetic term DμH† DμH , where DμH = [∂μ −
(i/2)gT Âμ]H . Since Â is a column vector, we have defined gT = (0, gY ). The relevant couplings are given by

L ⊃ (
gT R1 A′

μ + gT R1 O T Ãμ

)( i

2
H†∂μH + h.c.

)
+ 1

4

(
gT R1 A′

μ + gT R1 O T Ãμ

)2
H† H . (3.6)

We may now evaluate the four self-energy diagrams shown in Fig. 1, with massless gauge field propagators written in Feynman gauge
and defining M̃2 = Λ2 K −1

D :

−iΣ(0)a = 1

4
gT R1 RT

1 g

∫
ddk

(2π)d

d

k2
, (3.7)

−iΣ(0)b = −1

4
gT R1 O T

[∫
ddk

(2π)d

[
(d − 1)

[
k2 − M̃2]−1 − (

M̃2)−1]]
O RT

1 g, (3.8)

−iΣ(0)c = −1

4
gT R1 RT

1 g

∫
ddk

(2π)d

1

k2
, (3.9)

−iΣ(0)d = −1

4
gT R1 O T

[∫
ddk

(2π)d

(
M̃2)−1

]
O RT

1 g. (3.10)

These quantities give the shift in the physical Higgs doublet mass in the absence of a tree-level scalar potential, the generalizations of
Eqs. (33a)–(33d) in Ref. [7]. Quartic divergences again cancel between Eqs. (3.8) and (3.10); quadratic divergences in the sum of Eqs. (3.7)
and (3.9) cancel those in Eq. (3.8).

It is clear that these cancellations will persist for a similar calculation of the one-loop self-energy of the LW partner to the Higgs
doublet. When there is no kinetic mixing and the LW higher-derivative term is diagonal (i.e., when R1 and O are identity matrices) we
have a conventional LW gauge theory which is free of quartic and quadratic divergences. Consider how the cancellation of divergences
in this limit are modified by Eq. (3.5): Quartically divergent terms from LW loops proportional to gT (M2)−1 g now are proportional to
gT R1 O T (M2)−1 O R1 g; quadratically divergent terms proportional to gT g now are each proportional to gT R1 RT

1 g if they originate from
loops of ordinary particles or gT R1 O T O RT

1 g if they originate from loops of LW particles. However, since O is orthogonal, the same
cancellations occur term by term. All other divergences cancel as in the ordinary LWSM.
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Fig. 1. Contributions to the Higgs doublet self-energy from the U(1)D × U(1)Y gauge fields (wavy lines) and LW partners (double wavy lines).

4. Vertex displacement

One means of experimentally distinguishing an ordinary resonance from an LW resonance has been discussed by Alvarez et al. [14],
based on the study of scattering amplitudes by Grinstein, O’Connell and Wise [13]. Unlike an ordinary resonance, the position of the
production and decay vertices of an LW resonance are arranged so that the LW decay products move toward the primary production
vertex rather than away from it. Hence in an inertial frame in which the LW resonance is produced at rest, the time at which the LW
resonance is produced is earlier than the time at which the incoming particles collide.

It must be stressed, however, that this picture follows from an S-matrix calculation in which measurements are made only on asymp-
totic wave packet states. The vertex positions are extrapolated from the four-momenta and positions of the asymptotic wave-packets.
Such an extrapolation leads to the apparent acausal relation between vertices described above. Let us denote the vertex separation by the
four-vector wμ . As in Ref. [14], we will assume that the S-matrix analysis is valid, i.e., that all measurements are made at distances large
compared to | 
w| and at times large compared to w0.

One can then use the existence of “wrong displaced vertices” to place cuts on experimental data in order to isolate the signal of LW
particles. For example, in their study of LHC LW signals, Alvarez et al. require the transverse vertex displacement to be greater than 20
microns [14]. Here we note that an analogous approach can be applied in lower-energy experiments. As an example, let’s consider the
production of LW dark photons at low-energy fixed-target experiments.

Since we have established that a dark photon and its LW partner have the same couplings to ordinary matter, they also have the
same production cross section. Hence the bounds on dark photons that do not explicitly require a displaced vertex (for example, searches
for resonant bumps) provide the same bounds on a dark LW photon of the same mass. Given that the production vertex must occur
within the fixed target and the LW decay products must move toward it, this implies that the LW decay vertex could appear in front of
a suitably thin target rather than behind it. An important question is whether a cut on the LW resonance momentum, to guarantee a
measurable vertex separation, substantially depletes the production rate. We do not find this to be the case. To check this, we consider
the bremsstrahlung process e− Z → e− Ã Z , where Z represents the atomic number of the target nucleus and Ã is the dark LW photon.
The maximum possible vertex displacement from the target parallel to the beam direction, zmax, is determined by the beam energy E0;
we can then determine what fraction of the total cross section remains if we require zcut < z < zmax. We use the differential cross section
dσ/(dx d cos θ) given in the Weizäcker–Williams approximation by Eq. (5) of Ref. [15], where the dark LW photon energy E Ã = xE0 and
the scattering angle θ is measured with respect to the beam direction. This formula is valid for xθ2 � 1, so in the case where zcut = 0, we
require θ < θ0 = 5 degrees. The results don’t depend strongly on this choice since the differential cross section falls off quickly at angles
of order (mA/E0)

3/2 which are typically much smaller. In the presence of the cut, we integrate the differential cross section subject to the
constraints

x >
1

E0

[
m2

Ã
+ z2

cut

z2
max cos2 θ

(
E2

0 − m2
Ã

)]1/2

, (4.1)

θ < min

{
cos−1

(
zcut

zmax

)
, θ0

}
. (4.2)

Eq. (4.1) follows from the requirement that βγ ·cτ cos θ > zcut , while Eq. (4.2) follows from Eq. (4.1) and x < 1. Results from this integration
are shown in Fig. 2, for three of the benchmark scenarios described in Ref. [15]: Scenario A corresponds to mÃ = 50 MeV and E0 = 0.2 GeV
and ε = 1 × 10−5; Scenario B corresponds to mÃ = 200 MeV and E0 = 6 GeV and ε = 3 × 10−5; Scenario C corresponds to mÃ = 50 MeV
and E0 = 1 GeV and ε = 1 × 10−4. The results indicate that the suppression in the cross section is not substantial for a wide range of zcut .
This is consistent with the qualitative observation in Ref. [15] that the differential cross section is peaked at forward angles and when the
dark particle carries nearly the entire beam energy. As a result, the effect of the cut is relatively mild.

Nevertheless, measurements of such vertex separations at a fixed-target experiment may be challenging. In the previous examples, the
Ã decays in front of the target and its decay products move directly toward the target with a small opening angle, of order mÃ/E0. If the
target obstructs the path between the decay vertex and the point of observation downstream, one might worry about the effect of further
interactions within the target. This issue is not relevant for thin targets, and can be avoided for thick targets if they are very narrow (of
order the beam size) in at least one transverse dimension. Moreover, in these examples, vertex resolution would have to be typically much
better than a centimeter. These observations suggest that the target and detector engineering would have to be optimized to search for
the peculiar type of signal expected in these scenarios.
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Fig. 2. LW dark photon production cross section as a function of the wrong displacement vertex cut, for the three scenarios defined in the text.

5. Conclusions

We have considered the possibility that Lee–Wick partners of dark sector particles might occur at lower energies than the Lee–Wick
partners of standard model particles. We have studied a theory in which a dark photon and its Lee–Wick partner have kinetic mixing
with hypercharge, including terms of quadratic and quartic order in derivatives. We isolated the relevant couplings of the dark Lee–Wick
photon to standard model particles. We verified that quadratic divergences are canceled in this theory, just as in garden-variety Lee–Wick
theories. Finally, we have noted that searches for “wrong displaced vertices” in low-energy fixed-target experiments are theoretically well
motivated.

Although we have focused here on Lee–Wick dark photons, it is possible for other kinds of Lee–Wick particles (for example, scalars) to
communicate with the visible sector through other portals (for example, the Higgs portal). These alternatives, yet to be studied, may lead
to cleaner experimental signals of the physics of interest. Hence, the present work represents an initial exploration of the ways in which
a dark sector may provide new avenues for detecting the uniquely acausal signatures of Lee–Wick particles.
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