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Heritable Variation in Responsiveness to Photoperiod, 
Reproduction, and Immune Function in a Population of 

Peromyscus leucopus 
 

Abstract 

While neuroendocrine variation is presumed to be important for brain function 

and natural selection, very little is known about wild-source heritable variation. 

Within wild populations of rodents living in temperate zones, some individuals 

respond strongly to changes in environmental conditions, such as photoperiod, while 

others do not. Changes in photoperiod are assessed by changes in the duration of 

melatonin secretion. Melatonin affects many physiological processes, such as the 

stimulation or inhibition of reproduction, changes in body weight and food intake, 

and changes in immune function. Immune cells can respond to melatonin with 

circadian and seasonal changes in function.  

In this honors thesis, I tested whether differences in neuroendocrine signaling 

pathways that regulate reproduction are related to differences in immune function in 

both long-day and short-day photoperiods. For experimental subjects, I used two lines 

of wild-source Peromyscus leucopus that had previously undergone artificial 

selection for either strong reproductive response to short-day photoperiod or no 

response. I measured the amount of inflammation in response to a delayed-type 

hypersensitivity reaction on one of the pinnae of each mouse to measure immune 

function. In the Run 1, mice in the short-day photoperiod had significantly enhanced 

delayed-type hypersensitivity responses relative to mice in long-day photoperiod. In 

the data from Run 1, mice from the non-responsive line in short-day photoperiod had 
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significantly enhanced delayed-type hypersensitivity responses relative to mice from 

the responsive line. In the combined data from Runs 1 and 2, the effect of line on 

inflammation from the delayed-type hypersensitivity test was marginally 

insignificant. Previous studies indicate that the selection lines vary in seasonal 

reproductive phenotype and also have differences in neuroendocrine signaling 

pathways that regulate reproduction. My data indicate that the selection lines may 

also differ in the strength of immune response to a challenge, suggesting that the wild 

source population contains biologically significant heritable variation in this aspect of 

immune function.  

 

 

Introduction 

 

Neuronal variation in humans and nature 

Human populations are genetically diverse (Cheung and Spielman, 2002). 

This genetic diversity affects brain function and neuronal characteristics. These 

neuronal characteristics can cause differences in the regulation of neuroendocrine 

signaling pathways, which can alter fertility. Most populations of humans display at 

least some seasonal variation in birth rates (Lam and Miron, 1994, Bronson, 1995). 

This seasonal variation in fertility might be due to environmental factors, such as 

temperature, food availability, or photoperiod. These environmental factors affect the 

human reproductive axis, or the hypothalamic-pituitary-gonadal axis. The effects of 

photoperiod on fertility are well studied in nonhuman mammals, including hamsters 
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and sheep (Bronson, 1991, Malpaux et al., 1999). For humans living in temperate 

zones and higher latitudes, the timing of conception is correlated with photoperiod, 

with more conceptions occurring around the vernal equinox (Roenneberg and Aschof, 

1990).  

Humans evolved from equatorial African apes, so human reproductive 

systems have simian origins (Short, 1976, Martin, 2007). Ancestors of modern-day 

Homo sapiens may have lived in regions of Africa that were close to the equator or 

regions that were more southern (Bronson, 1995). Equatorial habitats would have 

little variation in photoperiod across seasons. In these habitats, being photoperiodic 

likely would make little difference in fitness (Bronson, 1995). In more temperate 

climates in southern Africa, however, photoperiod would vary across seasons. For 

these populations, it may increase fitness to be able to respond to changes in 

photoperiod (Bronson, 1995). While it is probable that environmental factors alter the 

fertility of modern humans, the effects of photoperiod are minor when compared to 

the effects of cultural factors (Bronson, 1995, Wehr, 1998, Fonken and Nelson, 

2011).  

Many other animals are photoperiodic (Dawson et al., 2001, Goldman, 2001, 

Malpaux et al., 2001). Photoperiodism can increase an organism’s fitness (Mousseau 

and Roff, 1987, Prendergast et al., 2001, Emerson et al., 2008). A change in 

photoperiod can serve as an early signal of future environmental conditions. For 

example, shortening photoperiod precedes the onset of winter and its associated 

environmental conditions, e.g. low temperature. Populations of animals also contain 

much genetic diversity (Reed and Frankham, 2001). Indeed, more genetic diversity 
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within a population increases the average fitness of its individuals (Reed and 

Frankham, 2003). Genetic diversity can affect different parts of the organism, 

including brain function and neuronal characteristics (Geschwind, 2000).  

 

Heritable variation in neuroendocrine signaling pathways  

Characteristics of neurons, such as their number, location, and connections, 

have the potential to alter brain function. If variable neuronal phenotypes increase or 

decrease an organism’s fitness, these characteristics can be selected for or against by 

natural selection. Through natural selection, brain function may become better 

adapted to the environment. Over time, natural selection can cause changes in 

characteristics of neurons within a population and within a species (Horton and 

Rowsemitt, 1992). This neuronal variation can result in variation in an organism’s 

regulation of physiological processes, such as reproduction, which can affect an 

organism’s survival. For example, neuroendocrine variation can affect how well 

organisms adjust in response to changes in the environment, such as photoperiod. 

Further, neuronal variation may be a source of heritable variation in life history 

strategies. The success of life history strategies determines which variants are more 

likely to occur in the next generation (Heideman, 2004). Responsiveness to 

environmental cues, such as changes in photoperiod that indicate the seasons, is an 

element of a life history strategy that can increase or decrease fitness, based on 

current environmental conditions (Pyter et al., 2005). However, selection may favor 

different life history strategies in different environmental conditions, in which case 
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there is no single optimal life history strategy. This variable selection results in the 

development and maintenance of heritable variation in life history strategies. 

Complicating our understanding of natural populations is the fact that all 

individuals live in a microgeographically heterogeneous environment that also 

changes with the seasons. Environmental conditions differ based on time and 

location. For example, in high latitudes in the Northern Hemisphere, winter is 

associated with different environmental conditions than summer (Bell, 1997, Mitton, 

2000). Because of the changes in environmental conditions, phenotypes and 

genotypes of individuals are favored or disfavored by selection depending upon what 

enhances fitness at each time and location. If environmental conditions are highly 

variable over time and space, phenotypes and genotypes can be highly variable as 

well (Nelson, 1987, Blank, 1992, Heideman et al., 2005). For example, a population 

of mice may live near a source of abundant food, such as an oak tree in an acorn mast 

year (a year of superabundant acorn production) (Gashwiler, 1979, Heideman et al., 

2005). In an acorn mast winter, mice could gather food quickly, reducing the risk of 

predation and conserving energy that would otherwise be expended to forage 

(Heideman et al., 2005). Mice in this habitat would have increased fitness if the 

individuals can reproduce all year, including during winter. However, in a year with 

scarce food, mice might have to forage for longer, which increases the risk of 

predation and the need for the energy that is used to forage (Heideman et al., 2005). 

In these alternative conditions, mice might have increased fitness if individuals do not 

remain fertile during winter. Unpredictable changes in environment maintain 

variation in phenotypes and genotypes that affect reproductive timing (Heideman et 
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al., 1999a). Additionally, phenotypic and genotypic variation can arise from mutation 

and genetic drift, as well as from variation in alleles that impact fitness very little.  

Heritable variation is complex, and not much is known about wild-source 

heritable variation in neuroendocrine signaling pathways (Smale et al., 2005). 

Traditional animal models, such as laboratory rats and mice, have been useful in 

discovering how the different parts neuroendocrine signaling pathways function as a 

system (Phoenix et al., 1959, Ebling, 2005). However, traditional animal models can 

inaccurately represent human populations or wild populations of other species (Smale 

et al., 2005). Wild populations can exhibit different behaviors or have variation in 

neuroendocrine pathways that is not observed in laboratory populations. Wild 

populations also have pressure from natural selection to eliminate alleles with even 

small negative effects, unlike laboratory populations.  

Many species inhabiting temperate zones conserve energy by limiting the 

amount of energy devoted to functions, such as reproduction, that are not essential to 

survival (Heideman and Bronson, 1990, Nelson et al., 1998, Martin et al., 2007, 

Kaseloo et al., 2012). To survive the winter, endotherms must dedicate more energy 

into homeostasis in order to maintain body temperature. However, there is less energy 

available, because available food is often limited. Additionally, obtaining food is 

more dangerous, because predation is more likely with an increase in the time 

necessary to forage for food (Bronson, 1991, Bronson and Heideman, 1994). The 

limited amount of energy and high demand on what energy is available exerts 

selective pressure on organisms to adapt to their environment. Therefore, it could be 

advantageous to anticipate the harsh conditions of winter (Moffatt et al., 1993, 
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Jacobs, 1996). The approach of winter can be predicted by recognizing a shortening 

photoperiod, a reliable indicator of approaching winter (Bronson and Heideman, 

1994, Ebling and Cronin, 2000). Exposure to short-day photoperiod can cause 

organisms to adjust their physiology to better survive the winter.   

 

Retinopineal pathway and melatonin 

Changes in day-length, or photoperiod, are detected by the 

photoneuroendocrine pathway. The pathway is well described in rodents (Ebling and 

Cronin, 2000, Prendergast et al., 2002). Variation in this pathway that causes variable 

reproductive phenotypes in response to winter (short-day) photoperiod occurs in 

many populations of rodents (Prendergast and Nelson, 2001).  This variation in the 

photoneuroendocrine pathway is used as a model to study heritable variation in the 

regulation of reproduction and other physiological processes (Ebling and Cronin, 

2000, Heideman, 2004).  

The photoneuroendocrine pathway begins when light activates photoreceptors 

in the retina. From the retina, the retinohypothalamic tract transduces the signal to the 

suprachiasmatic nucleus, which is part of the circadian clock that is essential to 

timekeeping and interpreting the light signal (Goldman, 2001). In mammals, the 

signal is carried to the paraventricular nuclei of the hypothalamus, then to the superior 

cervical ganglion, and then to adrenergic neurons in the sympathetic nervous system 

(Prendergast et al., 2002). From the sympathetic nervous system, the signal then 

travels to the pineal gland. The pineal gland releases melatonin only when the retino-

pineal pathway is inactive, i.e. when there is no light (Bartness et al., 1993, Goldman, 
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2001, Prendergast et al., 2002). By limiting the secretion of melatonin to when there 

is no light, or when it is dark, an organism has a reliable way to detect photoperiod 

and changes in season. 

The duration of melatonin secretion affects an organism’s physiology 

(Silverman, 1988, Bartness et al., 1993, Ebling and Cronin, 2000). Melatonin from 

the pineal gland binds to receptors on neurons in the hypothalamus, as well as 

melatonin receptors on many other types of cells, including immune cells. The 

hormones secreted from the hypothalamus travel through the circulatory system to 

target cells around the body, including other neuroendocrine organs in the brain. In 

particular, neurons in the hypothalamus secrete a hormone termed gonadotropin-

releasing hormone, which is considered to be the master regulator of reproduction in 

mammals. From the hypothalamus, gonadotropin-releasing hormone travels through 

the hypophyseal portal vein to the anterior pituitary gland. The anterior pituitary 

gland secretes hormones, including the gonadotropins luteinizing hormone and 

follicle-stimulating hormone, into the bloodstream. Gonadotropins bind to receptors 

on gonads to signal the gonads to mature and secrete sex steroids, such as estrogen 

and testosterone. The secretion of gonadotropins is regulated by negative and positive 

feedback loops. Testosterone inhibits the release of the gonadotropin hormones, 

partially by inhibiting the release of gonadotropin-releasing hormone from the 

hypothalamus (Bronson, 1981, Kalra and Kalra, 1983, Smith and Neill, 1987, 

Meredith et al., 1991, Freeman, 1994). 

Factors that affect reproduction can act directly or indirectly on neurons that 

secrete gonadotropin-releasing hormone (Sisk and Foster, 2004, Kriegsfeld et al., 
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2006, Wu et al., 2009, Smith et al., 2010). Glucocorticoid hormones, which are 

released during stressful situations, help to regulate the release of gonadotropin-

releasing hormone and fertility. Glucocorticoids are a product of the hypothalamic-

pituitary-adrenal axis, which affects the hypothalamic-pituitary-gonadal axis and thus 

the regulation of reproduction (Knol, 1991, Rivier and Rivest, 1991). The 

hypothalamus secretes corticotrophin-releasing hormone, which is transported 

through the hypophyseal portal vein to the anterior pituitary (Scott and Dinan, 1998). 

The anterior pituitary secretes adrenocorticotropic hormone, which is transported 

through the circulatory system to the adrenal gland. The adrenal gland secretes 

glucocorticoids, which bind to receptors within many types of cells within the body. 

The hypothalamic-pituitary-adrenal axis can be activated by stress, illness, physical 

exertion, or cues from the organism’s circadian clock (Manteuffel, 2002). The 

circadian clock is regulated in part by patterns of melatonin secretion.  

Melatonin (N-acetyl-5-methoxytryptamine) affects many physiological 

processes in the body, such as circadian entrainment and seasonal reproduction 

(Reiter, 1991, Morgan et al., 1994, Li and Witt-Enderby, 2000, Masson-Pevet et al., 

2000, Witt-Enderby et al., 2003). Melatonin activates at least two known G protein-

coupled receptors, known as MT1 and MT2 (Dubocovich and Markowska, 2005). 

These melatonin receptors can be found on cells in the central nervous system and 

other peripheral target cells. Melatonin receptor activation regulates reproduction 

through the action of gonadotropin-releasing hormone on the hypothalamus-pituitary-

gonadal axis.  
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Melatonin also directly and indirectly affects the adrenal gland and the daily 

rhythm of glucocorticoid secretion (Son et al., 2011). In humans, the concentration of 

plasma glucocorticoids typically reaches a peak during early morning and a nadir 

around midnight (Friess et al., 1995, Knutsson et al., 1997). Additionally, the 

concentration of plasma glucocorticoids can vary from season to season (Al-Busaidi 

et al., 2008). In addition to affecting reproduction, glucocorticoids also affect immune 

function (Segerstrom and Miller, 2004). With glucocorticoid deficiency, the immune 

system cannot properly regulate itself (Karalis et al., 1997). When faced with an acute 

or chronic stressor, the concentration of plasma glucocorticoids increases. Acute 

stress lasting a few minutes enhances some components of natural immunity while 

suppressing other components of specific immunity (Segerstrom and Miller, 2004). 

Chronic stress suppresses both cellular and humoral immunity. Immunity is further 

affected when glucocorticoids interact with the secretion and efficacy of other 

hormones, such as melatonin. With the inhibition of the secretion of melatonin by 

circadian disruption, concentrations of plasma glucocorticoids become elevated 

(Wright Jr et al., 1997a, Wright Jr et al., 1997b, Spiegel, 1999, Redwine et al., 2000, 

Shearer et al., 2001, Hu et al., 2010). Because melatonin interacts with the immune 

system via glucocorticoids and other inputs, it is possible that heritable variation in 

photoperiod-dependent reproduction is correlated with heritable variation in 

photoperiod-dependent immune function. 

Melatonin is known as an important regulator of the immune system as well 

as reproduction (Skwarlo-Sonta et al., 2003). Inhibiting melatonin secretion via a 

surgical or functional pinealectomy is correlated with a decrease in mass of immune 
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organs, such as the thymus or spleen (Carrillo-Vico et al., 2005). Pinealectomies are 

also correlated with impaired humoral and cellular immune function. When a subject 

is given additional melatonin, the number of types of immune cells, such as natural 

killer cells and monocytes, increases. Melatonin also enhances antigen presentation 

by macrophages and the expression of major histocompatibility complex class II 

molecules. Melatonin upregulates the gene expression of different cytokines, 

including many that stimulate cell proliferation.  

 

Photoperiodism and immune function 

Stressors from the environment, such as temperature and the accessibility of 

food, shelter, and water, can vary from season to season. In temperate zones, winters 

are usually harsher than summers because of low temperatures and limited food 

availability (Lack, 1954, Ross et al., 1989, Afoke et al., 1993). Even though access to 

food is limited, endotherms must use more energy in the winter to keep body 

temperature high enough to survive. Some individuals in short-day photoperiod 

(typical of winter), in addition to suppressing reproduction, have a reduced body 

mass, possibly to require less food to survive (Steinlechner and Heldmaier, 1982, 

Knopper and Boily, 2000). Energy usually dedicated to non-essential processes, such 

as reproduction, can be redirected to processes, such as immune function, that are 

immediately necessary for survival (Heideman and Bronson, 1990, Nelson et al., 

1998).  

Adjustments of immune function in anticipation of the changing season can be 

critical for survival. In order to survive the winter, animals must be able to conserve 
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energy as much as possible without hindering fitness. Because of limited food 

availability in winter, immune function can be compromised in the wild. However, in 

laboratory populations of photoperiodic animals, immune function can be enhanced 

in winter-like short days because food is given ad libitum while temperatures in the 

laboratory are maintained at approximately 23°C (Demas and Nelson, 1996, Demas 

and Nelson, 1998, Nelson et al., 1998).   

 

Sex steroids, immune function and changes in photoperiod 

In a study from a different laboratory, the amount of inflammation resulting 

from a delayed-type hypersensitivity reaction was not affected in gonadectomized 

hamsters relative to control hamsters (see Figure 1) (Prendergast et al., 2005). The 

amount of inflammation resulting from a delayed-type hypersensitivity reaction also 

was not significantly different in gonadectomized hamsters that were given additional 

testosterone via Silastic implants relative to gonadectomized hamsters that were not 

given exogenous testosterone (Prendergast et al., 2005). Additional studies have 

found that melatonin (Nelson and Drazen, 2000), not sex steroids (Demas and 

Nelson, 1998), mediates the change in immune response in short-day photoperiod. 

While sex steroids have not been shown to have a significant effect on the delayed-

type hypersensitivity reaction, other parts of the immune system may be enhanced, 

like antibody production (Bilbo and Nelson, 2001). However, this may be isolated to 

only certain species, such as the Siberian hamster (Bilbo and Nelson, 2001). Many 

studies are inconsistent with each other, so the relationship between sex steroids and 

the immune system remains unclear (Seaman and Gindhart, 1979, Grossman, 1985, 
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Moshkin et al., 2003, Cutolo et al., 2004, Bouman et al., 2005). Additionally, the 

hypothalamic-pituitary-gondal axis and the immune system are both affected by the 

hypothalamic-pituitary-adrenal axis and its secretion of glucocorticoids (Da Silva, 

1999).  

 
FIGURE 1. Measurements of inflammation induced by delayed-type hypersensitivity 
in male Siberian hamsters that (A) had undergone a sham-castration surgery, (B) 
were castrated, and (C) were castrated and received exogenous testosterone via a 
subcutaneous Silastic implant. Figure from (Prendergast et al., 2005). 

 

Sex did have a significant effect on the amount of inflammation from a 

delayed-type hypersensitivity reaction in Siberian hamsters, but the delayed-type 

hypersensitivity response was only significantly enhanced in females under stressful 

conditions in long-day photoperiod (Bilbo and Nelson, 2003). Interspecies variation 

in the effects of sexual dimorphism on the immune system may be more or less 

pronounced if the species used was photoperiodic. 
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Model organism 

Populations of Peromyscus leucopus, the white-footed mouse, live from 

southeastern parts of Canada to southern Mexico and the eastern shore of the United 

States of America to Arizona and the Great Plans states (King, 1968, Jones and 

Birney, 1988, Kirkland and Layne, 1989, Heideman, 2004). Peromyscus leucopus 

live in a variety of habitats but are usually found in forests in warm and dry climates 

and brushlands. Home ranges for these mice can be as large as 1 hectare. The average 

mouse’s length ranges from 150 to 205 millimeters and weight varies from 15 to 25 

grams (Heideman, 2004). Peromyscus leucopus looks similar to closely related 

species, such as Peromyscus maniculatus, with a pale to full reddish brown dorsum 

and white belly and feet. In higher latitudes, Peromyscus leucopus is a seasonal 

breeder. Both males and females are promiscuous. In the wild, mice are 

reproductively mature at 2.5 months of age. Peromyscus leucopus females near 

Virginia have approximately 2 litters every year, with and average of 4 pups in each 

(Kirkland and Layne, 1989). White-footed mice can become reproductively 

suppressed in winter in response to photoperiodic cues (Heideman et al., 1999a). 

Mice can also become reproductively suppressed in early summer (Terman, 1998) 

The mice may be reproductively suppressed because of stress from helminthic 

infections, as helminthic infections are more prevalent during early summer (Terman, 

1998, Vandegrift et al., 2008).  The mice have well-developed senses of sight, 

hearing, smell and touch (especially through their vibrissae, or ‘whiskers’). White-

footed mice are omnivorous and can eat seeds, nuts, berries, grains, fruit, insects, and 
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fungi (Heideman, 2004). Peromyscus leucopus are nocturnal, which helps them avoid 

diurnal predators, including many species of snakes and birds of prey.  

Individuals of Peromyscus leucopus within one population can vary in the 

degree of responsiveness to photoperiod (Lynch and Gendler, 1980, Heideman and 

Bronson, 1991, Heideman et al., 1999a). Some individuals become reproductively 

suppressed in short-day photoperiod by displaying gonadal regression or having 

significant delays in the development of reproductive organs. Other individuals are 

non-responsive to changes in photoperiod and remain fertile when exposed to short-

day photoperiod. This variation in response to photoperiod has been observed in wild 

Peromyscus leucopus (Terman, 1998) and in the same population in the laboratory 

(Heideman et al., 1999a). Most individuals within a population have an intermediate 

response, but a few exhibit either a strong response to photoperiod or no response at 

all. The range of possible photoperiodic phenotypes indicates that these populations 

can have heritable variation in the photoneuroendocrine pathway and the regulation 

of reproduction (Heideman and Bronson, 1991, Heideman et al., 1999a, Prendergast 

and Nelson, 2001).  

Species within the Peromyscus genus vary in immune function (see Figures 2 

and 3) (Martin et al., 2007). Variation in energy allocation into different immune 

defenses is a life history strategy (Lochmiller and Deerenberg, 2000, Bonneaud et al., 

2003). In one environment, it may be advantageous to invest in non-specific but 

broadly effective immune defenses, such as the bacterial killing capacity of the innate 

immune system. In another environment, it may be advantageous to invest in specific 

but energetically costly immune defenses. According to this study, Peromyscus 
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leucopus exhibit a relatively weak response to delayed-type hypersensitivity (Figures 

2 and 3) but have serum with a strong capacity to kill bacteria (measured in vitro, 

Figure 3). However, the study is only representative of one population of Peromyscus 

leucopus. While the mice used in Martin et al, 2007 were founded with Peromyscus 

caught from the wild, the different species of mice were maintained in the 

Peromyscus Genetic Stock Center at the University of South Carolina. The original 

founder populations were caught many years prior, i.e. in the years between 1948 and 

1986 (“Wild Type Stocks”) , and may differ in significant ways from populations of 

Peromyscus in the wild (Smale et al., 2005).  
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FIGURE 2. The (a) maximum and (b) aggregate inflammation induced by a delayed-
type hypersensitivity reaction in Peromyscus species. Figure from (Martin et al., 
2007).  
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FIGURE 3. A scatterplot generated with principle components analysis of data 
measuring immune function in Peromyscus species. DTH represents delayed-type 
hypersensitivity. Peromyscus leucopus is highlighted for emphasis. Figure from 
(Martin et al., 2007). 
 

Selection lines 

Initiated in 1995, Heideman et. al. (1999) used artificial selection to form two 

lines of wild-source Peromyscus leucopus, and these lines have been maintained to 

the present. One line strongly responds to changes in photoperiod by becoming 

reproductively suppressed in short-day photoperiod (responsive selection line). The 

other line is not reproductively suppressed in short-day photoperiod and thus remains 

fertile regardless of the photoperiod (non-responsive selection line). In a previous 

study, female mice in the non-responsive line had higher circulating levels of 

luteinizing hormone than female mice in the responsive line (Heideman et al., 2010). 

Additionally, mice from the non-responsive line had evidence for significantly more 
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neurons that secrete gonadotropin-releasing hormone and more iodomelatonin 

binding in the medial preoptic area and the bed nucleus of the stria terminalis 

(Heideman et al., 1999b, Avigdor et al., 2005, Heideman et al., 2007). Mice from the 

non-responsive line have been reported to consume more food than mice in the 

responsive line (Heideman et al., 2005, Reilly et al., 2006, Heideman and Pittman, 

2009), but these findings have not always been replicated in more recent unpublished 

studies possibly due to a smaller sample size (Heideman, unpublished data).  

 

Methods 

Delayed-type hypersensitivity is a measure of antigen-specific cell-mediated 

immunity in vivo (Turk, 1980, Dhabhar and McEwen, 1999). The delayed-type 

hypersensitivity reaction begins with the first exposure to the antigen, which initiates 

the period of sensitization (Figures 4 and 5) (Benjamini and Leskowitz, 1988, 

Murphy, 2012). The hapten, 2,4-dinitro-1-fluorobenzene in this experiment, is taken 

into Langerhans cells (antigen-presenting dendritic cells) via endocytosis, where it 

then alters the gene expression of major histocompatibility complex receptors (Sachs, 

1976, Becker et al., 1992). The hapten-presenting Langerhans cells then bind to 

inactive T cells. The T cells are activated when bound to both the receptors from the 

Langerhans cells and specific cytokines released from cells in the surrounding 

environment (Gorbachev and Fairchild, 2001). The activated population of T cells 

specific to the antigen grows and begins circulating through the lymphatic system.  

After 1 to 2 weeks, the immune system is again exposed to the antigen 

(Figures 4 and 6) (Murphy, 2012). The antigen is presented to the antigen-specific T 
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helper 1 cells by major histocompatibility complex class II dendritic cells. The 

cytokine interleukin-1, which activates the T cell, is secreted by other T lymphocytes, 

macrophages, or dendritic cells. T helper cells differentiate into T helper 1 cells, T 

helper 2 cells, T helper 17 cells, and T regulatory cells. T cells begin to grow in size, 

proliferate, and differentiate into various types of T cells, including T helper cells. 

Activated T helper cells secrete cytokines. Some cytokines attract other immune cells 

to the affected area and facilitate their passage from capillaries into the interstitial 

fluid. Other lymphokines activate monocytes and signal the proliferation of T cells. 

Activated monocytes mature into macrophages that phagocytize the antigen. 

Macrophages can degrade the immunogenic antigen or pathogen, and if it is not easily 

degraded, macrophages can form granulomas to isolate and sequester the antigen 

from other cells in the body. With the influx of immune cells and fluid into the 

affected area, the tissue becomes inflamed. There is a positive correlation between the 

amount of inflammation due to an antigenic challenge and the strength of the immune 

response, so the delayed-type hypersensitivity reaction can be used to measure 

immune function (Phanuphak et al., 1974).  
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FIGURE 4. Legend for Figures 2 and 3, depicting the sensitization phase and the 

elicitation phase of a delayed-type hypersensitivity reaction 
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FIGURE 5. The steps occurring the sensitization phase of a delayed-type 

hypersensitivity reaction.  
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FIGURE 6. The steps occurring during the elicitation reaction of a delayed-type 

hypersensitivity reaction.  
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Hypotheses and predictions 

To summarize the critical findings from above, natural selection in a changing 

environment leads to genetic variation in neuroendocrine signaling pathways in 

natural populations of Peromyscus leucopus. In stressful environmental conditions, an 

organism may need to reallocate energy resources from processes not essential to 

immediate survival, including reproduction, to processes that are essential to survival, 

such as homeostasis and immunity. Organisms can anticipate the stressful conditions 

of the winter season by responding to the shortening of the photoperiod. Our two 

selection lines of Peromyscus leucopus represent two naturally occurring extreme 

phenotypes: strong reproductive responsiveness to photoperiod and slight 

reproductive response to photoperiod. Previous studies have indicated that the lines 

vary genetically in the way that the neuroendocrine pathway that regulates 

reproduction. Much is still unknown about differences between the lines. Non-

reproductive physiological systems, such as the immune system, that share common 

neuroendocrine regulation with fertility may have heritable variation as well.  

In this thesis, I test the hypotheses: 

1. The strength of the immune response to a delayed-type 

hypersensitivity reaction varies in response to changes in photoperiod 

because mice experience different immunological challenges with the 

changing seasons and photoperiod is a predictor and indicator of 

season. The null hypothesis is that immune function does not change 

in response to photoperiod.  



 25 

2. There is variation in the strength of the immune response to a delayed-

type hypersensitivity reaction that is related to the heritable variation 

observed in our artificial selection lines of wild-source white-footed 

mice, Peromyscus leucopus. The strength of the immune response 

would vary because the lines of mice vary in neuroendocrine traits, 

such as the number of neurons that gonadotropin-releasing hormone, 

that would alter how the immune system is regulated. The null 

hypothesis is that there is no difference in immune function between 

the two selection lines.  

Based on these hypotheses, I predicted: 

1. Mice in short-day photoperiod would have a stronger response to the 

delayed-type hypersensitivity test than those in long-day photoperiod 

because a higher proportion of resources is allocated to immune 

function in winter.  

2. In mice in short-day photoperiod, mice from the responsive line would 

have a stronger response to the delayed-type hypersensitivity test than 

mice from the non-responsive line because mice in the non-responsive 

line in short-day photoperiod allocate a portion of the resources to 

reproduction, while mice in the responsive line can allocate those 

resources to the immune system.  
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Materials and Methods 

Generation of selection lines 

Mice were taken from a wild-source laboratory colony housed at the 

Population and Endocrinology Laboratory at the College of William and Mary. In 

1995, forty-eight wild mice were caught as founders for the laboratory population at 

latitude 37°16’N near Williamsburg, VA (Heideman et al., 1999a). The mice were 

paired in long-day photoperiod (16 hours of light, 8 hours of dark). Offspring were 

the parental population used to begin the selection lines. To establish responsive and 

non-responsive lines, the parental generation was raised in short-day photoperiod (8 

hours of light, 16 hours of dark) from birth. Mice were inspected at 70 ± 3 days of age 

to determine reproductive indices (Heideman et al., 1999a). Indices for males were 

based on testis size – volume was estimated by multiplying the length by width of the 

testis. Males with a testis index less than 24 mm2 were sorted into the responsive line, 

and males with a testis index of greater than 32 mm2 were sorted into the non-

responsive line. Reproductive indices for females were determined by laproscopically 

measuring the size of the ovaries, uterine diameter, and presence or lack of 

observable corpora lutea. Females that had ovaries that were less than 2 mm in length, 

lacked observable corpora lutea, and had a uterus with a diameter of less than 0.5 mm 

were sorted into the responsive line. Females with ovaries that were greater than 

approximately 3.5 mm in length, large observable follicles or corpora lutea, and a 

uterus with a diameter of greater than 1 mm were sorted into the non-responsive line. 

Responsive males and females were paired in long-day photoperiod to begin the 

responsive line, and non-responsive mice were paired to begin the non-responsive 
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line. For multiple generations, selection was imposed on offspring to develop the 

responsive and non-responsive lines.  

 

Experimental design 

For the first run of this experiment, thirty-two mice labeled as male were used 

from both the responsive and non-responsive lines and long-day and short-day 

photoperiod. Mice were individually housed after weaning. The four treatment groups 

were as follows: responsive in long-day photoperiod, non-responsive in long-day 

photoperiod, responsive in short-day photoperiod, and non-responsive in short-day 

photoperiod. Mice were between 32 and 160 days old (birth to Day 0), with the mean 

and standard deviation being 102.4 ± 38.5 days. The mice from the responsive line 

were significantly younger than the mice from the non-responsive line.  

 For the second run of the experiment, thirty-two mice were used, sixteen 

males and sixteen females that had been housed separately after weaning, and 

separated into four treatment groups as above. Mice were between 69 and 190 days 

old, with the mean and standard deviation being 120.3 ± 32.4 days. The mice in short-

day photoperiod were significantly younger than the mice in long-day photoperiod. 

 

Delayed-type hypersensitivity 

On day 0, mice were anesthetized with isoflurane and a small area was shaved 

on the dorsum (timeline in Figure 7). I applied twenty-five microliters of a 2,4-

dinitro-1-fluorobenzene solution (0.5% weight/volume 2,4-dinitro-1-fluorobenzene 

and 4:1 acetone/olive oil vehicle; Sigma) on days 0 and 1. On day 8, the mice were 
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anesthetized and the thickness of both pinnae of each mouse was measured with a 

thickness gauge to establish a baseline (Mitutoyo, Tokyo; Figure 7). Twenty 

microliters of another 2,4-dinitro-1-fluorobenzene solution (0.2% weight/volume 2,4-

dinitro-1-fluorobenzene and 4:1 acetone/olive oil vehicle) was applied to the left 

pinna of the mouse. Twenty microliters of a control solution (4:1 acetone/olive oil 

vehicle) was applied to the right pinna. The thickness of each pinna was measured 

from day 8 to day 13 at 1300 h EST, and all measurement were made in 

approximately the same location on the pinna (Figure 7). 

 

Adverse reaction in Run 2 

 Near the end of Run 2, the non-responsive mice in long-day photoperiod had 

an apparent adverse reaction to the 2,4-dinitro-1-fluorobenzene, beginning on Day 3 

after the elicitation reaction of the delayed-type hypersensitivity. The left (treated) 

pinna of affected individuals became stiff. Superficially, it appeared to be similar to 

the effect of loss of blood supply to a thin tissue layer and subsequent desiccation. 

This reaction almost exclusively affected the mice from the non-responsive line in 

long-day photoperiod; 7 out of 8 mice in the non-responsive, long-day group were 

affected, 1 out of the 8 mice in the responsive, long-day group, and none of the mice 

in short-day photoperiod were affected. All mice had been treated with the same 

solution, and the order of the treatment and handling of mice from the two lines had 

been randomized for all treatments and measurements. Members of the laboratory of 

Randy Nelson at Ohio State University were consulted, but they had never 
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encountered this problem before (Tracy Bedrosian, personal communication) and not 

has it been observed previously in our laboratory.  

 

Body mass, food intake, reproductive organs 

The mice were weighed on day 0 and day 14 (Figure 7). The food in the food 

hopper of each mouse was weighed on day 0, day 8, and on the final day (day 14 for 

the first run and day 15 for the second run). On the final day, the mice were 

euthanized and their reproductive organs were extracted and weighed. Food intake 

data from mice that ate more than 6 g/day were excluded from analyses, as previous 

results suggest that higher amounts generally indicated food that is ground by mice 

but not eaten. 

 

 

 

FIGURE 7. A diagram outlining the timeline for all procedures and measurements 

during Run 1. 
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Data analysis 

 Analyses were done using the R statistics software on a Macintosh computer. 

In Run 1, because the responsive line was significantly younger than the non-

responsive line, age was included as a variable in analyses. In Run 2, the mice in 

short-day photoperiod were significantly younger than the mice in long-day 

photoperiod, and age was again included in the analyses. All analyses also included 

photoperiod, line, and the interaction between line and photoperiod.  

 

Results 

 

 

FIGURE 8. Mean (± standard error of the mean) daily food intake from mice in each 

treatment group in Run 1 (A), Run 2 (B), and the combined data (C); p < 0.05. 
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FIGURE 9. Mean (± standard error of the mean) body mass of mice in each 

treatment group in Run 1 (A), Run 2 (B), and the combined data from Run 1 and Run 

2 (C); p < 0.05. 
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FIGURE 10. Mean (± standard error of the mean)  weight of testes mass from male 

mice in each of the four treatment groups from Run 1(A), Run 2 (B), and the 

combined data (C); p < 0.05.  

 

 

Run 1 

 

Delayed-type hypersensitivity 

With a two-way within-subjects ANOVA, the effect of photoperiod on 

inflammation was highly significant (F = 7.05, p < 0.01), whereas the effects of line 

and the interaction of photoperiod and line were not significant (F = 0.199 and 0.356; 

p = 0.66 and 0.55, respectively; Figure 11). When analyzing mice only from short-
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day photoperiod, the effect of line on inflammation was significant using a one-way 

within-subjects ANOVA (F = 7.05; p = 0.01). In long-day photoperiod, the effect of 

line on inflammation was not significant using a one-way within-subjects ANOVA (F 

= 0.73; p = 0.40).  

 

 

FIGURE 11. Delayed-type hypersensitivity responses in the 4 groups of mice. Data  

expressed as mean (± standard error of the mean) of the percent difference between 

the thickness of the treated ear that day and the thickness of the ear on Day 0. Error 

bars represent the standard error of the mean; p < 0.05. 
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Line 

Photoperiod Age (days) Body mass (g) 

Daily food 

intake (g) Testes mass (mg) 

Responsive, 

Long Day   67.8 ± 38.1 A  28.0 ± 15.4 A 3.79 ± 0.46  366.1 ± 328.4 A 

Non-responsive, 

Long Day 113.9 ± 35.8 B  22.4 ±   4.5 A 4.03 ± 1.20  524.1 ± 202.6 B 

Responsive, 

Short Day   81.5 ± 40.2 A  17.8 ±   3.7 B 3.50 ± 0.87    82.0 ±   57.3 C 

Non-responsive, 

Short Day 119.0 ± 26.2 B  21.6 ±   4.0 A 3.27 ± 1.04  322.5 ± 186.5 A 

 

TABLE 1. Mean (± standard deviation) of age (days), body mass (g), daily food 

intake (g), and testes mass (mg) for the mice from the four treatment groups in Run 1.  

 

Food intake 

Food intake was not affected by line (F = 0.02; p = 0.88), photoperiod (F = 

1.92; p = 0.18), or their interaction (F = 0.267; p = 0.61; Table 1 and Figure 8). 

 

Age 

Age varied with line (F = 10.53; p = 0.003) but not photoperiod (F = 0.49; p = 

0.49) or the interaction between line and photoperiod (F = 0.10; p = 0.76; Table 1). 

The responsive line was significantly younger.  
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Body mass 

Body mass was not affected by the interaction between photoperiod and line 

(F = 3.32; p = 0.08), line (F = 0.02; p = 0.80), or photoperiod (F = 2.63; p = 0.12) 

using a two-way ANCOVA (Table 1 and Figure 9). In short-day mice, the effect of 

line on body mass was marginally insignificant (F = 3.68; p = 0.08). 

 

Reproductive organs 

Only mice labeled as male were used in Run 1. Using a two-way ANOVA, 

testes mass varied with photoperiod (F = 7.37; p = 0.014) and line (F = 6.87; p = 

0.017) but not the interaction between line and photoperiod (F = 0.22; p = 0.65; Table 

1 and Figure 10). 

 

 

Run 2 

 

Delayed-type hypersensitivity 

One treatment group, non-responsive long-day, had an adverse reaction to the 

2,4-dinitro-1-fluorobenzene and the data from several days of ear measurements had 

to be discarded (Figure 12). Only short-day mice are discussed further in relation to 

delayed-type hypersensitivity (Figure 13). Inflammation was not affected 

significantly by line (one-way within-subjects ANOVA; F =1.88; p = 0.17). 
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Inflammation was not affected by daily food intake (F = 2.77; p = 0.10), body mass 

(F = 0.87; p = 0.36), or age (F = 2.34; p = 0.13).  

 

 

FIGURE 12. Delayed-type hypersensitivity responses in the 4 groups of mice. Data 

expressed as mean (± standard error of the mean) of the percent difference between 

the thickness of the treated ear that day and the thickness of the ear on Day 0 in Run 

2 for all data points (A) and Run 2 data with elimination of mice with affected ears 

(B).  
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FIGURE 13. Delayed-type hypersensitivity responses in the mice from Run 2 that 

were housed in short-day photoperiod. Data expressed as mean (± standard error of 

the mean) of the percent difference between the thickness of the treated ear that day 

and the thickness of the ear on Day 0. 
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Line 

Photoperiod Age (days) 

Body mass 

(g) 

Daily food 

intake (g) 

Responsive, 

Long Day 141.0 ± 40.3 A 26.2 ± 3.9 A 3.27 ± 0.56 

Non-responsive, 

Long Day 124.7 ± 24.9 A 21.8 ± 4.4 B 3.23 ± 0.81 

Responsive, 

Short Day   92.6 ± 23.5 B 16.6 ± 4.1 B 3.06 ± 0.95 

Non-responsive, 

Short Day 124.8 ± 25.3 A 21.2 ± 7.0 B 2.92 ± 0.98 

 

TABLE 2. Mean (± standard deviation) of age (days), body mass (g), and daily food 

intake (g) for the mice from the four treatment groups in Run 2.  

 

Line 

Photoperiod Testes (mg) Uterus (mg) Ovaries (mg) 

Responsive, 

Long Day 260.8 ±   62.4 AC   55.8 ± 17.1 A_ 10.1 ± 2.62 

Non-responsive, 

Long Day 439.5 ±   53.9 B_ 110.6 ± 32.5 B_ 10.9 ± 3.11 

Responsive, 

Short Day 30.6 ±     5.5 A_   14.1 ± 13.9 C_   5.2 ± 2.21 

Non-responsive, 

Short Day 323.1 ± 204.8 B_   39.9 ± 14.5 AC 10.3 ± 5.66 

 

TABLE 3. Mean (± standard deviation) of testes mass (mg), uterine mass (mg), and 

mass of the ovaries (mg) for the mice from the four treatment groups in Run 2.  
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Food intake 

Food intake was not affected by line (F = 0.06; p = 0.82), photoperiod (F = 

0.75; p = 0.39), or their interaction (F = 0.03; p = 0.86; Table 2 and Figure 8). 

 

Age 

Age varied with photoperiod (F = 4.95; p = 0.03) and the interaction between 

line and photoperiod (F = 5.66; p = 0.02) but not line (F = 0.88; p = 0.36; Table 2). 

Mice from the short-day photoperiod (108.7 ± 28.8 days) were significantly younger 

than those from the long-day photoperiod (131.8 ± 32.4 days).  

 

Body mass 

Body mass varied with photoperiod (F = 7.36; p = 0.01) and the interaction 

between line and photoperiod (F = 6.20; p = 0.02) but not line (F = 0.05; p = 0.82; 

Table 2 and Figure 9). Mice from the long-day photoperiod (23.8 ± 4.7 g) weighed 

more than those of the short-day photoperiod (18.9 ± 6.0 g). Body mass also varied 

with age (F = 5.93; p = 0.02).  

 

Reproductive organs 

Using a two-way ANOVA, testes mass varied with line (F = 10.06; p = 0.01) 

but not the interaction between line and photoperiod (F = 0.56; p = 0.47; Table 3 and 

Figure 10). The effect of photoperiod was marginally insignificant (F = 4.75; p = 

0.052). Uterine mass varied with line (F = 13.37; p = 0.004) and photoperiod (F = 

27.29; p = 0.0002) but not the interaction between line and photoperiod (F = 1.95; p = 
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0.19; Table 3). The mass of the ovaries was not affected by line (F = 2.31; p = 0.16), 

photoperiod (F = 3.27; p = 0.10), or their interaction (F = 1.42; p = 0.26; Table 3). 

 

 

Combined data from Run 1 and Run 2 

 

Delayed-type hypersensitivity 

Because the delayed-type hypersensitivity results from non-responsive long-

day group from Run 2 had to be discarded, only short-day mice were used for the 

analysis in this section. In a two-way within-subjects ANOVA with line and run as 

independent variables, the effect of line on the amount of inflammation from the 

delayed-type hypersensitivity response was marginally insignificant (F = 3.15; p = 

0.08; Figures 14 and 15). The effect of run on the amount of inflammation from the 

delayed-type hypersensitivity response was insignificant (F = 2.42, p = 0.12). 
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FIGURE 14. Delayed-type hypersensitivity responses in the 4 groups of mice in 

short-day photoperiod. Data expressed as mean (± standard error of the mean) of the 

percent difference between the thickness of the treated ear that day and the thickness 

of the ear on Day 0.  

 

FIGURE 15. Delayed-type hypersensitivity responses in the responsive and non-

responsive lines of the combined data in short-day photoperiod. Data expressed as 

mean (± standard error of the mean) of the percent difference between the thickness 

of the treated ear that day and the thickness of the ear on Day 0.  
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Line 

Photoperiod Age (days) Body mass (g) 

Daily food 

intake (g) Testes mass (mg) 

Responsive, 

Long Day 110.5 ± 53.2 A 27.0 ± 9.76 A 3.44 ± 0.56 331.0 ± 261.6 AC 

Non-responsive, 

Long Day 118.8 ± 31.1 B 22.1 ± 4.35 B 3.61 ± 1.06  487.8 ± 158.4 A_ 

Responsive, 

Short Day   87.9 ± 30.8 A 17.1 ± 3.85 C 3.24 ± 0.99    67.3 ±   53.2 B_ 

Non-responsive, 

Short Day 121.9 ± 25.2 B 21.4 ± 5.39 B 3.08 ± 0.99  322.8 ± 184.9 C_ 

 

TABLE 4. Mean (± standard deviation) of age (days), body mass (g), daily food 

intake (g), and testes mass (mg) for the mice from the four treatment groups in the 

combined data from Run 1 and Run 2.  

 

 

Food intake 

Food intake was not affected by line (F = 0.01; p = 0.91) or the interaction 

between line and photoperiod (F = 0.39; p = 0.54; Table 4 and Figure 8). The effect 

of photoperiod on daily food intake was insignificant (F = 2.35; p = 0.13; sample 

sizes = 28 and 31, Cohen’s d = 0.429, effect size r = 0.210, power = 0.366).  

 

Age 

Age varied with line (F = 6.14; p = 0.02) but not photoperiod (F =  0.70; p = 

0.41) the interaction between line and photoperiod (F = 2.12; p = 0.15; Table 4). Mice 
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from the short-day photoperiod (108.7 ± 28.8 days) were significantly younger than 

those from the long-day photoperiod (131.8 ± 32.4 days). Mice from the responsive 

line (98.3 ± 43.3 days) were significantly younger than those from the non-responsive 

line (120.3 ± 28.1 days).  

 

Body mass 

Body mass varied with photoperiod (F = 8.93; p = 0.004) and the interaction 

between line and photoperiod (F = 9.20; p = 0.004) but not line (F = 0.01; p = 0.93; 

Table 4 and Figure 9). Mice from the long-day photoperiod (24.0 ± 7.1 g) weighed 

more than those of the short-day photoperiod (19.5 ± 5.2 g). Body mass also varied 

with age (F = 4.15; p = 0.05). 

 

Reproductive organs 

Only mice labeled as male were used in Run 1, and so measures of testes mass 

were relevant when combining the data from Run 1 and Run 2. Using a two-way 

ANOVA, testes mass varied with photoperiod (F = 12.31; p = 0.0013) and line (F = 

14.48; p = 0.0006) but not the interaction between line and photoperiod (F = 0.68; p = 

0.42; Table 4 and Figure 10). 
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Discussion  

In the introduction, I hypothesized that the strength of the immune response 

varies in response to changes in photoperiod because mice experience different 

immunological challenges with the changing seasons and photoperiod is a predictor 

and indicator of season. I also hypothesized that there is variation in the strength of 

the immune response to a delayed-type hypersensitivity reaction that is related to the 

heritable variation observed in our artificial selection lines of wild-source white-

footed mice, Peromyscus leucopus. The strength of the immune response would vary 

because the lines of mice vary in neuroendocrine traits, such as the number of 

neurons that gonadotropin-releasing hormone, which would alter how the immune 

system is regulated.  

Based on these hypotheses, I predicted that mice in short-day photoperiod 

would have a stronger response to the delayed-type hypersensitivity test than those in 

long-day photoperiod because a higher proportion of resources is allocated to immune 

function in winter. I also predicted that in mice in short-day photoperiod, mice from 

the responsive line would have a stronger response to the delayed-type 

hypersensitivity test than mice from the non-responsive line, because mice in the non-

responsive line in short-day photoperiod allocate a portion of the resources to 

reproduction, while mice in the responsive line can allocate those resources to the 

immune system.  

The effect of line on the delayed-type hypersensitivity response was 

significant in Run 1 and marginally insignificant in the combined data (Figures 11 

and 15). Only the data from Run 1 can be used to assess the first prediction, because 
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the analyses including results from the delayed-type hypersensitivity test in Run 2 do 

not include mice from long-day photoperiod. The data collected during Run 1 

indicates that the first prediction was correct. The second prediction was opposite 

from my results; the responsive line had a significantly weaker response to the 

delayed-type hypersensitivity test than the non-responsive line. These results suggest 

that the selection lines had heritable variation in immune function as well as heritable 

variation in seasonal fertility. 

Importantly, in this as with previous studies, mice in the non-responsive line 

allocated more resources to reproduction, as measured by gonadal mass, than mice in 

the responsive line. Mice in the non-responsive line had significantly larger gonads 

than mice in the responsive line (Tables 1, 3, and 4 and Figure 10). In addition, mice 

in long-day photoperiod had significantly larger gonads than mice in short-day 

photoperiod. Consistent with recent unpublished data (Heideman, unpublished data), 

the effects of line, photoperiod, and their interaction on daily food intake were not 

significant in Run 1, Run 2, or the combined data (Tables 1, 2, and 4 and Figure 8). 

For the combined data, the effect of photoperiod on daily food intake was only 

marginally insignificant. The lack of significance could be partially due to the small 

effect size that photoperiod had on daily food intake (r = 0.21).  

An important caveat is that the age of subjects was not balanced among 

groups. This may or may not have affected the results. Age may not be an important 

factor, as the effects of line and photoperiod on testes mass and delayed-type 

hypersensitivity responses remained statistically significant when age was included as 
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a covariate in the analysis. While this suggests that age was not a factor, it would be 

valuable to repeat this experiment with groups balanced for age.  

Another consideration is the fact that Peromyscus leucopus may differ from 

other species in the response to the delayed-type hypersensitivity test. In hamsters, the 

inflammation in response to delayed-type hypersensitivity peaks during Days 2 and 3 

and begins to reduce (Bilbo et al., 2002, Bilbo and Nelson, 2003, 2004, Prendergast et 

al., 2005, Bedrosian et al., 2011). Other studies involving Peromyscus leucopus found 

that with delayed-type hypersensitivity the pinnae of the mice remained inflamed 

after Day 6 (Martin et al., 2006), matching results in this study.  

The delayed-type hypersensitivity results indicate that there may be a 

difference in immune function between the lines. By the fourth and fifth days after 

treatment, the ears of mice from the non-responsive line continued to swell, while the 

inflammation in the ears from mice in the responsive line seemed to reach a 

maximum and plateau. I can propose four different hypotheses as to why this might 

be the case: 

1. Mice from the non-responsive line vary in the number of specific types 

of immune cells, so their reaction to the 2,4-dinitro-1-fluorobenzene 

can continue to become more inflamed as the days pass. Cell types of 

interest include T helper cells, cytotoxic T cells, memory T cells, 

regulatory T cells, B cells, monocytes, dendritic cells, and 

macrophages. 
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2. Mice from the responsive line have a larger ratio of T regulatory cells 

relative to T helper cells and other cells secreting pro-inflammatory 

cytokines.  

3. Mice from the responsive line have a more efficient immune response. 

Mice from the responsive line are able to clear the 2,4-dinitro-1-

fluorobenzene away from the site of application more quickly than 

mice from the non-responsive line, so the ears of the mice from the 

non-responsive line continue to become inflamed.  

4. Mice from the non-responsive line invest more energy in building an 

immune response and sustaining an immune response when exposed to 

an immunogenic molecule than mice from the responsive line.  

Maintaining the immune system is not energetically costly (Derting and 

Compton, 2003). However, mounting an immune response requires more energy 

(Raberg et al., 2002, Derting and Compton, 2003, Demas, 2004). In the wild, an 

organism has a limited amount of energy to use (Ricklefs and Wikelski, 2002). This 

energy has to be used to maintain functions necessary for survival, such as immunity 

and homeostasis, as well as functions not immediately necessary for survival, such as 

reproduction. Investment in one system over another represents a trade-off an 

organism uses to maximize fitness. Mounting an immune response is correlated with 

an increase in resting metabolic rate (Lochmiller and Deerenberg, 2000, Demas, 

2004). The energy used for the immune response may need to be reallocated from 

reproduction (Bonneaud et al., 2003). A recently published study from the Heideman 

laboratory found that the basal metabolic rate of mice in the non-responsive line was 
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significantly higher than that of mice in the responsive line in short-day photoperiod 

(Kaseloo et al., 2012). The basal metabolic rates of mice in the two selection lines did 

not differ significantly in long-day photoperiod. Combined with my data, this 

suggests that the selection lines differ in the amount of energy that is expended.   

Organisms have a finite amount of energy to use, and it needs to be allocated 

well for the organism to survive. The organism must simultaneously regulate many 

physiological processes, including reproduction and the immune system, and some of 

these processes regulate others. There are several mechanisms that might cause direct 

interactions between the reproductive axis and the immune system. Some studies 

have proposed that sex steroids may act directly on immune cells (Grossman, 1985, 

Demas and Nelson, 1998). Immune cells have receptors for sex steroids and 

gonadotropin-releasing hormone (Da Silva, 1999). It is unclear whether sex steroids 

enhance or depress the immune system (Bilbo and Nelson, 2001). Additionally, other 

investigators have found significant differences in immune function between males 

and females of various species, including humans (Paavonen, 1994, Fox, 1995, De 

Leon-Nava et al., 2009). Both immunity and reproduction are affected by the 

secretion of glucocorticoids, which is affected by the hypothalamus-pituitary-adrenal 

axis (Manteuffel, 2002, Tanriverdi et al., 2003). Glucocorticoids can regulate the 

secretion of sex steroids and vice versa (Brownlee et al., 2005). Heritable variation in 

the characteristics and functioning of neurons in the hypothalamus or pituitary gland 

can affect both the secretion of glucocorticoids and sex steroids. 

In summary, in the short-day photoperiod, the non-responsive line had a 

stronger response to the delayed-type hypersensitivity test than mice from the 
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responsive line. Additionally, the mice from the non-responsive line had significantly 

larger gonads than the mice from the responsive line. This suggests that the non-

responsive line allocates energy differently into immunity and reproduction than does 

the responsive line. Consistent with this interpretation of my data, Kaseloo et al. 

(2012) found that, in these lines, non-responsive mice in short-day photoperiod had a 

higher basal metabolic rate than the responsive line, which suggests that non-

responsive mice require more energy to maintain fertility and be able to mount an 

immune response. 

 

 

Future directions 

In this first paragraph, I propose a plan for additional runs to produce a dataset 

that would have higher statistical power. My foremost suggestion would be to 

conduct another trial. The relatively small effect size of line on inflammation from the 

delayed-type hypersensitivity reaction suggests testing larger group sizes is necessary 

for high statistical power. In addition, future runs should continue for at least three 

days longer than Run 1 and Run 2 in this thesis (Figure 16). Ear measurements for 

mice should be taken over a total of 9 days, including Day 0. Differences between the 

two lines were most pronounced toward the end of the experiment, as has been 

reported previously for Peromyscus leucopus (Martin et al., 2008a). Ideally, the 

inflammation from the delayed-type hypersensitivity response should be declining by 

the last day of measurement, as that would show the full time course of the response. 

Also, the adverse reaction of the non-responsive, long-day mice in Run 2 would 
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ideally be avoided or prevented. Unfortunately, the reaction was idiopathic, so the 

non-responsive, long-day treatment group can only be watched closely for signs of 

pinnae hardening.  

 

 

FIGURE 16. Prediction of average measure of inflammation from the delayed-type 

hypersensitivity reaction. In this thesis, measurements were continued to Day 5, but if 

the number of days that the ears are measured was increased, the inflamed ear may 

becoming less inflamed (represented by the dashed line that begins after Day 5).     

 

If additional trials show a significant effect of selection line, more specific 

information about how the immune systems of the lines of mice are different could be 

investigated [for more possible techniques other than the ones suggested here, see 

Figure 16 from (Martin et al., 2008b)]. First, flow cytometry would yield information 

about the number of immune cells of certain types, e.g. CD4+ T helper cells, 

FOXP3+ T regulatory cells, or CD14+ macrophages. The first two of the four 
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proposed mechanisms for immune system variation would be able to be refuted by 

this data. The first hypothesis would be rejected if the effect of selection line on the 

number of immune cells was not significant. Flow cytometry could be done on 

various tissues, such as the spleen and blood serum. The second hypothesis would be 

rejected if the effect of selection line on the ratio of T regulatory cells to T helper 

cells and other cells secreting pro-inflammatory cytokines was not significant. In a 

second approach to understand the underlying mechanisms, a lipopolysaccharide 

challenge would assess the immune response from B cells and macrophages 

(Anderson et al., 1972, Bucala, 1992). B cells and T cells can sometimes have 

antagonistic effects on the other (Lampropoulou et al., 2008).  

 

 
 FIGURE 16. Possible techniques to assess the strengths of different arms of the 
immune system. Figure from (Martin et al., 2008b). 
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Using the whole organism, while potentially more accurate, does not provide 

much information about differences between the lines on a cellular level. To may be 

informative to extract cells to perform in vitro experiments. Initially, a peripheral 

blood smear could be performed from blood extracted from the tip of the tails of the 

mice. Also, the serum of the blood could be used to measure the antibody titer. In 

vitro call cultures can also be used to evaluated cytokine secretion using an enzyme-

linked immuno sorbent assay specific to cytokines of interest, such as tumor necrosis 

factor-α, interleukin-1, or interleukin-6.  

An additional possible experiment can investigate the impact of melatonin on 

immune function in responsive and non-responsive mice. The mice would be given 

timed oral doses of melatonin, ramelteon (a melatonin agonist with a high affinity for 

MT1 and MT2 receptors), or luzindole (a melatonin receptor antagonist) (Drazen et 

al., 2001, Hiebert et al., 2006, Prendergast, 2010).  
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