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Virtualization in the Private Cloud:
State of the Practice

Robert Birke, Member, IEEE, Andrej Podzimek, Lydia Y. Chen, and Evgenia Smirni, Member, IEEE

Abstract—Virtualization has become a mainstream technology
that allows efficient and safe resource sharing in data centers.
In this paper, we present a large scale workload characteri-
zation study of 90K virtual machines hosted on 8K physical
servers, across several geographically distributed corporate data
centers of a major service provider. The study focuses on
19 days of operation and focuses on the state of the practice,
i.e., how virtual machines are deployed across different physical
resources with an emphasis on processors and memory, focus-
ing on resource sharing and usage of physical resources, virtual
machine life cycles, and migration patterns and their frequen-
cies. This paper illustrates that indeed there is a huge tendency
in over-provisioning CPU and memory resources while certain
virtualization features (e.g., migration and collocation) are used
rather conservatively, showing that there is significant room for
the development of policies that aim to reduce operational costs
in data centers.

Index Terms—Data centers, virtualization, private cloud,
workload characterization.

I. INTRODUCTION

MANAGEMENT of virtual machines (VMs), such as pro-
visioning, de-provisioning, and migration, is central to

the operation of data centers, which constitute contemporary
cloud environments where applications execute in the form of
VM instances. Naturally, each VM instance varies in terms
of its required virtual resources. In addition, throughout its
lifetime, a VM may be collocated on the same physical host
with a different number of other VMs. VMs can be easily sus-
pended, restarted, and migrated on different hardware to better
meet performance objectives from the points of view of the
individual applications and of the data center.

A data center’s ability to gracefully deal with persis-
tent workload fluctuations strongly depends on its ability
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to reconfigure and migrate VMs. There has been a lot of
research into the costs of dynamic reconfiguration, con-
solidation, and migration [1]–[3], but most experimental
work reports on small-scale and easily controllable hard-
ware environments. Yet, there is no clear view of the current
state-of-the-practice — how production data centers are used
by their tenants and what are their common VM characteris-
tics, resource sharing, and migration patterns.

In this paper, we aim to fill this gap by providing a detailed
characterization study of VM usage in corporate data cen-
ters in the private cloud of a major provider. Our objective
is to provide a better understanding of how virtualization is
deployed and specifically the general conditions that drive
VM management policies that trigger migration and VM
consolidation.

We inspect multiple corporate data centers used by more
than three hundred customers from a variety of corporations,
including banking, industrial, automotive, retail, and media
industries, geographically dispersed across different countries
and continents. The trace data focus on a specific time
window of 19 days ranging from September 1, 2012 to
September 19, 2012, of several data centers, serving more
than 90 VMs hosted on over 8K physical servers. This data
set provides insights into a broad range of both physical
and virtual hardware configurations running a diversity
of operating systems and applications. The data centers
considered here are within a private cloud, i.e., their tenants
and applications are stable. The broad variety of hardware
that populates the data centers coupled with the vast number
of VMs allows to gain insights into physical hardware usage,
VM routine usage, VM on/off activity, as well as migration
and consolidation patterns. Note that the data centers of
our study are hosted by different entities of the provider, so
migration and consolidation policies may not be the same
across data centers. Yet, the nature of the data allows us
to provide a bird’s eye view of the degree of consolidation
reached in data centers as well as the overall volume of VM
migrations, provisioning, and de-provisioning. Beyond the
overall view, we also focus on how resource allocation and
utilization are affected by different VM management policies,
in terms of long-term and instantaneous trends (i.e., within
the allowable time granularity of our measurements).

Our findings can be summarized as follows. Among the var-
ious resources, CPU is commonly over-committed while this
happens rarely for memory. Up times of VMs are long, with a
significant percentage of them to be always on, throughout the
19-day time period. VM commissioning and decommissioning
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follow specific time patterns and this activity is highest during
midnight, ditto for VM migration. There is a strong tendency
to not migrate VMs and even if migration happens, it only
involves a restricted set of physical servers with the same hard-
ware characteristics. Migrations appear to aim at moving VMs
to physical boxes with smaller resource utilizations than the
source ones, pointing at improved load balancing and better
performance.

This paper is organized as follows. Section II presents
an overview of the collected data. Characterizations of VM vir-
tual resource allocation, consolidation, life cycle, and migra-
tion are summarized in Sections III, IV-A–IV-C, respectively.
Sections V and VI focus on how resource management poli-
cies affect resource allocation and utilization, respectively. In
Section VII we give an overview of lessons learned from the
VM management analysis. Section VIII positions this paper
within other works. Conclusions and future work are given in
Section IX.

II. DATA COLLECTION

We survey ∼90K VMs, hosted on ∼8K physical servers
from different data centers in the world, serving over
300 corporate customers over a 19 day period starting
September 1, 2012. Thanks to these sheer numbers, we can
deduce meaningful statistics. These systems are used by dif-
ferent industries and are based on various operating systems.
The virtualization technologies used are from major vendors,
such as VMware and IBM.

Due to the nature of the trace data available to us, our study
has some limitations. Although the trace data identifies unique
VMs (via a unique VM id), we are unaware of the exact appli-
cations each VM runs due to business confidentiality. We are
also not aware of the response time of each VM at the transac-
tion level (if the application is transaction-based) but we are
aware of the end-to-end time of an application. In addition,
the trace data is only collected in 15-minute periods, i.e., this
is the finest available data granularity.

While a 15-minute sampling interval may be considered rel-
atively long and may compromise the completeness of the
data set with respect to very frequent events, we argue that it
actually has a negligible effect given the typical liveness and
migration characteristics of most VMs in this data set. Our
evaluation suggests that provisioning and de-provisioning as
well as migrating are much less frequent than data sampling
in the vast majority of cases. For a more detailed description
of the trace data and data center workload characteristics (but
without considering the VM perspective), we direct the inter-
ested reader to our previous work on the same data set that
focused on evolution of data center resource demands across
a two-year period [4] and also on seasonal utilization patterns
to enhance autonomic resource allocation policies [5].

For the purpose of the work presented in this paper we
collect two types of virtualization statistics, namely on virtual
resource provisioning and on VM deployment. Virtual resource
provisioning focuses on the amount of virtual resources
assigned to each VM. VM deployment focuses on how phys-
ical resources are shared by VMs on a physical server. We

Fig. 1. The definition of VM on, off, host and migration times.

concentrate on the number of VMs and on their virtual CPU
and virtual memory capacity demands, and how those are
shared on their physical counterparts where the VMs are
deployed. Throughout this paper, we use the terms server and
host to denote a VM’s physical counterpart. We also use the
generic terms processor and CPU interchangeably to denote
a thread slot visible to the operating system.

A physical server equipped with multiple physical
CPUs (pCPU) and sufficient physical system memory (pMEM)
hosts multiple VMs. Each VM in turn is configured with multi-
ple virtual CPUs (vCPU) and virtual system memory (vMEM)
of a certain size. The total number of vCPUs is independent
of the number of pCPUs on a physical server. A vCPU can
use only up to one pCPU at a time, whereas a pCPU may be
shared by multiple vCPUs. Similarly, the total size of vMEM
used by the VMs is independent of the available pMEM.

VM deployment may be static or dynamic, i.e., a VM may
be bound on a physical server throughout its lifetime or not.
We focus on the dynamic handling of the VMs over the
entire period by looking at VM life cycles (on/off patterns)
and VM migrations. We consider a VM on, if the VM is
running and its activity is traced during the 15-minute sam-
pling interval; we consider the VM off otherwise. Naturally,
on/off periods and migration can be intertwined: i.e., a VM
can be turned off and then turned on at a different physi-
cal host. In such cases, we consider that both a VM life
cycle and migration occur. Live migrations are also possi-
ble: i.e., a VM migration without the VM being suspended or
turned off.

For a better understanding on how and what we measure,
see Figure 1. The figure illustrates an example of VM dynamic
behavior over time. The VM first runs on server A, then
B, then C, i.e., two migrations occurred. When the VM is
migrated from server A to server B, it is also turned off dur-
ing three time intervals. Migration from B to C has no gaps,
either because of live migration or because the off time is
hidden by the sampling interval. Based on this example we
further illustrate the four basic time intervals we measure: the
on and off times (i.e., the sum of all consecutive time peri-
ods in which the VM is in the same on or off state), the host
time (i.e., the time spent by the VM on the same physical
server irrespective of being on or off), and the migration time
(i.e., the off time between changing physical hosts) which can
be zero.
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Fig. 2. Physical resources available on today’s servers: (a) number of CPUs, (b) memory size [GB], and (c) ratio of memory (size) per CPU. Note the
log-scale on the x-axis for (b) and (c), to better illustrate the higher densities that are associated with smaller memory requirements.

Fig. 3. Allocation of virtual resources per VM: (a) number of vCPUs of a VM, (b) memory size of a VM, and (c) ratio of memory size per vCPU. Note
the log-scale on the x-axis for (b) and (c), to better illustrate the higher densities that are associated with smaller memory requirements.

III. RESOURCE ALLOCATION

In this section, we give an overview of the degree of sharing
in physical and virtual machines. We also give an overview of
the common resource configurations at the physical servers as
those are provisioned to the VMs.

A. Representative Physical Machines

In this subsection, we present statistics on the physical
resources, and in particular on processors and memory, that
are available in today’s servers. In Figure 2, we give an
overview of physical resources available. Figure 2(a) shows
the histogram of pCPUs per server. The histogram reflects the
availability of commercial configurations. In the most common
case (i.e., 34.5%) servers have eight pCPUs. Other common
configurations are 12, 16 and 32 pCPUs. The pMEM con-
figurations have a much wider range, see Figure 2(b). The
highest peaks in the histogram are between 2 GB and 50 GB
and account for 56% of servers. Overall, servers have abun-
dant resources with an average of 14.95 pCPUs and 60.6 GB
of pMEM. Some high-end machines exist even at 64 pCPUs
and 1 TB of pMEM. In addition, there is a non negligible
portion of “resource limited” servers with 4 pCPUs and less
than 2 GB of pMEM. Figure 2(c) gives a sense on how bal-
anced the physical servers are in terms of processors and
memory by presenting the histogram of the ratio between
these two resources. The average value is 3.98 GB memory
per CPU.

The main message of Figure 2 is that today’s servers
have very powerful computational capacity (on average 15.95
pCPUs) and a reasonable size of memory (on average
60.6 GB of pMEM) making room for resource sharing by

VMs (on average 10.8 VMs per server). The histograms
depicted in Figure 2 also allow to identify representative
server configurations useful for system and resource allocation
studies.

B. Representative VM Configuration

Knowing that many VMs are co-located on a physical
server, a natural question to ask is if they share resources
equally, i.e., how VMs are provisioned in terms of virtual
resources. Figure 3(a) illustrates that VMs use mostly a small
number of vCPUs. Most VMs have either 1 vCPU (39.5%),
2 vCPUs (40.6%), or 4 vCPUs (17.2%).

Similar observations hold for the vMEM size (see
Figure 3(b)): most VMs (87.2%) have between 1 and 9 GB
of vMEM with specific peaks around 2, 4, and 8 GB. On
Amazon EC2 five instance type exists: micro, small, medium,
large, and x-large. Of those, micro and small have 1 vCPU
while the rest of instance types have more than 2 vCPUs [6].
vMEM ranges are from 0.615 GB (for micro) up to 244 (for
the more “rare” 8x-large cases), while small and large are
within a range of 3 to 15 GB. Indeed, our data confirms that
the most popular VM configurations in our trace data corre-
spond to those of EC2. Finally, as indicated by the different
histogram shape in Figure 3(c), the memory/processor ratio is
scaled down: on average 2.3 GB of vMEM per vCPU. Overall,
our key observation is that VMs are “smaller” than physical
machines, in terms of number of CPUs and memory. In addi-
tion, as reported in the previous subsection, the daily averages
and percentile values are remarkably stable across time. One
can use these statistics to size VM resources, especially within
cloud solutions.
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Fig. 4. Statistics related to VM consolidation: (a) number of VMs hosted on physical servers, (b) number of VMs under a managing unit, and (c) number
of different enterprises running VMs in a single physical server.

IV. VM MANAGEMENT

A. Consolidation

One of the first issues of interest is the consolidation levels
on the various physical machines, see Figure 4. Figure 4(a)
shows the discrete data histogram of the empirical density of
the number of VMs per physical server. The figure shows that
10% of servers host only one VM, i.e., there is no consoli-
dation. 90% of servers host at least two VMs. The average
number of VMs hosted on a physical server is 10.8 but this
average can be deceiving. Indeed, the CDF counterpart of
Figure 4(a) (not reported here due to lack of space), shows
that the 95th percentile of VM consolidation is 31.

For completeness, we present two more histograms. The
first one is the histogram of the number of VMs handled by
the same management unit (i.e., an external entity used to
monitor and deploy the VMs, such as vsphere from VMware),
see Figure 4(b). In general, a manager handles many VMs,
173.3 VMs on the average. Since central VM managers can
become the bottleneck, such information can be useful for
capacity planning of management units.

Figure 4(c) depicts the histogram of the number of different
customers sharing the same physical server. We see that there
is almost no flexibility here: 96.5% of servers host VMs all
belonging to the same customer. This further confirms that
the statistics presented in this paper are mostly from private
clouds.

In this subsection, we present how virtual processors, phys-
ical processors, and memory are related. We start with how
vCPUs compete for pCPUs on a physical server. Figure 5(a)
shows the histogram of the ratio between the total number
of all vCPUs from all VMs and the number of pCPUs of
the underlying hosting physical server. If such a ratio is less
than 1, then vCPUs are likely not able to “stress” pCPUs:
i.e., the server is under-populated. Ratios greater than one are
necessary (but not sufficient) conditions for processor resource
contention. Roughly 35.2% of servers are under-populated,
4.3% even with ratios lower than 0.1, while the rest of the
servers have ratios greater than 1 and up to 8.25. Overall, the
average is 1.56 vCPUs per pCPU. This is not surprising, con-
sidering that efficient physical resource sharing is in fact the
purpose of virtualization.

Next, we study how pMEM is shared among the vMEMs
allocated to each VM. To this end, we compute the ratio
between the sum of all vMEMs and the pMEM of the

Fig. 5. Comparison between the amount of virtual and physical resources
per physical server. Note the log-scale on the x-axis for (b) to better illustrate
the higher densities that are associated with smaller memory requirements.

underlying physical server. Figure 5(b) depicts such ratios and
illustrates that it is very rare for VMs to request more than
the available pMEM.

We summarize the statistics discussed in this section as fol-
lows. Consolidation of multiple vCPUs on pCPUs is prevail-
ing, as expected, especially considering the main motivation
for virtualization – efficient consolidation of resources. The
degree of over subscription is roughly at 50%, indicated by
the mean value of vCPU/pCPU. On the opposite, memory is
never over committed, i.e., the total vMEM requested is just
slightly less than the pMEM of the hosting server. Resource
sharing is more conservative for memory than for CPU.

B. Life Cycle of VMs

The ease of commissioning and decommissioning VMs,
together with the promise of performance isolation, contribute
to the popularity of using VMs in data centers. Since the
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Fig. 6. Statistics related to VM on/off cycles: (a)(b) daily frequency, (c) duration of on/off periods.

trace data come from data centers within privately adminis-
tered clouds, our observations are bound to the private clouds
only. In this section we focus on the frequencies at which the
VMs are turned on and off, the durations of the on/off times,
and whether the VMs are bound to the physical servers where
they execute.

1) VM On/Off Frequencies and Times: We start by report-
ing on the number of on and off states for each VM across
the observation period of 19 days. Naturally the numbers of
on and off states are tightly related, since an off (on) state is
always going to be followed by an on (off) state, respectively.
Provided that we observe each VM over a fixed time interval,
the number of off states is at most the number of on states ±1,
depending on whether we observe a leading or trailing off
state without a corresponding on state. Figure 6(a) presents
the frequencies of on and off states during the 19-day obser-
vation period, computed over the set of all VMs. As expected,
the lines are almost overlapping with few deviations (e.g., the
starting points of the two curves). In the rest of this section
we only comment on the frequency of the off states.

One can immediately see that most of the frequency mass
is located at the beginning. To better illustrate the results,
Figure 6(a) shows only the initial part of the PDF, while
Figure 6(b) shows the complete cumulative distribution func-
tion (CDF), including its tail. 11% of VMs have zero observed
off states, i.e., these VMs are continuously operating during
the entire 19-day interval. The absence of off samples suggests
that these VMs have never been turned off, therefore we treat
them as if they are turned on once. Furthermore, 23% of VMs
have only one observed off state throughout the 19-day interval
or, estimating based on the observation period, only 0.053 off
states per day. For the remaining VMs, the density functions
rapidly decay into a long tail which extends almost to the max-
imum possible value given by the 15-minute sampling interval,
i.e., 48 times per day. This suggests that some VMs stay
on for one sampling interval and off for the subsequent one
throughout the whole observation period. Figure 6(b) shows
the complete CDF that illustrates the presence of a long tail,
i.e., there are at least 2% of cases where the number of on/off
states per day is more than 20. Note also that the two CDF
curves nearly completely overlap.

Next we focus on how long a VM stays in either the on or
off state. We call these durations “on/off times”. Figure 6(c)
presents the CDFs of the on and off times across all VMs.
Again, the line corresponding to the off state is either roughly

Fig. 7. Fraction of VMs that are turned on and off at specific time stamps,
across the entire observation period.

overlapping or above the line corresponding to the on state,
suggesting that off periods are in general shorter than on peri-
ods. In general, we see that for almost 90% of the VMs
the on or off times are less than a portion of the day,
while a small percentage corresponds to very long on/off
durations.

2) More on VM On/Off Durations: Here we provide infor-
mation about the specific times when VMs are turned on and
off. Figure 7 presents the empirical frequencies of the fraction
of VMs that are turned on and off as a function of the time of
the day across the entire 19-day period. For each time period,
two bins are reported, one that corresponds to on and one that
corresponds to off. Graphs are stacked on top of each other in
order to illustrate the relationship of on and off frequencies.
Remarkably, there is a strong repeating pattern on the fre-
quencies of on/off time periods, i.e., the time stamps at which
VMs are switched on are repetitive, featuring a daily spike.
In the rest of the time periods the fraction of VMs that are
turned on or off is more of less stable. Looking more closely
at the numbers, 12% of all VMs in the entire time period are
started at midnight, while almost 6% of VMs are shut down
in the same time period and 3% right before this time. Such
repeatable patterns clearly point to routine VM deployment or
perhaps maintenance work.

C. VM Migration

In this section we focus on one of the most impor-
tant features of virtualization: migration. Migration plays
an indispensable role in bridging two key aspects of virtualiza-
tion: server consolidation and scalable resource provisioning.



BIRKE et al.: VIRTUALIZATION IN THE PRIVATE CLOUD: STATE OF THE PRACTICE 613

Fig. 8. Statistics about VM migration: (a) how often it happens in a day, (b) how long does it take between migrations, and (c) how many different servers
a VM visits.

Most of existing migration studies are done within controlled
environments of small scale, for more details see Section VIII.
Here, our data allows to provide the big picture on current
migration practices in the private cloud. First, we focus on
the frequency of VM migration, and how much this frequency
varies from VM to VM. Second, we are interested in isolat-
ing observable migration patterns, trying to see whether VMs
migrate regularly. Finally, we also report on how many physi-
cal servers the VMs migrate on. In this section we concentrate
on the large-scale characteristics of VM migration, without
attempting to evaluate its performance impacts.

1) Migration Frequency and Inter-Migration Times: In the
following, we split the data into two sets and draw the empir-
ical distribution functions for (i) the entire set of VMs, which
we call the full set, and (ii) the set of VMs that migrated at
least once within the 19 days, referred as migration-only set.

Figure 8(a) shows the frequency of VM migration, i.e.,
how often a VM migrates between physical servers. The main
plot zooms on the initial part of the PDF across VMs. This
illustrates the fact that most VMs are unlikely to migrate:
78% of them never migrated throughout the whole 19 days,
i.e., the migration frequency was equal to zero. However, as
shown in the inlet of Figure 8(a), the right tail of the CDF
also includes a few VMs that migrated more than three times
per day.

Figure 8(b) shows the cumulative frequencies of the average
residence time of a VM on a physical server before migrat-
ing to another server. This is an alternative representation of
the results shown in Figure 8(a), confirming that most VMs
exhibit relatively long inter-migration times. In particular, only
about 3% of VMs belonging to the migration-only set have
inter-migration times of 2 days or less. There are four peaks
of increasing intensity at 3.8, 4.8, 6.3 and 9.5 days which are
influenced by the length of the observation period and corre-
spond to fractions of 19 days. The full set is skewed even more
towards longer inter-migration times, due to the considerable
number of VMs that never migrate and remain active for the
whole 19 days. This can be seen from the big jump at the end
of the CDF. Since the full set includes the migration-only set,
the full set’s density function exhibits the same jumps scaled
in intensity as the one corresponding to the migration-only set.

The main message is that most VMs (78%) never migrate.
Furthermore Figure 8(a) and Figure 8(b) both point towards
rather long periods between migrations. In particular the
highest peaks are either just slightly shorter than a week,

Fig. 9. Fraction of migrating VMs across the entire observation period.

i.e., 6.3 days for 10% of migrating VMs, or just slightly longer
than a week, i.e., 9.5 days for 28% of migrating VMs.

2) Migration Timings and Patterns: Herein, we focus
on VMs experiencing migrations, particularly their timings
of occupancies and spatial patterns on underlying servers.
Figure 9 reports on the fraction of VMs that migrate across
the entire 19 day period. The figure shows a strong repetitive
pattern: most migrations occur at specific time stamps, that
appear to repeat across the entire 19-day period. Looking at
the same information but as an aggregate within 24 hours,
it is clear that almost 70% of all VM migrations occur at
midnight.

Regarding the spatial patterns of migration, i.e., where VMs
migrate, we look at (i) the number of distinct physical servers
visited and at (ii) the probability of transitions among those
servers. Figure 8(c) shows the PDF of the number of distinct
physical hosts visited by a VM over the 19 days. A value
of one means that the VM stayed on the same physical host
for all 19 days. Again, we observe that 78% of VMs do not
migrate, which is consistent with our previous results. Even
considering the migration only set, mostly the set of physi-
cal servers visited by a VM is relatively small: 68% of VMs
visit only two servers. Table I summarizes statistics for migra-
tion frequencies, intermigration times, and numbers of unique
servers visited.

Table II gives an overview of the overall migration pattern:
where each row (column) represents the origin (destination)
host during migration and the associated numerical value
reflects the transition probability from the origin to the desti-
nation. Such a transition probability set is computed for each
VM and the servers are labeled according to the order of their
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TABLE I
STATISTICS FOR MIGRATION: FREQUENCY, INTER-MIGRATION TIMES, AND NUMBER OF UNIQUE SERVERS VISITED

TABLE II
THE TRANSITION PROBABILITIES (EXPRESSED AS PERCENTAGES) OF VM MIGRATIONS:

MOVING FROM A PHYSICAL SERVER TO ANOTHER ONE

first occurrence within the observation period: the first host is
labeled A, the second one B, and so on. Naturally, the shape
of the empirical frequencies in Figure 8(c) directly affects the
transition probabilities: i.e., all migrating servers have at least
one A to B transition, while only few VMs migrate as far as
to a J. One can also observe how the probability to migrate
to the next or previous server in the sequence is much higher
than skipping servers: i.e., the values next to the diagonal in
Table II are significantly higher. The table demonstrates that
even when VMs migrate, they tend to stay always within a
restricted set of servers: i.e., one can expect ping-pong patterns
between two servers to be the most frequent migrations.

To summarize, in this section we provided a descrip-
tion of contemporary migration processes in data centers.
Consequently, the statistics presented here can be used to val-
idate basic assumptions about workload migration patterns.
Other uses are also possible, e.g., the frequency of VM migra-
tions can be used to estimate how much additional load the
underlying data center network infrastructure has to handle
and the knowledge of existing migration patterns can be useful
when it comes to improving VM placement strategies. Finally,
Table I summarizes the main statistics for the plots presented
in this section.

V. RESOURCE ALLOCATION AND VM MANAGEMENT

In this section, we study how resource allocation on boxes
and VMs interacts with VM management policies. We are
interested in two viewpoints: (1) long term averages on the
entire duration of the trace, and (2) short term changes (that we
also dab “instantaneous”) within the smallest time granularity
of the trace, i.e., within 15 minutes. Our purpose is pattern
discovery aiming to better understand VM consolidation, by
exploring the conditions that trigger migration from source to
destination boxes, on/off patterns, and resource capacities. As
in the previous analysis, we adopt two perspectives, one that
focuses on the virtual machines and one that focuses on the

physical boxes. We first categorize VMs/boxes by their levels
of consolidation, on/off activity, and migration. Within each
category, we compute the following statistics of interest: the
median value, as well as the 25th and the 75th percentiles.

A. Consolidation

First, we focus on how the average CPU and memory capac-
ities within each box are related to the VM consolidation level,
i.e., the number of collocated VMs within a box. Results are
summarized in Fig. 10. The figure illustrates 25% and 75%
percentiles for number of CPUs and memory capacity in the
form of whisker plots but also the corresponding medians in
the form of bars. The figure clearly depicts that high consol-
idation levels are strongly and positively correlated to more
hardware resources, both with respect to CPU counts and to
memory availability. When comparing CPU and memory, one
can see roughly 3X and 10X increments in number of CPU and
memory, respectively, from the lowest to the highest consoli-
dation level. Such a finding resonates to our previous results
that the VM multiplexing level of memory is conservative and
that memory has a linear relationship to the consolidation level
on boxes.

B. On/Off Frequencies

1) VMs: Our first objective is to see whether there is any
relationship among VM resources (i.e., vCPUs and vMEM)
and the frequency that a VM is turned on/off. Results can be
summarized as follows. There is no clear relationship among
the size of a VM, the allocated resources, and the on/off fre-
quencies. Data shows that big or small VMs have no difference
in their on/off frequencies and that their resource allocation
remains constant.

2) Boxes: The graphs in Figure 11 show the number of
CPUs and memory allocated right after the VM is turned on
again. Looking at the pCPU allocation (Figure 11(a)) there are
distinctive trends for the number of allocated pCPUs and on
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Fig. 10. The impact of consolidation level on physical resources (number
of CPUs and memory).

the number of on/off times. Figure 11(b) focuses on physi-
cal memory (pMEM) allocation and shows a different pattern:
there is a clear linear relationship on the allocated memory
and the number of times the VM has been set on/off. In gen-
eral, we observe that the number of times the VM is turned
on/off relates to the number of its assigned pCPUs and it has
a linear relationship with its allocated pMEM.

C. Migration

1) VMs: The main question here is whether smaller VMs
tend be moved more frequently due to their lower migration
overhead, due to the size of their active memory. Although the
number of CPUs remains naturally the same, irrespective of
the number of migrations, there is a clear negative trend that
relates the number of migrations and allocated memory, see
Figure 12. We also note that the resource allocation of VMs
does not change during migration, i.e., the CPU number and
memory size remain unchanged before and after migration. All
in all, VMs with bigger vMEM allocation tend to be migrated
less often.

2) Boxes: One objective of our investigation is to discover
whether there is any dependency between resource alloca-
tion and VM migration frequencies and if VMs are migrated
across similar boxes, i.e., equipped with similar CPU/memory
capacities, by checking their instantaneous differences in the
15-minute period right before and right after migration. Fig. 13
summarizes the hardware differences in boxes as a function
of migration frequencies. For pCPUs, the differences are truly
negligible, hovering at around zero. Note that the 25% and
75% whiskers are plotted but not even visible. For pMEM,

Fig. 11. Boxes’ average resource allocation v.s. number of on/off.

Fig. 12. Average memory allocation per VM as a function of migration
frequencies.

although the median relative values are very close (with a
maximum average difference of only 3 GB), the fact that the
whiskers marking the percentiles are quite apart, indicates that
memory can vary significantly. Yet, looking at medians, a dif-
ference of 3 GB is rather small considering the fact that the
average memory allocation per box is around 60 GB. In sum,
Figure 13 shows that in the majority of cases migrations occur
across “similar” boxes.

VI. RESOURCE UTILIZATION AND VM MANAGEMENT

In the previous section we focus on resource allocation per
VM. Here, we do a similar analysis but we focus instead
on physical resource utilizations, aiming to develop a better
understanding of how VM management policies change data
center usage given that we have no means of knowing the
exact policies used for management. From our statistical anal-
ysis one can infer the general policy and explore whether there
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Fig. 13. Instantaneous differences in boxes visited before and after migration
(CPU and memory), as a function of migration frequencies.

is room to improve data center usage. We focus on both aver-
age utilization values as well as instantaneous differences (i.e.,
within the next 15 minutes after an action occurs), aiming to
discover the condition that triggers VMs to be turned on/off
as well as migration.

A. Consolidation

We first focus on the relationship of median box utilization
levels relatively to the VM consolidation on each box. One
would expect that boxes with higher consolidation levels have
higher resource utilization. The results in Figure 14 confirm
the expectation that both pCPU and pMEM utilization increase
nearly linearly as a function of the consolidation level.

Figure 14 should be viewed in conjunction with Figure 10
where VM consolidation levels are present together with the
number of pCPUs and the size of pMEM used. Figure 10
allows to better understand the increments in CPU and mem-
ory utilization observed in Figure 14. Indeed, factoring in
the availability of more CPU and memory resources, we see
that indeed current consolidation strategies do take excellent
advantage of the hardware availability.

B. On/Off

1) VMs: The question of interest here is which type of
VMs are subject to frequent on/offs, i.e., is it the ones with
higher or lower utilization. The results are not shown here
in the interest of space, but can be summarized as follows.
By inspecting the average CPU and memory utilization as a
function of different on/off frequencies, we remark that there is

Fig. 14. Average resource utilization on boxes vs. VM consolidation levels.

no dependency between them. This leads to the conclusion that
VMs experiencing frequent on/offs have no specific resource
characteristics, i.e., neither resource utilization nor allocation
(see also Section V-B1).

We also observe a similar relationship looking at the aver-
age instantaneous resource utilizations, i.e., observing the
15-minute window utilization statistics after an off event.
Across the entire spectrum of VM on/off frequencies, the aver-
age differences in pMEM as well as pCPU utilizations are
negligible, i.e., below 0.5%, before and after turning off a
VM, which clearly implies that VMs are not turned off due to
physical resource utilizations. We reach to a similar conclusion
when considering long term average of resource utilization:
VMs are not turned on/off due to resource utilization reasons.

2) Boxes: Our aim here is to understand whether VMs are
turned on/off as a means to modulate resource utilization. We
plot the average resource utilization and instantaneous differ-
ence of resource utilization with the number of VM on/off
experienced by boxes in Figure 15. Figure 15(a) illustrates
that VMs, that are not turned on/off frequently, tend to reside
on boxes that are the least utilized. This is possibly an effect of
capacity planning since important VMs (e.g., a Web server VM
that needs to be continuously operating) needs to have excel-
lent response times. pMEM utilization shown in Figure 15(b)
seems to not be related as strongly to the on/off frequency of
the residing VMs.

C. Migration

1) VMs: The focus here is to identify if VMs with higher
resource utilization are subject to more frequent VM migra-
tion. As in the previous section, we focus on average resource
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Fig. 15. Average resource utilization vs. on/off frequencies on boxes.

Fig. 16. VMs’ average resource utilization v.s. migration frequencies.

utilizations as well as instantaneous (i.e., within the upcoming
15 minutes) resource utilizations. Figure 16 depicts the vCPU
and vMEM utilization values as a function of the VM migra-
tion frequency. The figure shows that CPU(memory) utilization
roughly increases from 6%(8%) to 9%(25%), as a function of

Fig. 17. Average resource utilization in boxes as a function of VM migrations.

the number of migrations. While average vCPU utilization val-
ues remain overall low, the 75% percentiles show a different
trend, i.e., there is a clear tendency for a good percentage of
VM utilizations to be high and be associated with the num-
ber of migrations. Average vMEM utilization values are more
strongly related with the number of migrations, as also are
percentiles. The observed utilization trends are clearly more
pronounced for vMEM rather than for vCPU.

We have also looked at the instantaneous differences in
resource utilization before and after migration, results are not
plotted here in the interest of space but can be summarized
as follows. VM resource utilization levels remain unchanged
after migration.

2) Boxes: Here, we focus on resource utilization of the
hardware boxes before/after migration to answer the follow-
ing questions: (1) do VMs migrate across boxes with similar
utilization levels, (2) what happens to the resource utiliza-
tion level of the source boxes, and (3) what happens to the
resource utilization level of the destination boxes. We first
focus on the average box resource utilizations changes as a
function of the number of migrations, see Fig. 17. The fig-
ure illustrates a clear trend in increasing pCPU utilization
with respect to VM migration frequencies: boxes that expe-
rience many migrations tend to be more utilized. The trends
for pMEM utilization show instead that the average number
of migrations per box is independent of its memory utiliza-
tion. In sum, the figure corroborates that migration is more
related to the box CPU utilizations rather than its memory
utilization.

We next focus on the instantaneous resource utilization dif-
ference split by time of migration. For each VM we plot the
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Fig. 18. Instantaneous resource utilization difference between source and
destination boxes, split by time: around midnight (MDNT) and away from
MDNT.

exact difference in resource utilization at the source and des-
tination hosts, see Figure 18, looking to see whether most
migrations occur toward more or less “busy” boxes. Since most
migrations happen around midnight, as seen in Section IV-C,
we distinguish migrations around midnight – 11 pm to 1 am –
from all other migrations. Positive numbers indicate that
migrations are toward less utilized boxes. Indeed, for both
categories the box plots (see the width between the 25% and
75% percentiles) indicate that the overall tendency is toward
migrations to less busy boxes. Nonetheless, for VMs that either
migrate a lot or migrate a lot but not on midnight, the average
tends to be zero. Comparing the midnight migrations versus
all others, we see that utilization differences are significantly
higher than those that occur during the day, hinting that these,
although pre-scheduled, aim to better load balancing. Better
pCPU (rather than pMEM) load balancing seems to drive these
migrations.

The next interesting question related to migration is what
happens to resource utilization levels of source and destina-
tion boxes, before and after VMs migrate in/out of them. In
Figure 19, we summarize the instantaneous pCPU/pMEM uti-
lization differences at the source and destination boxes, right
after a VM migration. Across both source and destination
boxes, we see that median utilization differences grow with
the VM migration frequency, especially for pCPU. Another
observation that is worth mentioning is that the values of
utilization differences in the source boxes are lower than des-
tination boxes, for both CPU and memory. Overall, there is a
clear tendency to “equalize” resource usage across boxes as a
function on migration activity.

VII. SUMMARY OF VM MANAGEMENT

The scope of our study here is in a way restricted by the
deluge of actual data, both a blessing and a curse. In this sec-
tion, we attempt to give an overview that summarizes most
aspects of VM management and resource usage. To this end,
we use the Pearson correlation coefficient, a simple mathe-
matical structure that projects the relationship of two data sets
into a single number that ranges from -1 to 1. Correlation
values greater than 0 imply that high/low values in one set
correspond to high/low values in the second set, respectively.
Negative values indicate that low/high values in one set corre-
spond to high/low values in the second set, respectively. Values
close to zero indicate independence among the two sets. Here,
we consider correlations among consolidation levels, on/off
frequencies, migration frequencies, CPU/memory allocations
and CPU/memory utilization. As some of the metrics are vary-
ing over the observation periods, such as consolidation levels,
resource allocation and utilizations, we use the average values
across time for each VM and box. Results are summarized in
Table III and IV that give the per VM and the per box view,
respectively.

The correlation coefficient values are rather low in Table III,
i.e., all values are less than 0.09, showing with a single number
what we have seen with the box-plots in the previous section:
VM activity is independent of VM resource requirements.

Table IV focuses on boxes and shows a more interesting
perspective from the point of view of resource management
and load balancing. Here, the correlation coefficients are sig-
nificantly higher. Looking at the first row of Table IV, it is
clear that there is a very strong positive correlation between
the number of VMs hosted on a box and every other reported
measure, from its hardware capacities to their utilizations and
VM activity. Boxes with high resource capacities tend to host
a high number of VMs that are very active. The number of
migrations is clearly strongly correlated with the box CPU
utilization, with migration been driven by resource manage-
ment and load balancing. Section VI-C also provides the same
perspective: box resource utilization is shown to be clearly
related to migration activity rather than on/off frequencies.
Finally, the last four rows of Table IV clearly show that
hardware capacities and utilizations are closely related to one
another: the number of CPUs strongly relate to boxes’ mem-
ory, larger boxes are less utilized than smaller ones, and CPU
and memory are naturally provisioned together.

VIII. RELATED WORK

In the past decade there has been a host of research focus-
ing on the development of robust virtualization technologies
and management policies. Virtualization-related works can
be roughly classified as those that focus on virtual resource
provisioning, those that focus on how to best consolidate appli-
cations with different workload characteristics, those that put
an emphasis on how to dynamically allocate resource capacity
to better meet changing user demands, and those that relate
to efficient ways to apply VM migration. In this section, we
give an overview of some representative works; an exhaustive
survey is not possible due to space restrictions.
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Fig. 19. Source and Destination boxes: instantaneous resource utilization before and after VM migrations.

TABLE III
VMS’ CORRELATION COEFFICIENT MATRIX: BASED ON THE AVERAGE VALUES OF

MIGRATION, ON/OFF, RESOURCE ALLOCATION AND UTILIZATION

TABLE IV
BOXS’ CORRELATION COEFFICIENT MATRIX: BASED ON THE AVERAGE VALUES OF

MIGRATION, ON/OFF, RESOURCE ALLOCATION AND UTILIZATION

Understanding the relationship of physical to virtual
resources is motivated by the need to accurately estimate
resource demand and allocate virtual resources to VMs,
which share or compete for the limited physical resources.
Lu et al. [7] propose a methodology that uses a directed
factor graph to model the multivariate dependence relation-
ships among different resources (CPU, memory, disk, network)
across virtual and physical layers. Wood et al. [8] use bench-
marks to understand how the CPU utilization of an application
is altered when moved from native to virtualized hardware,
and develop regression-based models that can predict the CPU
demand. Similar work is done in [9].

Consolidating different VMs on the same physical servers
and their performance interference has been the focus of many
works. Satisfying collectively the fluctuating capacity require-
ments of multiple VMs by best matching “peaks and valleys”
is addressed in [10] and [11]. The use of a control-theory
approach for sharing resources among competing VMs whose
SLOs or resource requirements fluctuate over time is reported
in [12]. A queuing-network based methodology uses workload
characteristics for predicting the performance of VM consoli-
dation [13] by classifying applications as CPU or IO intensive.
Wood et al. [14] propose a methodology for VM co-location
based on application memory access patterns. The commu-
nication pattern of applications can be also used to guide
VM consolidation [15]. Numerous works also address the
VM consolidation problem from the perspective of optimizing
power usage [16], [17].

The ability to migrate a VM to different hardware when
performance conditions deem it necessary provides additional
flexibility in resource allocation and consolidation in a data
center setting. Clark et al. [1] present a tool that can effectively
achieve live migration of executing applications and illustrates
the performance slowdown due to migration. A cost-sensitive
approach that considers the adaptation cost of migration in
multi-tier applications is given in [2]. A model that predicts
the duration of live migration and its impact on application
performance in a cloud setting is presented in [3]. Yet, the
conventional wisdom is that the cost of live migration is
high, therefore techniques that avoid such live migration are
preferable [18]. Gmach et al. [19] present a tool for con-
solidating workloads that evaluates whether a fixed-capacity
VM resource configuration is preferable to finer resource
sharing, and discuss the merits of re-consolidating workloads
after a fixed time period or using an automated consolidation
process.

The combination of VM consolidation and migration
yields various dynamic reconfiguration strategies. Proactive
resource provisioning based on time series analysis and
on forecasting combined with feedback control is proposed
in [20]. Multiple input-multiple output [21] and Kalman
filter-based [22] feedback controllers aware of multi-tier
applications are used for CPU resource provisioning. Genetic
algorithms can optimize VM consolidation [23], with a spe-
cial emphasis on the possibility of dynamic VM resource
capacity adjustments. Distributed artificial neural networks
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facilitate resource allocation [24], optimizing based on a cus-
tom utility function evaluated in cooperation among VMs.
The multi-dimensional nature of resource allocation naturally
leads to algorithms based on simulated annealing [25] and dis-
tributed plant growth simulation [26]. A dynamic optimization
framework for OpenStack [27] is developed [28], providing
a testbed for a diversity of configurable algorithms for VM
consolidation and resource allocation.

The intent of this paper is to present a detailed workload
study from corporate data centers and try to shed light on the
problems of configuring VMs’ virtual resources, VM liveness
and migration patterns. To the best of our knowledge, this
is the first workload characterization study on corporate data
centers that shows the current practice in VM configuration,
consolidation, liveness, and migration. The extent of the study
is what sets us apart from other related work: we do not report
the behavior of a small, experimental system in a laboratory
setting but instead we report on the actual usage patterns in
the corporate world.

IX. CONCLUSION

We present a detailed characterization study of virtualiza-
tion technologies in today’s data centers, based on vastly
diversified systems. We focus on how physical resources,
i.e., processors and memory, are shared by VMs through
virtual resources and give a summary of statistics describ-
ing physical hardware and VM configurations. Furthermore,
we show the common characteristics of VM lifetimes and
their migration patterns, including migration frequency and
transition probabilities across different physical servers. The
presented statistics provide an overview of how virtualiza-
tion technologies are used in practice. Our findings illustrate
that conservative approaches are the prevailing ones: i.e., most
of VMs never migrate, and those that migrate do not do so
often. In addition, VMs tend to migrate with specific spatial
patterns, i.e., the transition probabilities from certain physical
servers to certain others reflect strong affinities among physi-
cal servers. Distinct patterns are also found at times when the
majority of VMs are turned on and when they mostly migrate
(at midnight), pointing to the prevalence of routine applica-
tions (perhaps maintenance ones). We also reported on the
durations of VM on and off periods and saw that a significant
percentage of VMs are continuously on in contrast to those
that are switched on and off.

In this paper, we provided a generic view of how virtual-
ization technologies are utilized in contemporary data centers
in the private cloud. In the future, we intend to continue this
work and conduct a more detailed study that can shed more
light on differences and similarities across data centers used
by specific industries.
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