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prey characteristics and prey loss
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Numerous species of birds break hard-shelled prey items by dropping them from a height. This intriguing prey-extraction
method provides an excellent opportunity for studying foraging behavior because a single, easily measurable quantity—height
of drop—may be influenced by a wide variety of identifiable characteristics of the prey (e.g., breakability, weight) and social
environment (e.g., alone or in the presence of kleptoparasites). Using a dynamic, state variable modeling approach, this paper
presents the first theoretical framework for avian prey-dropping systems that incorporates the diversity of prey characteristics
and social situations. The model yielded a series of qualitative predictions about prey-dropping behavior that can be tested
readily in any prey-dropping system. In particular, the results indicated that quantitative and qualitative differences in item
breakability and potential kleptoparasitism should have a significant effect on the height and pattern of prey dropping. Key
words: dynamic state variable model, foraging behavior, kleptoparasitism, prey dropping. [Behav Ecol 10:213–219 (1999)]

One of the classic examples of optimal foraging behavior is
the breaking of whelks by northwestern crows, Corvus

caurinus (Zach, 1978, 1979). By dropping a hard-shelled whelk
repeatedly onto a hard surface, these crows crack the whelk’s
shell and expose its edible interior. Northwestern crows
dropped whelks from near the height that minimized the total
height required to break a whelk, behavior that minimized en-
ergy output and supported the predictions of optimal foraging
theory (Zach, 1979; but see Plowright et al., 1989).

Avian prey-dropping is an ideal behavior for investigating for-
aging questions. The foraging task is well defined: the individ-
ual must find an appropriate prey item, locate a suitable site
for dropping, and choose a height that is sufficient for breaking
the prey item (Richardson and Verbeek, 1986, 1987; Wunderle,
1991; Zach and Smith, 1981). Also, researchers can easily mea-
sure both the behavior (i.e., the height of drop) and the factors
that influence the behavior (e.g., breakability of the prey). Fur-
ther, prey-dropping behavior is widespread. Twenty-three spe-
cies of birds, representing three different orders, have been
reported to break open a wide range of hard-shelled prey by
dropping (reviewed in Cristol and Switzer, 1999).

In the northwestern crow–whelk system, the birds fed alone
on defended breeding territories, dropped a very narrow
range of prey sizes of a single species of whelk, and always
used flat rocks for a breaking substrate (Zach, 1978, 1979).
Other prey-dropping systems differ considerably. For instance,
many prey-dropping birds forage in groups, thereby facing
potential kleptoparasitism (Brockmann and Barnard, 1979),
which is not a factor when solitary individuals drop prey. Also,
although most of the prey items birds drop share the feature
of having a hard, but breakable, outer shell (Cristol and Swit-
zer, 1999), different types of prey may differ in how easily the
outer shell breaks. In addition to such quantitative differences
in breakability, prey types may differ qualitatively in how they
break: some prey items become increasingly more likely to
break with subsequent drops (Cristol and Switzer, 1999), while
others have the same probability of breaking regardless of
how many times they have been dropped (Whiteley et al.,

Address correspondence to D. A. Cristol. E-mail: dacris@facstaff.
wm.edu.

Received 30 September 1997; accepted 20 April 1998.

q 1999 International Society for Behavioral Ecology

1990; Zach, 1979). Further, different habitats will provide dif-
ferent substrates of varying hardness, and even within the
same foraging area, individuals may have several substrates
available for dropping (Barash et al., 1975; Beck, 1980; Zach
and Smith, 1981). For example, carrion crows (Corvus corone)
at one site in Scotland dropped mussels on sand, mussel beds,
and a concrete airport runway (Whiteley et al., 1990). Clearly,
how easily a prey item breaks will depend on the hardness
and texture of the substrate.

Because prey dropping occurs in many bird species and
habitats, with a variety of food items, and under different so-
cial conditions, it is difficult to predict intuitively how a spe-
cific factor should affect prey-dropping behavior. For exam-
ple, should a bird drop a large and sturdy prey item from a
greater height, or would this unduly increase the probability
of losing valuable prey through kleptoparasitism? Construct-
ing a mathematical model provides a solution to this problem;
with a model, one can manipulate single factors or groups of
factors to generate testable predictions. Previous models of
avian prey-dropping (Plowright et al., 1989; Zach, 1979) have
focused only on a single species and prey item—northwestern
crows dropping whelks. To further our understanding of this
intriguing behavior, we must develop a theoretical framework
general enough to encompass the large range of conditions
found both within and among prey-dropping systems. We pre-
sent a dynamic, state variable model that extends earlier in-
vestigations by incorporating differences in the hardness of
the substrate and the risk of losing dropped items (e.g.,
through kleptoparasitism), as well as including a variety of
characteristics of the prey. The results of the model provide
a series a qualitative predictions that can be tested in any prey-
dropping system. In a companion paper we test the predic-
tions of this model using a newly described avian prey-drop-
ping system, that of American crows, Corvus brachyrhynchos
hesperis, dropping walnuts, Juglans regia and Juglans hindsii
(Cristol and Switzer, 1999).

THE MODEL

General modeling approach

We chose to use a dynamic, state variable model (Mangel and
Clark, 1988) to investigate food-dropping behavior. A dynamic
model allowed us to investigate the probabilistic events (i.e.,
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breaking and/or losing the food item) and sequences of be-
haviors (i.e., drops) that are inherent in prey-dropping sys-
tems.

Using the model, we investigated differences in prey items,
habitats, and social environments. Prey items may differ with
respect to the energy they contain, their physical dimensions
and weight, how easily they break, and whether the number
of previous drops affects the probability of breaking. Our
model allowed us to vary the energy value and the probability
that different food items would break. To examine the effects
of different sizes and weights of food items, we assumed that
birds carrying larger or heavier items incurred greater flight
costs. Items dropped on hard surfaces are more likely to break
than those dropped on soft surfaces, so we examined the ef-
fect of surface hardness by varying the probability that a food
item broke from a given height. We considered loss of food
items due to kleptoparasitism or other causes by including a
probability that a food item would not be retrieved. This prob-
ability of loss is likely to vary depending on the cleanliness of
drop areas or the presence of kleptoparasites.

Model description

We have divided our description of the model into two sec-
tions, distinguished by whether the probability of the food
item breaking is independent of or dependent on the number
of times the item has been dropped previously. Within each
of these sections, we consider three situations with regard to
the probability of loss: no loss, fixed loss, and height-depen-
dent loss (see below).

Probability of breaking independent of previous drops

1. No loss case. In the simplest situation, an individual has
a food item that it cannot lose, and the probability of breaking
open the food item is independent of the number of times it
has been dropped previously. As a necessary simplification for
the model, we assumed that the individual has a set number
of drops, D, in which to break the food item open. If the food
item is not open after D, the maximum number of drops, the
bird gets no reward from the food. Hence, the expected en-
ergy value from the food item at D is

E(D) 5 0. (1)

In most situations, birds would not have a finite number of
drops to break open a food item, so we set D very high to
separate any effects of this assumption from the initial drop
behavior in which we were interested (see Results).

For all drops prior to D, an individual may drop its food
item from any height, h, with h ranging from 0 to hmax. A food
item dropped from h will break with probability Pb(h), with
Pb(h) obtained from the following equation (Plowright et al.,
1989):

Pb(h) 5 1 2 exp(2kh1.5) (2)

where k is a constant that includes the acceleration due to
gravity and the mass of the food item. Equation 2 assumes
that there is an increasing chance of the item breaking with
increasing momentum and that air resistance has a negligible
effect on the velocity of the dropped food item. This equation
provides an excellent description for the probability of break-
ing whelks reported by Zach (1979; see also Plowright et al.,
1989). The individual drops at the height that maximizes the
expected energy function

E(d,D) 5 maximum expected energy from drop d to D (3)

If the food item breaks, the individual gets a net energy
amount

E break 5 E f 2 ah 2 s, (4)

where E f refers to the total energy from the food item, a is
the energetic cost per unit height of flight, and s is the en-
ergetic cost of finding and examining the food item after a
drop (Plowright et al., 1989). If the food item does not break,
it receives

E intact 5 2ah 2 s. (5)

Therefore, for each drop, the food item may break with
probability Pb(h), with the individual receiving the net energy
E break. Alternatively, the food item may not break [with prob-
ability 1 2 Pb(h)], and the individual receives the net energy
of E intact plus the maximum energy it can expect from having
the food item from drop d 1 1 to D. Thus, the dynamic pro-
gramming equation is

E(d, D) 5 max{P (h)E 1 [1 2 P (h)]b break b
h

3 [E 1 E(d 1 1, D)]} (6)intact

The results consist of a single optimal height, h*, that satisfies
Equation 6 for each d.

2. Fixed loss case. The fixed loss case treats the situation
where the food item may be lost between drops, but the loss
is independent of the height from which the item was
dropped. For this model, we use logic and equations similar
to the no loss case, with the added probability, PL, of losing
the food item on each drop. Therefore, Equations 1–5 remain
the same; however, the dynamic programming equation
(Equation 6) needs to be modified to incorporate PL.

When the food item is lost, we assume that the individual
pays the cost of the drop, but not the cost of handling the
food item between drops (i.e., s). Note that this differs from
the intact and break situations, which both include locating
and examining the food item. By eliminating s in prey loss
situations, our model more closely describes loss due to klep-
toparasitism (where the item is quickly and visibly stolen after
the drop) than loss due to a ‘‘cluttered area’’ (which may
require more searching). Therefore, the net energy value to
an individual that loses its food item is

E lost 5 2ah (7)

We tested the effect of our kleptoparasitism emphasis by in-
corporating s into Equation 7 and found no qualitative dif-
ferences (with values to . 10s) or quantitative differences (up
to 2s for fixed loss, . 10s for height-dependent loss). This
insensitivity is due to the minimal impact of this handling cost
on the results (see Results) and suggests that our emphasis
on loss through kleptoparasitism did not affect our results.

For fixed loss, three possibilities exist for an individual
dropping a food item: (1) the food item breaks and is not
lost; (2) the food item does not break and is not lost; (3) the
food item is lost whether it breaks or not. These three possi-
bilities are incorporated in the dynamic programming equa-
tion for fixed loss (i.e., each line of the equation below cor-
responds to one of the possibilities). Thus, the dynamic pro-
gramming equation for fixed loss becomes

E(d, D) 5 max{(1 2 P )P (h)E 1 (1 2 P )[1 2 P (h)]L b break L b
h

3 [E 1 E(d 1 1, D)] 1 P E }intact L lost (8)

3. Height-dependent loss case. The height-dependent loss
case is similar to the fixed loss case, but PL is now assumed to
increase linearly with the height of the drop. Therefore, the
probability of losing in the variable loss case is:

LmaxP (h) 5 h (9)L 1 2hmax
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Table 1
Parameters used in the model and their values for the baseline runs

Param-
eter Description

Baseline
value

a Cost of flight per unit height 0.00686a

C max Maximum additional percentage that could
be added to the probability of breaking
from multiple drops

100b

D Maximum number of drops 60
E f Energy of prey item 2.04a

h max Maximum drop height 30a

k Constant in probability of breaking equa-
tion (Equation 2)

0.02067a

L max Maximum probability of losing the prey
item for the height-dependent loss case

0.5c

PL Probability of losing the prey item for
the fixed loss case

0.25c

s Cost of searching between drops 0.0426a

a Corresponds to value used in Zach (1979) and/or Plowright et al.
(1989).

b We chose a C max for the baseline value that represented a
maximum percentage and then investigated the effects of varying
this value (see Results).

c We chose L max (0.5) to give a mean PL(h) that more or less equals
PL (0.25) because L max will range from 0 at the minimum drop
height and 0.5 at the maximum drop height. The qualitative
predictions were not affected by this choice of values (i.e., the
observed difference increases between the fixed loss and height-
dependent loss cases if Lmax is equal for the two cases).

Figure 1
Predicted drop heights for the three loss cases over number of
drops, with the probability of breaking unaffected by the number of
previous drops. Only drop heights for the first 10 drops are shown.

where L max is the maximum probability of losing the food
item and h max is the maximum height from which a food item
can be dropped. The dynamic programming equation for the
height-dependent loss case matches that of the fixed loss case
(Equation 8), with PL replaced by PL(h).

Probability of breaking dependent on number of previous
drops

The previous equations considered food items with probabil-
ities of breaking that were independent of the number of
drops. Below, we modify the no loss, fixed loss, and height-
dependent loss cases to model food items for which the prob-
ability of breaking may be affected by the number of previous
drops.

The key change to the equations is modifying the proba-
bility of breaking to include the effect of previous drops. Be-
cause the probability of breaking increases with the height of
the drop, simply considering the number of previous drops
may be inappropriate. That is, a previous drop of 20 m will
probably have more of an effect on the subsequent probability
of breaking than a previous drop of 1 m. Therefore, we as-
sumed that the previous drop heights combined to create a
new state variable: the cumulative effect of previous drops, C.
Because previous drops likely will affect types of prey items
differently, as a general simplification we assumed that the
increase in the probability of breaking that resulted from a
previous drop was related linearly to the height of that drop
(i.e., a previous drop of 1 m increased Pb by 0.01). We set a
maximum amount, C max, that could be added to the breaking
probability and assumed that the resulting probability of
breaking could not exceed 0.99. Thus,

5 C(d) 1 h if C(d) 1 h , CmaxC(d 1 1) 5 (10)55 C if C(d) 1 h $ Cmax max

and

C
P (h, C) 5 P (h) 1 (11)b b 100

With this new state variable, the dynamic programming
equation for the no loss case becomes:

E(C, d, D) 5 max{P (h, C )Eb break
h

1 [1 2 P (h, C )][Eb intact

1 E(C 1 h, d 1 1, D)]}

(12)

Similarly, the dynamic programming equation for the fixed
loss case is

E(C, d, D)

5 max{(1 2 P )P (h, C )E 1 (1 2 P )[1 2 P (h, C )]L b break L b
h

3 [E 1 E(C 1 h, d 1 1, D)] 1 P E }intact L lost (13)

Again, modifying Equation 13 for the height-dependent loss
case requires simply replacing PL with PL(h).

RESULTS

Probability of breaking independent of previous drops

Using baseline parameters (Table 1), the results predict that
drop height will be constant over successive drops but will
differ depending on the likelihood of loss and whether the
probability of loss is dependent on height (Figure 1). If loss
varied with height (height-dependent loss), drop heights were
lower than when there was no possibility of loss (no loss); if
loss were independent of drop height (fixed loss), drop
heights were higher relative to the no loss case. This last,
somewhat counterintuitive result of an increased drop height
for the fixed loss case can be explained by noting that the
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Figure 2
Drop height and increment to the probability of breaking
(Equation 2) for the three loss cases. Breaking the food item
becomes easier as the probability increment increases.

Figure 3
Drop height and flight cost (a; Equation 4) for the three loss cases.

Figure 4
Drop height and energy of the food item (Ef; Equation 4) for the
three loss cases.

more times the item is dropped, the greater the chance of
loss, and increasing the drop height decreases the number of
drops required. The quantitative prediction for the optimal
height for the no loss case was 16 m, equivalent to the optimal
height determined by Plowright et al. (1989). Additionally,
our sensitivity analyses indicated that the qualitative predic-
tions for relative height among the three loss cases were ro-
bust to changes in the energy value of the food item (E intact;
range: 0–10.1), the handling cost between drops (s ; range: 0–
0.195), the flight cost (a; range: 0–0.019), and the probability
of breaking the food item at a given height (value from Equa-
tion 2 incremented; range: 60.3; see below).

Using sensitivity analyses, we first examined the effects on
drop height of varying a single characteristic. To investigate
how the probability of breaking affected drop height, we ei-
ther added or subtracted a constant amount from the prob-
ability function (Equation 2; e.g., 1 0.1 added to the proba-
bility of breaking for each height; tested range60.3) and lim-
ited the maximum probability of breaking to 0.99. Not sur-
prisingly, drop height decreased as the probability of breaking
increased (Figure 2). Thus, the results predict that an individ-
ual will use relatively low drop heights when dropping items
that are easier to break or when dropping items onto harder
surfaces.

We varied the cost of flying per unit height (a) to examine
the effect of the weight or size of the food item on drop
height (Figure 3). For the no loss and fixed loss cases, drop
height decreased with increasing flight cost. For the height-
dependent loss case, however, the predicted drop height did
not change with changes in flight cost. Having the probability
of losing the item vary with height apparently overcame the
energetic effects of the size of the food item. Therefore, item
weight or size may affect drop height, but this depends on
the loss case for the study system.

The effect of the energy content of the prey item (prey
value) on drop height also differs among loss cases (Figure
4). Each loss case had a certain energy value below which
dropping was not profitable. Above this value, drop height
remained constant across energy content for the no loss case.
For fixed loss, the increase in energy value made the increase

in height profitable; this decreased the number of drops nec-
essary and hence the likelihood of losing the prey item. For
height-dependent loss, individuals dropped from lower
heights to decrease the loss risk. Although dropping lower
required more drops to break the prey item, the extra energy
value of the prey made this worthwhile; thus drop height de-
creased with an increase in item energy.

We examined the effect of varying degrees of risk of losing
the prey item (L max) on drop height (Figure 5). As the prob-
ability of losing the food item increased, the predicted drop
height decreased for the height-dependent loss case. Hence,
the greater the chance of losing the prey item (e.g., having it
stolen), the lower the predicted drop height for this case. For
fixed loss, drop heights were relatively greater when a risk of
loss was present. Again, this result can be explained by the
benefit of minimizing the number of drops required. Inter-
estingly, however, for fixed loss the drop height first increased
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Figure 5
Drop height over the maximum probability of losing the food item
(L max) for the three loss cases.

Figure 6
Comparison of drop heights when flight cost (a) and the energy of
the food item were varied simultaneously, but the probability of
breaking was independent of item size. Flight costs represent the
extremes of a continuum, with 0.005 being extremely light or small
items, and 0.015 being extremely heavy or large items. Panels refer
to the different loss cases: (a) no loss, (b) fixed loss, and (c) height-
dependent loss.

with L max, and then decreased. This relationship occurred be-
cause the expected energy gain from a prey item decreases as
the constant probability of loss increases. That is, if the item
is likely to be lost, the expected energy for the item is low. At
high probabilities of loss, the expected energy became low
enough that the cost of flying (a) was relatively big enough
to be influential; therefore, drop heights decreased.

Although these univariate sensitivity analyses predict the im-
pact of changes in single characteristics of avian prey-drop-
ping systems, multivariate approaches can provide more com-
prehensive predictions in many situations. For example, larger
items are likely to increase both flight cost and energy con-
tent. Thus, we varied energy content and flight cost simulta-
neously to see whether the relationship between the two fac-
tors would affect relative drop heights for large and small prey
items (Figure 6). For this analysis, we assumed that the break-
ability of small and large prey items was equal (this assump-
tion is relaxed below). For the no loss case, a higher flight
cost always resulted in the individual dropping from a lower
height, regardless of the energy content of the prey item. With
height-dependent loss, the difference in predicted drop
height between the two extremes of flight cost was slight over
all energy values. Under height-dependent loss, therefore,
neither energy content nor flight cost had a significant impact
on drop height. Under fixed loss, however, if larger prey items
contain significantly more energy, they may be dropped from
the same height as smaller prey items of lesser energy content.
Thus, under some situations, the increase in energy gained
from a large prey item may balance the extra flight cost in-
curred.

The above analysis assumed that the probability of breaking
was not dependent on item size. However, depending on the
prey item, this assumption may not be valid. For some mollusk
species, the larger individuals break more easily (Siegfried,
1977, Whiteley et al., 1990, Zach, 1979), whereas in others,
either smaller individuals break more easily (Maron, 1982) or
there is no relationship between item size and breakability
(Richardson and Verbeek, 1986). The results described above
test the latter situation, where breakability is independent of
item size. By using different combinations of flight cost and
increment in the probability of breaking (i.e., the amount

added to Equation 2), we were able to test the two remaining
size-breakability relationships in which larger items break
more easily or less easily than smaller items. The results yield-
ed qualitative drop height predictions for each situation (Fig-
ure 7). As might be expected from previous results, when
heavier prey items were easier to break than lighter items (af-
fecting both flight cost and probability of breaking in the
same direction), drop heights were lower for heavier prey
items. When heavier prey items were more difficult to break,
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Figure 7
Drop heights for specific combinations of size (weight or physical
dimensions) and item breakability. (a) Light items are more
difficult to break than heavy items; (b) heavy items are more
difficult to break than light items. Parameter values: small item: a 5
0.005, Ef 5 1; large item: a 5 0.015, Ef 5 2. Pb(h) from Equation 2
was incremented by 10.2 for an easy-to-break item, 20.2 for a
difficult-to-break item. Qualitative predictions did not change when
energetic values for the two items were varied to the point of being
equal.

Figure 8
Drop height over number of drops for the three loss cases when
the probability of breaking is dependent on previous drop history.
Only drop heights for the first 10 drops are shown.

Table 2
Summary of the major qualitative predictions of the model

Characteristic of
prey-dropping
system Prediction

Risk of loss increases with drop
height

Drop height should decrease with
increasing risk of loss

Risk of loss independent of drop
height

Drop height should be higher
when risk of loss is present

Probability of item breaking is
independent of previous drops

Prey should be dropped from a
constant height over multiple
drops

Probability of item breaking in-
creases with number of previous
drops

Drop height should decrease over
successive drops

Dropping substrates in foraging
area differ in hardness

Prey dropped onto harder surfaces
should be dropped from lower
heights

Prey types differ in ease of
breaking (regardless of size or
energy value)

More easily broken prey type
should be dropped from lower
heights

Prey types differ in size only Larger prey items should be
dropped from lower heights

drop heights were higher for heavier prey items. These pre-
dictions were robust to changes in the relative energy of the
two food items. The relative qualitative predictions for drop
heights (see above) remain unchanged for the no loss, fixed
loss, and height-dependent loss cases. The robustness of these
predictions was primarily due to the influence of the proba-
bility of breaking and the probability of losing the food item,
which overwhelmed energetic rewards and flight costs in most
circumstances.

Probability of breaking dependent on number of previous
drops

If the probability of breaking is not affected by the number
of drops, the individual was predicted to drop from the same
height for all the drops (Figure 1). However, when the prob-
ability of breaking increases with the number and height of
previous drops, drop height decreased with the number of
drops (Figure 8). Varying C max, the maximum amount that
could be added to the breaking probability, did not change
the presence of the decline; however, the steepness of the

slope was affected. That is, as C max decreased, the number of
drops until reaching the minimum drop height decreased. As
with previous results, the qualitative predictions concerning
relative drop height among the no loss, fixed loss, and height-
dependent loss cases were not affected by the change in the
breaking probability.

DISCUSSION

To date, most studies of avian prey-dropping have either been
anecdotal or descriptive and have lacked a theoretical frame-
work. Our model provides both the framework for studying
prey-dropping behavior and a series of qualitative predictions
that are readily testable in any prey dropping system. Avian
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prey-dropping behavior is extremely widespread and involves
a large number of bird and prey species (Cristol and Switzer,
1999). The results of our model indicate that this diversity in
predator and prey characteristics should lead to dramatic dif-
ferences in dropping behavior both within and among sys-
tems.

Table 2 summarizes many of the results of the model, listing
potential characteristics of different hypothetical study systems
and the qualitative predictions that follow from these char-
acteristics. Two of the most robust results were the overriding
influences on drop height of both risk of loss and the prob-
ability of breaking. The strength of their influence suggests
that in many cases these two factors are more responsible for
shaping dropping behavior than differences in the energy val-
ue of the prey item or the cost of flying. Thus, future studies
of dropping behavior should emphasize prey loss and break-
ability.

Indeed, the results of the model indicate that when armed
with two key pieces of information (prey characteristics, loss
case), generating and testing the appropriate predictions is a
relatively straightforward process. First, one needs informa-
tion on the characteristics of the prey species that are natu-
rally dropped by the birds. By dropping prey from set heights
onto appropriate substrates, one can obtain the probability of
breaking as a function of drop height, assess differences in
breakability among substrates and prey types (species, size, or
weight), and determine whether the probability of breaking
changes with subsequent drops. Second, determining the loss
case that applies to a particular system requires recording the
drop height, kleptoparasitism pressure (if the loss is due to
theft), and percentage of prey items lost.

The qualitative nature of the predictions generated by our
model facilitates both correlational and experimental tests.
Rather than trying to match a specific, predicted drop height
with observed behavior (sensu Zach 1978, 1979), one can sim-
ply compare drop heights under different conditions. The
easiest method for testing these qualitative predictions is to
observe and compare naturally occurring prey choice and
drop behavior. However, specific predictions may also be test-
ed by experimentally presenting the birds with prey items of
known characteristics and comparing drop behavior (e.g.,
Cristol and Switzer, 1999; Maron, 1982).

The predictions of the model concern variation both be-
tween distinct avian prey-dropping systems and within the
same system. Many of the bird species that drop prey are om-
nivores (e.g., gulls and crows), and the same individual may
be foraging on multiple types of hard-shelled prey in areas
with multiple substrates available. Developing appropriate
drop behavior under these circumstances is a complicated
task. Previous authors have suggested that learning (e.g., op-
erant conditioning and cultural learning) may play a role in
dropping behavior (Barash et al., 1975; Beck, 1980; Ingolfson
and Estrella, 1978; Maron, 1982; Richardson and Verbeek,
1987; Siegfried, 1977). However, the role of learning in shap-
ing dropping behavior in either simple or more complex sit-
uations remains virtually unstudied (but see Beck, 1980). Al-
though our model does not address the ontogeny of dropping
behavior, dynamic models can be used to investigate learning
behavior. For example, future studies may relax the assump-
tion that the individual knows the value of k in the probability
of breaking equation (Equation 2). Instead, the individual
may start with a possible distribution of k and use their drop-
ping experience to modify their estimate of the parameter for
that food item (Hilborn and Mangel, 1997; Luttbeg 1996;
Mangel 1990). Our current model does provide the predicted
benchmark for fully developed dropping behavior under spec-
ified circumstances. Researchers interested in learning can
use this benchmark to aid them when investigating the de-

velopment of inexperienced birds into proficient, prey-drop-
ping foragers.
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